Hyperbolic cone-manifold structures with prescribed holonomy

Daniel V. Mathews

Université de Nantes
dan.v.mathews@gmail.com

National University of Singapore
Geometry, Topology and Dynamics of Character Varieties
22 July 2010
Outline

1. Background
 - Introduction
 - $\text{PSL}_2\mathbb{R}$
 - Euler class of a representation
 - Hyperbolic cone surfaces

2. Statements

3. Ideas in the proofs
 - Punctured tori and pentagons
 - Representation and character varieties
Holonomy

Recall:

- A hyperbolic structure on a manifold M^n is equivalent to an developing map $D : \tilde{M}^n \longrightarrow \mathbb{H}^n$.
- A loop $C \in \pi_1(M, x_0)$ lifts to a path in \mathbb{H}^n, giving an isometry $\rho(C)$ relating first and last charts around x_0.
- This gives holonomy homomorphism $\rho : \pi_1(M, x_0) \longrightarrow \text{Isom}^+ \mathbb{H}^n$.

Notation:

- Capitals denote curves in $\pi_1(M)$, lower case denotes image under ρ, i.e. $\rho(G) = g$.
- All surfaces orientable connected.

2 papers on arxiv

- 1006.5223: Hyperbolic cone-manifold structures with prescribed holonomy I: punctured tori
- 1006.5384: Hyperbolic cone-manifold structures with prescribed holonomy II: higher genus
Holonomy

Recall:
- A hyperbolic structure on a manifold M^n is equivalent to an developing map $\mathcal{D} : \tilde{M}^n \rightarrow \mathbb{H}^n$.
- A loop $C \in \pi_1(M, x_0)$ lifts to a path in \mathbb{H}^n, giving an isometry $\rho(C)$ relating first and last charts around x_0.
- This gives holonomy homomorphism $\rho : \pi_1(M, x_0) \rightarrow \text{Isom}^+ \mathbb{H}^n$.

Notation:
- Capitals denote curves in $\pi_1(M)$, lower case denotes image under ρ, i.e. $\rho(G) = g$.
- All surfaces orientable connected.

2 papers on arxiv
- 1006.5223: Hyperbolic cone-manifold structures with prescribed holonomy I: punctured tori
- 1006.5384: Hyperbolic cone-manifold structures with prescribed holonomy II: higher genus
Recall:

- A hyperbolic structure on a manifold M^n is equivalent to an developing map $\mathcal{D} : \tilde{M}^n \to \mathbb{H}^n$.
- A loop $C \in \pi_1(M, x_0)$ lifts to a path in \mathbb{H}^n, giving an isometry $\rho(C)$ relating first and last charts around x_0.
- This gives holonomy homomorphism $\rho : \pi_1(M, x_0) \to \text{Isom}^{+} \mathbb{H}^n$.

Notation:

- Capitals denote curves in $\pi_1(M)$, lower case denotes image under ρ, i.e. $\rho(G) = g$.
- All surfaces orientable connected.

2 papers on arxiv

- 1006.5223: Hyperbolic cone-manifold structures with prescribed holonomy I: punctured tori
- 1006.5384: Hyperbolic cone-manifold structures with prescribed holonomy II: higher genus
Questions

\{
\text{Hyperbolic structure on } M
\} \rightarrow \{ \text{Algebraic representation } \pi_1(M) \rightarrow PSL_2\mathbb{R} \}\}

- Which representations \(\pi_1(M) \rightarrow PSL_2\mathbb{R} \) are holonomy maps of hyperbolic structures?
- Do other representations have a geometric interpretation?
- In general, how does algebra determine geometry?
Questions

\[
\begin{align*}
\{ & \text{Hyperbolic structure on } \mathcal{M} \} \\
\rightarrow & \quad \Leftrightarrow \\
\{ & \text{Algebraic representation } \pi_1(\mathcal{M}) \rightarrow PSL_2\mathbb{R} \}
\end{align*}
\]

- Which representations \(\pi_1(\mathcal{M}) \rightarrow PSL_2\mathbb{R} \) are holonomy maps of hyperbolic structures?
- Do other representations have a geometric interpretation?
- In general, how does algebra determine geometry?
Questions

