Local Connectivity of Deformation spaces of Kleinian groups

Aaron Magid

UNIVERSITY OF MARYLAND

30 July 2010
Review the definition of $AH(M)$

Topology of the interior

Bumponomics and the failure of local connectivity

A local model for $AH(M)$
Definition of $AH(M)$

Let M be a compact, orientable 3-manifold.

\[AH(M) = \{ \rho : \pi_1(M) \to PSL(2, \mathbb{C}) \mid \rho \text{ discrete, faithful} \} / PSL(2, \mathbb{C}) \]
Let M be a compact, orientable 3-manifold.

$$AH(M) = \{ \rho : \pi_1(M) \rightarrow PSL(2, \mathbb{C}) \mid \rho \text{ discrete, faithful} \}/PSL(2, \mathbb{C})$$

$AH(M)$ inherits a topology as a subset of the character variety

$$X(M) = Hom(\pi_1(M), PSL(2, \mathbb{C}))/PSL(2, \mathbb{C})$$
Let \(M \) be a compact, orientable 3-manifold.

\[
AH(M) = \{ \rho : \pi_1(M) \to PSL(2, \mathbb{C}) \mid \rho \text{ discrete, faithful} \}/PSL(2, \mathbb{C})
\]

\(AH(M) \) inherits a topology as a subset of the character variety

\[
X(M) = Hom(\pi_1(M), PSL(2, \mathbb{C}))//PSL(2, \mathbb{C})
\]

If \(P \subset \partial M \) is a collection of annuli and tori

\[
AH(M, P) = \{ \rho \in AH(M) \mid \rho(g) \text{ parabolic for all } g \in P \}
\]
Marked hyperbolic 3-manifolds

\[AH(M) = \{ \rho : \pi_1(M) \to PSL(2, \mathbb{C}) \mid \rho \text{ discrete, faithful} \}/PSL(2, \mathbb{C}) \]
Marked hyperbolic 3-manifolds

\[AH(M) = \{ \rho : \pi_1(M) \to PSL(2, \mathbb{C}) \mid \rho \text{ discrete, faithful} \} / PSL(2, \mathbb{C}) \]

\[\rho \in AH(M) \]

\[M = S \times I \]
Marked hyperbolic 3-manifolds

\[AH(M) = \{ \rho : \pi_1(M) \to PSL(2, \mathbb{C}) \mid \rho \text{ discrete, faithful} \}/PSL(2, \mathbb{C}) \]

\[\rho \in AH(M) \leadsto N_\rho = \mathbb{H}^3/\rho(\pi_1(M)) \]

\[M = S \times I \]

\[N_\rho \]
Marked hyperbolic 3-manifolds

\[AH(M) = \{ \rho : \pi_1(M) \to PSL(2, \mathbb{C}) \mid \rho \text{ discrete, faithful} \} / PSL(2, \mathbb{C}) \]

\[\rho \in AH(M) \mapsto N_\rho = \mathbb{H}^3 / \rho(\pi_1(M)) \]
$AH(M) = \{ \rho : \pi_1(M) \to PSL(2, \mathbb{C}) \mid \rho \text{ discrete, faithful} \}/PSL(2, \mathbb{C})$

$\rho \in AH(M) \leadsto N_\rho = \mathbb{H}^3/\rho(\pi_1(M))$

$AH(M)$ is the set of marked hyperbolic 3-manifolds homotopy equivalent to M
The interior of $AH(M)$

Theorem (Ahlfors, Bers, Kra, Marden, Maskit, Sullivan, Thurston)

When ∂M is incompressible, the interior of $AH(M)$:
The interior of $AH(M)$

Theorem (Ahlfors, Bers, Kra, Marden, Maskit, Sullivan, Thurston)

When ∂M is incompressible, the interior of $AH(M)$:

- consists of geometrically finite, minimally parabolic representations
Theorem (Ahlfors, Bers, Kra, Marden, Maskit, Sullivan, Thurston)

When ∂M is incompressible, the interior of $AH(M)$:

- consists of geometrically finite, minimally parabolic representations
- components are enumerated by marked homeomorphism types of 3-manifolds homotopy equivalent to M
The interior of $AH(M)$

Theorem (Ahlfors, Bers, Kra, Marden, Maskit, Sullivan, Thurston)

When ∂M is incompressible, the interior of $AH(M)$:

- consists of geometrically finite, minimally parabolic representations
- components are enumerated by marked homeomorphism types of 3-manifolds homotopy equivalent to M
- the component associated to M' is parameterized by the Teichmüller space of $\partial M'$
The interior of $AH(M)$

Theorem (Ahlfors, Bers, Kra, Marden, Maskit, Sullivan, Thurston)