\{ \text{Hyperbolic structure on } M \} \rightarrow ? \leftarrow ? \{ \text{Algebraic representation } \pi_1(M) \rightarrow PSL_2\mathbb{R} \}

- Which representations \(\pi_1(M) \rightarrow PSL_2\mathbb{R} \) are holonomy maps of hyperbolic structures?
- Do other representations have a geometric interpretation?
- In general, how does algebra determine geometry?
Known results

- 3-dimensional hyperbolic/euclidean/spherical geometry, M with boundary (but no boundary control): Leleu 2000
- 2-dimensional complex projective geometry, M closed: Gallo–Kapovich–Marden 2000
- 2-dimensional hyperbolic geometry, M closed/punctured/geodesic boundary: Goldman 1980

Here:

2-dimensional hyperbolic geometry.
Extend (and reprove) Goldman’s results.
All the previous results involve lifting representations
\(\pi_1(M) \rightarrow \text{Isom}^+X \) to the universal cover \(\tilde{\text{Isom}}^+X \).

As unit tangent bundle:

\[
\tilde{PSL}_2\mathbb{R} \cong UTH^2 \cong H^2 \times S^1
\]

\[
\tilde{PSL}_2\mathbb{R} \cong \left\{ \text{“unit tangent bundle but with angles measured in } \mathbb{R} \text{ not } \mathbb{R}/2\pi\mathbb{Z}” \right\} \cong H^2 \times \mathbb{R}
\]

As classes of paths:

\[
\tilde{PSL}_2\mathbb{R} = \left\{ \text{“Homotopy classes of paths in } PSL_2\mathbb{R} \text{ starting at 1, rel endpoints”} \right\}
\]

Projection to \(PSL_2\mathbb{R} \): take a path to its endpoint.
All the previous results involve lifting representations \(\pi_1(M) \to \text{Isom}^+ X \) to the universal cover \(\tilde{\text{Isom}}^+ X \).

As unit tangent bundle:

\[
\tilde{\text{PSL}_2 \mathbb{R}} \cong \tilde{\text{UT}} \mathbb{H}^2 \cong \mathbb{H}^2 \times S^1
\]

\[
\text{As classes of paths:}
\]

\[
\tilde{\text{PSL}_2 \mathbb{R}} = \left\{ \text{Homotopy classes of paths in } \text{PSL}_2 \mathbb{R} \text{ starting at 1, rel endpoints} \right\}
\]

Projection to \(\text{PSL}_2 \mathbb{R} \): take a path to its endpoint.
All the previous results involve lifting representations $\pi_1(M) \to \text{Isom}^+ X$ to the universal cover $\widetilde{\text{Isom}}^+ X$.

As unit tangent bundle:

$$\widetilde{PSL_2\mathbb{R}} \cong UTH^2 \cong H^2 \times S^1$$

$$\widetilde{PSL_2\mathbb{R}} \cong \left\{ \text{“unit tangent bundle but with angles measured in } \mathbb{R} \text{ not } \mathbb{R}/2\pi\mathbb{Z}” \right\} \cong H^2 \times \mathbb{R}$$

As classes of paths:

$$\widetilde{PSL_2\mathbb{R}} = \left\{ \text{“Homotopy classes of paths in } PSL_2\mathbb{R} \text{ starting at 1, rel endpoints”} \right\}$$

Projection to $PSL_2\mathbb{R}$: take a path to its endpoint.
Lifts to $\tilde{PSL}_2^\mathbb{R}$

Lifts of:
- $1 \in PSL_2^\mathbb{R}$ are $\{z^n : n \in \mathbb{Z}\} = \text{centre} = Z$. $z = 2\pi$ rotation.
- $g \in PSL_2^\mathbb{R}$ are $\tilde{g}Z$ where \tilde{g} is one particular lift.

Lemma

If $g, h \in PSL_2^\mathbb{R}$ then $[g, h]$ is well-defined in $\tilde{PSL}_2^\mathbb{R}$.

A parabolic or hyperbolic $\alpha \in PSL_2^\mathbb{R}$ has a “simplest” lift to $\tilde{PSL}_2^\mathbb{R}$: ‘minimal twist to tangent vector".
Lifts to $\overline{\text{PSL}_2\mathbb{R}}$

Lifts of:
- $1 \in \text{PSL}_2\mathbb{R}$ are $\{z^n : n \in \mathbb{Z}\} = \text{centre} = Z$. $z = 2\pi$ rotation.
- $g \in \text{PSL}_2\mathbb{R}$ are $\tilde{g}Z$ where \tilde{g} is one particular lift.

Lemma

If $g, h \in \text{PSL}_2\mathbb{R}$ then $[g, h]$ is well-defined in $\overline{\text{PSL}_2\mathbb{R}}$.

A parabolic or hyperbolic $\alpha \in \text{PSL}_2\mathbb{R}$ has a “simplest” lift to $\overline{\text{PSL}_2\mathbb{R}}$: ‘minimal twist to tangent vector".
Lifts of:

- $1 \in PSL_2 \mathbb{R}$ are $\{z^n : n \in \mathbb{Z}\}$ = centre = Z. $z = 2\pi$ rotation.
- $g \in PSL_2 \mathbb{R}$ are $\tilde{g}Z$ where \tilde{g} is one particular lift.

Lemma

If $g, h \in PSL_2 \mathbb{R}$ then $[g, h]$ is well-defined in $\tilde{PSL}_2 \mathbb{R}$.

A parabolic or hyperbolic $\alpha \in PSL_2 \mathbb{R}$ has a “simplest” lift to $\tilde{PSL}_2 \mathbb{R}$: ‘minimal twist to tangent vector'.
Regions in $\text{PSL}_2\mathbb{R}$

- $\text{Hyp}_0 = \{\text{"simplest lifts of hyperbolics"}\}$
- $\text{Par}_0 = \{\text{"simplest lifts of parabolics"}\} = \text{Par}_0^+ \cup \text{Par}_0^-$
- $\text{Ell}_1 = \{\text{"rotations by } \theta \in (0, 2\pi)\}$
- $\text{Ell}_{-1} = \{\text{"rotations by } \theta \in (-2\pi, 0)\}$
Euler class of a representation

Algebraic definition:

\[\pi_1(S) = \langle G_1, H_1, \ldots, G_k, H_k \mid [G_1, H_1] \cdots [G_k, H_k] = 1 \rangle \]

Consider \(\rho([G_1, H_1] \cdots [G_k, H_k]) = \begin{cases} 1 \in \text{PSL}_2 \mathbb{R} \\ z^m \in \text{PSL}_2 \mathbb{R} \end{cases} \)

\(m = \text{Euler class of } \rho = e(\rho) \)

Also obstruction-theoretic: “\(e(\rho) \) is the obstruction to an equivariant developing map with vector field \(\mathcal{D} : \tilde{S} \rightarrow UT_{\mathbb{H}^2} \)”

Proposition

\(S \) closed, \(\rho \) holonomy representation. Then \(e(\rho) = \pm \chi(S) \).

For surfaces with boundary, need to trivialize.
Euler class of a representation

Algebraic definition:

\[\pi_1(S) = \langle G_1, H_1, \ldots, G_k, H_k \mid [G_1, H_1] \cdots [G_k, H_k] = 1 \rangle \]

Consider \(\rho([G_1, H_1] \cdots [G_k, H_k]) = \begin{cases} 1 \in PSL_2\mathbb{R} \\ z^m \in PSL_2\mathbb{R} \end{cases} \)

\(m = \text{Euler class of } \rho = e(\rho) \)

Also obstruction-theoretic: “\(e(\rho) \) is the obstruction to an equivariant developing map with vector field \(D : \tilde{S} \rightarrow UT\mathbb{H}^2 \)”

Proposition

S closed, \(\rho \) holonomy representation. Then \(e(\rho) = \pm \chi(S) \).