When ∂M is incompressible, the interior of $AH(M)$:

- consists of geometrically finite, minimally parabolic representations
- components are enumerated by marked homeomorphism types of 3-manifolds homotopy equivalent to M
- the component associated to M' is parameterized by the Teichmüller space of $\partial M'$

Corollary

Each component of the interior is homeomorphic to an open ball
The interior of $AH(M)$

Theorem (Ahlfors, Bers, Kra, Marden, Maskit, Sullivan, Thurston)

When ∂M is incompressible, the interior of $AH(M)$:

- consists of geometrically finite, minimally parabolic representations
- components are enumerated by marked homeomorphism types of 3-manifolds homotopy equivalent to M
- the component associated to M' is parameterized by the Teichmüller space of $\partial M'$

Corollary

Each component of the interior is homeomorphic to an open ball

Example:

$$\text{int}(AH(S \times I)) \cong \mathcal{T}(S) \times \mathcal{T}(S')$$
Theorem (Brock, Bromberg, Kim, Kleineidam, Lecuire, Namazi, Ohshika, Souto, Thurston)

\[AH(M) = \overline{\text{int}(AH(M))} \]

(i.e., every hyperbolic manifold is the algebraic limit of geometrically finite manifolds)
Theorem (Brock, Bromberg, Kim, Kleineidam, Lecuire, Namazi, Ohshika, Souto, Thurston)

\[AH(M) = \text{int}(AH(M)) \]

(i.e., every hyperbolic manifold is the algebraic limit of geometrically finite manifolds)

Components of the interior of \(AH(M) \) can bump:
(Anderson, Canary, McCullough)
Theorem (Brock, Bromberg, Kim, Kleineidam, Lecuire, Namazi, Ohshika, Souto, Thurston)

\[AH(M) = \overline{\text{int}(AH(M))} \]

(i.e., every hyperbolic manifold is the algebraic limit of geometrically finite manifolds)

Components of the interior of \(AH(M) \) can bump:
(Anderson, Canary, McCullough)

The interior of \(AH(S \times I) \) self-bumps:
(McMullen, Bromberg, Holt)
The punctured torus

Theorem (Bromberg)

Let \hat{T} denote the punctured torus. Then $AH(\hat{T} \times I, \partial\hat{T} \times I)$ is not locally connected.
The punctured torus

Theorem (Bromberg)

Let \hat{T} denote the punctured torus. Then $AH(\hat{T} \times I, \partial \hat{T} \times I)$ is not locally connected.

- Depends on Minsky’s classification of punctured torus groups
AH(S × I) is not locally connected

Theorem (M)

For any closed genus \(g \geq 2 \) surface \(S \), \(AH(S \times I) \) is not locally connected.
For any closed genus $g \geq 2$ surface S, $AH(S \times I)$ is not locally connected.

Let M be a hyperbolizable 3-manifold with incompressible boundary containing a primitive essential annulus A and suppose $(\hat{T} \times I, \partial \hat{T} \times I)$ is pared homeomorphic to one of the components (M', A) of $M - A$. Then $AH(M)$ is not locally connected.
Outline of Proof

$$AH(M)$$

\[\text{want to use } \rho \mapsto \rho|_{\pi_1(\hat{T})}\]

$$AH(\hat{T}, \partial\hat{T})$$
Outline of Proof

\[AH(M) \]

\[\mathcal{A}_{\hat{T}} \xrightarrow{\Phi} AH(\hat{T}, \partial\hat{T}) \]

- Local model for \(AH(\hat{T}, \partial\hat{T}) \) [Bromberg]
Local model for \(AH(\hat{T}, \partial\hat{T}) \) [Bromberg]

Local model for (a dense subset of) \(AH(M) \)
Outline of Proof

\[\mathcal{A}_M \xrightarrow{\Phi} AH(M) \]
\[\Pi \]
\[\mathcal{A}_{\hat{T}} \xrightarrow{\Phi} AH(\hat{T}, \partial\hat{T}) \]

- Local model for \(AH(\hat{T}, \partial\hat{T}) \) [Bromberg]
- Local model for (a dense subset of) \(AH(M) \)
- Define a map \(\mathcal{A}_M \xrightarrow{\Pi} \mathcal{A}_{\hat{T}} \) by restricting representations \(\mathcal{A}_M \) not locally connected since \(\mathcal{A}_{\hat{T}} \) not locally connected
Outline of Proof

\[\mathcal{A}_M \xrightarrow{\Phi} AH(M) \]

\[\Pi \downarrow \]

\[\mathcal{A}_{\hat{T}} \xrightarrow{\Phi} AH(\hat{T}, \partial\hat{T}) \]

- Local model for \(AH(\hat{T}, \partial\hat{T}) \) [Bromberg]