For surfaces with boundary, need to trivialize.
Euler class of a representation

Algebraic definition:

\[\pi_1(S) = \langle G_1, H_1, \ldots, G_k, H_k \mid [G_1, H_1] \cdots [G_k, H_k] = 1 \rangle \]

Consider \(\rho([G_1, H_1] \cdots [G_k, H_k]) = \begin{cases} 1 \in PSL_2\mathbb{R} \\ z^m \in PSL_2\mathbb{R} \end{cases} \)

\[m = \text{Euler class of } \rho = e(\rho) \]

Also obstruction-theoretic: “\(e(\rho) \) is the obstruction to an equivariant developing map with vector field \(\mathcal{D} : \tilde{S} \rightarrow UT\mathbb{H}^2 \)”

Proposition

\(S \) closed, \(\rho \) holonomy representation. Then \(e(\rho) = \pm \chi(S) \).

For surfaces with boundary, need to trivialize.
Euler class of a representation

Algebraic definition:

$$\pi_1(S) = \langle G_1, H_1, \ldots, G_k, H_k \mid [G_1, H_1] \cdots [G_k, H_k] = 1 \rangle$$

Consider $$\rho([G_1, H_1] \cdots [G_k, H_k]) = \begin{cases} 1 \in PSL_2 \mathbb{R} \\ z^m \in PSL_2 \mathbb{R} \end{cases}$$

$$m = \text{Euler class of } \rho = e(\rho)$$

Also obstruction-theoretic: “$$e(\rho)$$ is the obstruction to an equivariant developing map with vector field

$$D : \tilde{S} \longrightarrow UT\mathbb{H}^2$$”

Proposition

$$S \text{ closed, } \rho \text{ holonomy representation. Then } e(\rho) = \pm \chi(S).$$

For surfaces with boundary, need to trivialize.
Euler class of a representation

Algebraic definition:

\[\pi_1(S) = \langle G_1, H_1, \ldots, G_k, H_k \mid [G_1, H_1] \cdots [G_k, H_k] = 1 \rangle \]

Consider \(\rho([G_1, H_1] \cdots [G_k, H_k]) = \begin{cases} 1 \in PSL_2\mathbb{R} \\ z^m \in PSL_2\mathbb{R} \end{cases} \)

\(m = \text{Euler class of } \rho = e(\rho) \)

Also obstruction-theoretic: “\(e(\rho) \) is the obstruction to an equivariant developing map with vector field \(D: \tilde{S} \to UTH^2 \)”

Proposition

\(S \) closed, \(\rho \) holonomy representation. Then \(e(\rho) = \pm \chi(S) \).

For surfaces with boundary, need to trivialize.
Theorem (Milnor–Wood inequality 1958)

When \(\chi(S) < 0 \), for \(\rho : \pi_1(S) \to \text{PSL}_2\mathbb{R} \)

\[
\chi(S) \leq e(\rho) \leq -\chi(S).
\]

\(e \) is a continuous map from the representation variety to \(\mathbb{Z} \).

\(R(S) = \{ \text{representations } \pi_1(S) \to \text{PSL}_2\mathbb{R} \} \)

Theorem (Goldman 1988)

Suppose \(S \) closed, \(\chi(S) < 0 \). Then \(R(S) \) has \(2|\chi(S)| + 1 \) components, parametrized by Euler class.

\[
e = \chi(S), \chi(S) + 1, \ldots, -\chi(S) - 1, -\chi(S).
\]
Milnor–Wood, Goldman

Theorem (Milnor–Wood inequality 1958)

When $\chi(S) < 0$, *for* $\rho : \pi_1(S) \rightarrow \text{PSL}_2\mathbb{R}$

$$\chi(S) \leq e(\rho) \leq -\chi(S).$$

e is a continuous map from the *representation variety* to \mathbb{Z}.

$$R(S) = \{\text{representations } \pi_1(S) \rightarrow \text{PSL}_2\mathbb{R}\}$$

Theorem (Goldman 1988)

Suppose S *closed*, $\chi(S) < 0$. *Then* $R(S)$ *has* $2|\chi(S)| + 1$ *components*, *parametrized by Euler class*.

$$e = \chi(S), \chi(S) + 1, \ldots, -\chi(S) - 1, -\chi(S).$$
Theorem (Milnor–Wood inequality 1958)

When $\chi(S) < 0$, for $\rho : \pi_1(S) \to PSL_2\mathbb{R}

\chi(S) \leq e(\rho) \leq -\chi(S).

e is a continuous map from the representation variety to \mathbb{Z}.

$R(S) = \{\text{representations } \pi_1(S) \to PSL_2\mathbb{R}\}$

Theorem (Goldman 1988)

Suppose S closed, $\chi(S) < 0$. Then $R(S)$ has $2|\chi(S)| + 1$
components, parametrized by Euler class.

$e = \chi(S), \chi(S) + 1, \ldots, -\chi(S) - 1, -\chi(S)$.
Above: for S closed, ρ holonomy representation $\Rightarrow e(\rho) = \pm \chi(S)$ extremal. The converse is also true.

Theorem (Goldman 1980)

Consider $\chi(S) < 0$, $\rho : \pi_1(S) \rightarrow \text{PSL}_2\mathbb{R}$. If S has boundary, then for each boundary component C, assume $\rho(C)$ non-elliptic. TFAE:

1. ρ holonomy of a complete hyperbolic structure on S with geodesic / cusped boundary components (resp. as ρ is hyperbolic or parabolic)
2. $e(\rho) = \pm \chi(S)$

Geometric interpretation for other components? Holonomy of cone-manifold structures.
Geometric interpretation of representations

Above: for S closed, ρ holonomy representation $\Rightarrow e(\rho) = \pm \chi(S)$ extremal. The converse is also true.

Theorem (Goldman 1980)

Consider $\chi(S) < 0$, $\rho : \pi_1(S) \rightarrow PSL_2\mathbb{R}$. If S has boundary, then for each boundary component C, assume $\rho(C)$ non-elliptic. TFAE:

1. ρ holonomy of a complete hyperbolic structure on S with geodesic / cusped boundary components (resp. as ρ is hyperbolic or parabolic)
2. $e(\rho) = \pm \chi(S)$

Geometric interpretation for other components? Holonomy of cone-manifold structures.
Geometric interpretation of representations

Above: for S closed, ρ holonomy representation $\Rightarrow e(\rho) = \pm \chi(S)$ extremal. The converse is also true.

Theorem (Goldman 1980)

Consider $\chi(S) < 0$, $\rho : \pi_1(S) \to PSL_2\mathbb{R}$. If S has boundary, then for each boundary component C, assume $\rho(C)$ non-elliptic. TFAE:

1. ρ holonomy of a complete hyperbolic structure on S with geodesic / cusped boundary components (resp. as ρ is hyperbolic or parabolic)
2. $e(\rho) = \pm \chi(S)$

Geometric interpretation for other components? Holonomy of cone-manifold structures.
Hyperbolic cone surfaces

Definition

A surface locally isometric to \mathbb{H}^2 except at finitely many singular points. Singular points have neighbourhoods which are:

- a cone on a circle of length θ; interior cone point.
- a cone on an arc of angle θ; boundary cone point or corner point.

Order of cone point: excess angle in multiples of 2π.

- of *interior* cone point: s where $\theta = 2\pi(1 + s)$.
- of *boundary* point: s where $\theta = 2\pi\left(\frac{1}{2} + s\right)$.
Hyperbolic cone surfaces

Definition

A surface locally isometric to \mathbb{H}^2 except at finitely many singular points. Singular points have neighbourhoods which are:

- A cone on a circle of length θ; interior cone point.
- A cone on an arc of angle θ; boundary cone point or corner point.

Order of cone point: excess angle in multiples of 2π.

- Of interior cone point: s where $\theta = 2\pi(1 + s)$.
- Of boundary point: s where $\theta = 2\pi\left(\frac{1}{2} + s\right)$.
Holonomy of hyperbolic cone surfaces

Lemma (from Gauss–Bonnet)

If S is a hyperbolic cone surface, orders of cone points s_i, then $\sum s_i < -\chi(S)$.