- Local model for (a dense subset of) \(AH(M) \)

- Define a map \(\mathcal{A}_M \xrightarrow{\Pi} \mathcal{A}_{\hat{T}} \) by restricting representations \(\mathcal{A}_M \) not locally connected since \(\mathcal{A}_{\hat{T}} \) not locally connected

- Complex length estimates from Filling Theorem show \(\Phi(\mathcal{A}_M) \) not locally connected. Density implies \(AH(M) \) not locally connected.
Local model for $AH(\hat{T}, \partial \hat{T})$

Given σ with extra parabolic

$$\sigma(b) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$
Local model for $AH(\hat{T}, \partial\hat{T})$

Given σ with extra parabolic
\[\sigma(b) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \]

construct manifold with rank 2 cusp
\[\sigma_w(c) = \begin{pmatrix} 1 & w \\ 0 & 1 \end{pmatrix} \]
Local model for $AH(\hat{T}, \partial\hat{T})$

Given σ with extra parabolic

$$\sigma(b) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

construct manifold with rank 2 cusp

$$\sigma_w(c) = \begin{pmatrix} 1 & w \\ 0 & 1 \end{pmatrix}$$

fill along c
Local model for $AH(\hat{T}, \partial \hat{T})$

Given σ with extra parabolic
$\sigma(b) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$

construct manifold with rank 2 cusp
$\sigma_w(c) = \begin{pmatrix} 1 & w \\ 0 & 1 \end{pmatrix}$

$A_{\hat{T}} = \{(\sigma, w) \mid \sigma_w \text{ geometrically finite or } w = \infty\}$

$\Phi(\sigma, w) = \begin{cases}
\text{filling of } \mathbb{H}^3/\sigma_w & \text{if } w \neq \infty \\
\sigma & \text{if } w = \infty
\end{cases}$
Local model for $AH(\hat{T}, \partial\hat{T})$

Given σ with extra parabolic

$$\sigma(b) = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$$

construct manifold with rank 2 cusp

$$\sigma_w(c) = \begin{pmatrix} 1 & w \\ 0 & 1 \end{pmatrix}$$

fill along c

$$\mathcal{A}_{\hat{T}} = \{ (\sigma, w) \mid \sigma_w \text{ geometrically finite or } w = \infty \}$$

$$\Phi(\sigma, w) = \begin{cases} \text{filling of } \mathbb{H}^3/\sigma_w & \text{if } w \neq \infty \\ \sigma & \text{if } w = \infty \end{cases}$$

Theorem (Bromberg)

Φ extends to a local homeomorphism $\overline{\mathcal{A}_{\hat{T}}} \to AH(\hat{T}, \partial\hat{T})$.
Hyperbolic Dehn filling

Theorem (Hodgson-Kerckhoff, Bromberg, Brock-Bromberg, M)

Let \(L > 1, \varepsilon > 0 \). There exists \(K \) such that if \(|w| > K\), then

- the hyperbolic Dehn filling of \(\hat{N} \) exists
- the complex length, \(l + i\theta \), of the core curve, \(\gamma \), of the solid filling torus satisfies

\[
\left| l - \frac{4\pi \text{Im}(w)}{|w|^2} \right| \leq \frac{16(2\pi)^3(\text{Im}(w))^2}{|w|^4} \quad \left| \theta - \frac{4\pi \text{Re}(w)}{|w|^2} \right| \leq \frac{10(2\pi)^3(\text{Im}(w))^2}{|w|^4}
\]

- there exists an \(L\)-biLipschitz diffeomorphism

\[
\hat{N} - \{\varepsilon - \text{thin part about cusp}\} \rightarrow N - \{\varepsilon - \text{thin part about } \gamma\}\]
Local model for (most of) $AH(M)$

Given σ with two extra parabolics $\sigma(a)$ and $\sigma(b)$
Local model for (most of) $AH(M)$

Given σ with two extra parabolics $\sigma(a)$ and $\sigma(b)$

cusps parametrized by $w_i \in \mathbb{C}$
Local model for (most of) $AH(M)$

Given σ with two extra parabolics $\sigma(a)$ and $\sigma(b)$

cusps parametrized by $w_i \in \mathbb{C}$

fill along c_1 and c_2
Local model for (most of) $AH(M)$

Given σ with two extra parabolics $\sigma(a)$ and $\sigma(b)$

\[\mathcal{A}_M = \{(\sigma, w_1, w_2) \mid \sigma_{w_1,w_2} \text{ geometrically finite or } w_1 = w_2 = \infty \} \]

\[\Phi(\sigma, w_1, w_2) = \begin{cases}
\text{filling of } \mathbb{H}^3/\sigma_{w_1,w_2} & \text{if } (w_1, w_2) \neq (\infty, \infty) \\
\sigma & \text{if } (w_1, w_2) = (\infty, \infty)
\end{cases} \]
Local model for (most of) $AH(M)$