A loop C around an interior cone point is contractible! So if ρ holonomy, $\rho(C) = 1 \in \text{Isom}^+ \mathbb{H}^2$. But ρ is also rotation by θ. So $\rho : \pi_1(S) \longrightarrow \text{PSL}_2\mathbb{R}$ can be the holonomy of a hyperbolic cone-manifold structure on S, but all interior cone angles must be $\in 2\pi\mathbb{N}$.

From obstruction-theoretic definition of Euler class:

Proposition

Suppose ρ holonomy of hyperbolic cone-manifold structure on closed S, interior cone point orders s_i. Then $e(\rho) = \pm (\chi(S) + \sum s_i)$.
Holonomy of hyperbolic cone surfaces

Lemma (from Gauss–Bonnet)

If S is a hyperbolic cone surface, orders of cone points s_i, then
\[\sum s_i < -\chi(S). \]

A loop C around an interior cone point is contractible! So if ρ
holonomy, $\rho(C) = 1 \in \text{Isom}^+ \mathbb{H}^2$. But ρ is also rotation by θ.

So $\rho : \pi_1(S) \rightarrow PSL_2\mathbb{R}$ can be the holonomy of a hyperbolic cone-manifold structure on S, but all interior cone angles must
be $\in 2\pi\mathbb{N}$.

From obstruction-theoretic definition of Euler class:

Proposition

Suppose ρ holonomy of hyperbolic cone-manifold structure on closed S, interior cone point orders s_i. Then
\[e(\rho) = \pm (\chi(S) + \sum s_i). \]
Holonomy of hyperbolic cone surfaces

Lemma (from Gauss–Bonnet)

If S is a hyperbolic cone surface, orders of cone points s_i, then
\[\sum s_i < -\chi(S). \]

A loop C around an interior cone point is contractible! So if ρ holonomy, $\rho(C) = 1 \in \text{Isom}^+\mathbb{H}^2$. But ρ is also rotation by θ. So $\rho : \pi_1(S) \rightarrow PSL_2\mathbb{R}$ can be the holonomy of a hyperbolic cone-manifold structure on S, but all interior cone angles must be $\in 2\pi\mathbb{N}$.

From obstruction-theoretic definition of Euler class:

Proposition

Suppose ρ holonomy of hyperbolic cone-manifold structure on closed S, interior cone point orders s_i. Then
\[e(\rho) = \pm(\chi(S) + \sum s_i). \]
Holonomy of hyperbolic cone surfaces

Lemma (from Gauss–Bonnet)

If S is a hyperbolic cone surface, orders of cone points s_i, then
\[\sum s_i < -\chi(S). \]

A loop C around an interior cone point is contractible! So if ρ holonomy, $\rho(C) = 1 \in \text{Isom}^+ \mathbb{H}^2$. But ρ is also rotation by θ. So $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ can be the holonomy of a hyperbolic cone-manifold structure on S, but all interior cone angles must be $\in 2\pi\mathbb{N}$.

From obstruction-theoretic definition of Euler class:

Proposition

Suppose ρ holonomy of hyperbolic cone-manifold structure on closed S, interior cone point orders s_i. Then
\[e(\rho) = \pm (\chi(S) + \sum s_i). \]
Holonomy of hyperbolic cone surfaces

Lemma (from Gauss–Bonnet)

If S is a hyperbolic cone surface, orders of cone points s_i, then

$$\sum s_i < -\chi(S).$$

A loop C around an interior cone point is contractible! So if ρ holonomy, $\rho(C) = 1 \in \text{Isom}^+ \mathbb{H}^2$. But ρ is also rotation by θ. So $\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R}$ can be the holonomy of a hyperbolic cone-manifold structure on S, but all interior cone angles must be $\in 2\pi\mathbb{N}$.

From obstruction-theoretic definition of Euler class:

Proposition

Suppose ρ holonomy of hyperbolic cone-manifold structure on closed S, interior cone point orders s_i. Then

$$e(\rho) = \pm(\chi(S) + \sum s_i).$$
Statements

When S is a punctured torus...

Theorem (M.)

\(S \) punctured torus, \(\rho : \pi_1(S) \to PSL_2\mathbb{R} \) homomorphism. TFAE:

1. \(\rho \) holonomy for a hyperbolic cone-manifold structure on \(S \) with geodesic boundary except at most one corner point, and no interior cone points;

2. \(\rho \) is not virtually abelian.

Two punctured tori make a closed surface!

Theorem (M.)

\(S \) closed genus 2, \(\rho : \pi_1(S) \to PSL_2\mathbb{R}, e(\rho) = \pm 1 \). Suppose \(\rho \) takes a separating curve to a non-hyperbolic. Then \(\rho \) is the holonomy of a hyperbolic cone surface with one \(4\pi \) cone point.
Statements

When S is a punctured torus...

Theorem (M.)

S punctured torus, $\rho : \pi_1(S) \to PSL_2\mathbb{R}$ homomorphism.

TFAE:

1. ρ holonomy for a hyperbolic cone-manifold structure on S with geodesic boundary except at most one corner point, and no interior cone points;
2. ρ is not virtually abelian.

Two punctured tori make a closed surface!

Theorem (M.)

S closed genus 2, $\rho : \pi_1(S) \to PSL_2\mathbb{R}$, $e(\rho) = \pm 1$. Suppose ρ takes a separating curve to a non-hyperbolic. Then ρ is the holonomy of a hyperbolic cone surface with one 4π cone point.
Theorem (M.)

* S closed, genus \(\geq 2 \). Consider representations \(\rho : \pi_1(S) \to PSL_2\mathbb{R} \) with \(e(\rho) = \pm (\chi(S) + 1) \), sending some non-separating simple closed curve to an elliptic. Almost every such representation is the holonomy of a hyperbolic cone-manifold structure on \(S \) with a single cone point, angle \(4\pi \).

* Almost? There’s a measure on the character variety of representations. Arising from its symplectic structure (Goldman 1984).

* It’s not true that every component of \(R(S) \) contains only cone-manifold holonomy representations.

* Counterexample (Ser Peow Tan 1994): \(S \) closed genus 3, \(e(\rho) = \pm 2 \).
Theorem (M.)

S closed, genus ≥ 2. Consider representations $\rho : \pi_1(S) \to PSL_2\mathbb{R}$ with $e(\rho) = \pm(\chi(S) + 1)$, sending some non-separating simple closed curve to an elliptic. Almost every such representation is the holonomy of a hyperbolic cone-manifold structure on S with a single cone point, angle 4π.

Almost? There's a measure on the character variety of representations. Arising from its symplectic structure (Goldman 1984).

It's not true that every component of $R(S)$ contains only cone-manifold holonomy representations. Counterexample (Ser Peow Tan 1994): S closed genus 3, $e(\rho) = \pm 2$.
Results

Theorem (M.)

\(S \text{ closed, genus } \geq 2. \) Consider representations \\
\(\rho : \pi_1(S) \longrightarrow PSL_2\mathbb{R} \) with \\
e(\rho) = \pm(\chi(S) + 1), \) sending some non-separating simple closed curve to an elliptic. Almost every such representation is the holonomy of a hyperbolic cone-manifold structure on \(S \) with a single cone point, angle \(4\pi \).

Almost? There’s a measure on the character variety of representations. Arising from its symplectic structure (Goldman 1984).

It’s not true that every component of \(R(S) \) contains only cone-manifold holonomy representations.

Counterexample (Ser Peow Tan 1994): \(S \) closed genus 3, \\
e(\rho) = \pm 2. \)
Let S be a hyperbolic punctured torus, with no interior cone points, one corner point q, corner angle $\theta \in (0, 3\pi)$.

Can find two geodesic loops G, H, intersecting only at q, cutting S into a pentagon; interior angle sum θ.

\[G \theta H \]
\[p = h^{-1} g^{-1} \overline{q} \]
Punctured tori and pentagons

Pentagon need not be embedded in \mathbb{H}^2...

Definition

Given $g, h \in PSL_2\mathbb{R}, p \in \mathbb{H}^2$, the pentagon $P(g, h; p)$ is

$p \rightarrow h^{-1}ghp \rightarrow ghp \rightarrow hp \rightarrow g^{-1}h^{-1}ghp \rightarrow p$.