Given σ with two extra parabolics $\sigma(a)$ and $\sigma(b)$, extend cusps parametrized by $w_i \in \mathbb{C}$ and fill along c_1 and c_2.

$$A_M = \{(\sigma, w_1, w_2) \mid \sigma_{w_1, w_2} \text{ geometrically finite or } w_1 = w_2 = \infty\}$$

$$\Phi(\sigma, w_1, w_2) = \begin{cases} \text{filling of } \mathbb{H}^3/\sigma_{w_1, w_2} & \text{if } (w_1, w_2) \neq (\infty, \infty) \\ \sigma & \text{if } (w_1, w_2) = (\infty, \infty) \end{cases}$$

Theorem (Bromberg)

For any (σ, ∞, ∞), there is a neighborhood U in A_M such that $\Phi|_U : U \to \Phi(U) \subset AH(M)$ is a homeomorphism.
Define $\Pi : \mathcal{A}_M \to \mathcal{A}_{\hat{T}}$ by $(\sigma, w_1, w_2) \mapsto (\sigma|_{\pi_1(\hat{T})}, w_1)$.
Define $\Pi : A_M \rightarrow A_{\hat{T}}$ by $(\sigma, w_1, w_2) \mapsto (\sigma|_{\pi_1(\hat{T})}, w_1)$
Define $\Pi : A_M \to A_{\hat{T}}$ by $(\sigma, w_1, w_2) \mapsto (\sigma|_{\pi_1(\hat{T})}, w_1)$.

Lemma

There exists a point (σ_0, ∞), a neighborhood $U \subset A_{\hat{T}}$, subsets $C_n \subset U$, and some $\delta > 0$ such that for any $(\sigma, w) \in C_n$ and any $(\sigma', w') \in U - C_n$

$$|w - w'| > \delta$$
Define $\Pi : A_M \to A_{\hat{T}}$ by $(\sigma, w_1, w_2) \mapsto (\sigma|_{\pi_1(\hat{T})}, w_1)$

Lemma

There exists a point $(\sigma_0, \infty, \infty) \in U \subset A_M$, subsets $\Pi^{-1}(C_n) \subset U$, and some $\delta > 0$ such that for any $(\sigma, w_1, w_2) \in \Pi^{-1}(C_n)$ and $(\sigma', w_1', w_2') \in U - \Pi^{-1}(C_n)$

$$|w_1 - w_1'| > \delta$$
$AH(M)$ is not locally connected

\mathcal{A}_M

$B_n = \Pi^{-1}(C_n)$

$\downarrow \Pi$

\mathcal{A}_T

C_n

$\Phi \quad \rightarrow \quad \Phi(B_n)$
AH(M) is not locally connected

\[B_n = \Pi^{-1}(C_n) \]

\[\downarrow \Pi \]

Filling Theorem implies complex length of \(\gamma \) in \(\Phi(\sigma, w_1, w_2) \) is approximately

\[\ell + i\theta \approx \frac{4\pi \text{Im}(w_1)}{|w_1|^2} + i \frac{4\pi \text{Re}(w_1)}{|w_1|^2} \]
$AH(M)$ is not locally connected

\[B_n = \Pi^{-1}(C_n) \]

\[\downarrow \Pi \]

\[\hat{A}_T \]

\[C_n \]

Filling Theorem implies complex length of γ in $\Phi(\sigma, w_1, w_2)$ is approximately

\[\ell + i\theta \approx \frac{4\pi \text{Im}(w_1)}{|w_1|^2} + i \frac{4\pi \text{Re}(w_1)}{|w_1|^2} \]

For all but finitely many n, $\Phi(B_n)$ and $\Phi(U - B_n)$ are disjoint
$AH(M)$ is not locally connected

\[B_n = \Pi^{-1}(C_n) \]
\[\downarrow \Pi \]

Φ implies complex length of γ in $\Phi(\sigma, w_1, w_2)$ is approximately

\[\ell + i\theta \approx \frac{4\pi \text{Im}(w_1)}{|w_1|^2} + i\frac{4\pi \text{Re}(w_1)}{|w_1|^2} \]

For all but finitely many n, $\Phi(B_n)$ and $\Phi(U - B_n)$ are disjoint.

Density \Rightarrow $AH(M)$ is not locally connected.
Future Directions

- Replace punctured torus with four-punctured sphere
Future Directions

- Replace punctured torus with four-punctured sphere

- At which points is $AH(M)$ locally connected?
Thank you for listening!

Slides and preprints are available at:

www.math.umd.edu/~magid/