Lemma (Construction lemma)

ρ is the holonomy of a punctured torus with a corner if and only if \exists a free basis G, H of $\pi_1(S, q)$ and $p \in \mathbb{H}^2$ such that $P(g, h; p)$ is nondegenerate bounding an immersed disc.

To construct punctured tori: just find a good pentagon.
Punctured tori and pentagons

Pentagon need not be embedded in \mathbb{H}^2...

Definition

Given $g, h \in PSL_2\mathbb{R}$, $p \in \mathbb{H}^2$, the pentagon $\mathcal{P}(g, h; p)$ is

$$p \rightarrow h^{-1}ghp \rightarrow ghp \rightarrow hp \rightarrow g^{-1}h^{-1}ghp \rightarrow p.$$

Lemma (Construction lemma)

ρ is the holonomy of a punctured torus with a corner if and only if \exists a free basis G, H of $\pi_1(S, q)$ and $p \in \mathbb{H}^2$ such that $\mathcal{P}(g, h; p)$ is nondegenerate bounding an immersed disc.

To construct punctured tori: just find a good pentagon.
If $\mathcal{P}(g, h; p)$ works, can vary p and it still works! Obtain many punctured tori with different hyperbolic cone-manifold structures, but same holonomy ρ. Cone angle is determined by g, h, p as “twist of commutator”.
Constructing pentagons

Use 2 results.

Theorem (Nielsen 1918)

Any automorphism of \(\langle G, H \rangle \) takes \([G, H]\) to a conjugate of itself or its inverse.

Proposition (Goldman)

\(Tr[g, h] < 2 \) iff \(g, h \) are both hyperbolic and their axes cross.

- By Nielsen, \(Tr(\rho([G, H])) = t \) is invariant of choice of basis \(G, H \). Go case-by-case on \(t \).
- By Goldman, obtain geometric information from \(g, h \).
Various cases

Case $t < -2$:

- g, h hyperbolic, axes cross, $[g, h]$ hyperbolic also. In fact ρ discrete, complete hyp structure with geodesic ∂.

Case $t \in (-2, 2)$:

- ρ holonomy of a (non-punctured!) torus with a cone point. Pentagon degenerate — perturb to nondegenerate.
Various cases

Case $t > 2$:
Need to choose a good basis. Consider action of $MCG(S)$ on character variety.

- Use Markoff triples to get basis with good character.
- Use good character, Goldman & more for explicit construction.
Character of a \((\text{PSL}_2\mathbb{R})\)-representation \(\rho\):

\[
X : \pi_1(S) \longrightarrow \mathbb{R}, \quad X(G) = \text{Tr}(\rho(G)).
\]

Trace relations \(\Rightarrow X\) determined by values on a finite subset. **Character variety** \(X(S) = \{\text{characters of all representations}\}\). When \(S\) is a punctured torus:

- \((x, y, z) = (\text{Tr } g, \text{Tr } h, \text{Tr } gh)\) enough: \(X(S) \subset \mathbb{R}^3\).
Punctured torus case

\[\text{MCG}(S) \cong \text{Out} \pi_1(S) \cong \text{GL}_2 \mathbb{Z} \]

Action of \(\text{GL}_2 \mathbb{Z} \) on \(X(S) \) \(\Rightarrow \) Markoff triples.

\((x, y, z) \sim (x', y', z'):\)

- corresponding representations \(\rho, \rho' \) are conjugate in \(\text{PSL}_2 \mathbb{R} \) after applying an automorphism of \(\pi_1(S) \).

Proposition

For irreducible representations, \((x, y, z) \sim (x', y', z') \iff \text{they can be related by the moves}

\[(x, y, z) \mapsto \begin{cases} (x, y, xy - z), (-x, -y, z), \text{coordinate permutations} \end{cases} . \]

Dynamics of this \(\text{GL}_2 \mathbb{Z} \)-action are *ergodic* in certain regions (Goldman 2003).

This is the key to structures “almost everywhere”.