AdS geometry as a tool for Teichmüller theory

Jean-Marc Schlenker

Institut de Mathématiques de Toulouse
Université Toulouse III
http://www.math.univ-toulouse.fr/~schlenker

IMS
July 29, 2010
Advertise 3d AdS geometry as a tool for Teichmüller theory,

Explain basics of AdS geometry,

State some recent results obtained using AdS,

Examples of proofs,

Some open questions here and there.
Recall that
\[H^3 = \{ x \in \mathbb{R}^{3,1} \mid \langle x, x \rangle = -1 \& x_0 > 0 \} . \]

\[AdS_3 = \{ x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1 \} . \]

Lorentz analog of \(H^3 \): complete, constant curvature \(-1\).
From relativity: “Anti de Sitter”, model for gravity (no matter).
Lorentz analog of \(S^3 \): \(PSL(2, \mathbb{R}) \) w/ Killing metric, isometry group, etc.
Basic idea: hyperbolic and AdS 3-mflds as tools for Teichmüller theory.
Hyperbolic 3-manifolds and Teichmüller theory

Based (mostly) on quasifuchsian 3-manifolds. Examples of applications include:

- complex projective structures on surfaces,
- complex earthquakes (McMullen),
- the volume of the convex core of quasifuchsian manifolds is coarsely equivalent to the Weil-Petersson distance between the metrics on its boundary (Brock),
- the renormalized volume as a Kähler potential for WP,
- properties of the grafting map.

Not developed here.
AdS 3-manifolds and Teichmüller theory

Some aspects:
- earthquakes,
- extensions of the earthquake flow,
- minimal Lagrangian diffeos.

AdS side involves physically relevant notions:
- globally hyperbolic (GH) spaces (analogs of quasifuchsian),
- “particles”,
- multi-black holes,
- maximal surfaces.

Notations: S closed surface of genus ≥ 2, \mathcal{T} Teichmüller space.
Measured laminations

$\mathcal{WM} = \{ \text{weighted multicurves on } S \}$: set of disjoint simple closed curves, each with a positive weight.

\mathcal{WM} is infinite : simple closed curves on S can wrap around a lot.

Let $(c_i, l_i)_{i=1,\ldots,n} \in \mathcal{WM}$, the c_i form a lamination and the l_i define a transverse measure : gives a total weight to γ, transverse to the c_i.

This gives a topology to \mathcal{WM}.

The completion of \mathcal{WM} is the space of measured laminations \mathcal{ML}.

Measured laminations can be pretty complicated.

\begin{itemize}
 \item $\mathcal{ML} \simeq \mathbb{R}^{6g-6}$.
 \item $\partial T \simeq \mathcal{ML}/\mathbb{R}_{>0}$ (Thurston).
 \item $T \times \mathcal{ML} \simeq T^*T$.
\end{itemize}
Thurston’s Earthquake Thm

Start with a hyperbolic surface. If \(w \in \mathcal{ML} \) is a weighted curve and \(h \in \mathcal{T} \), \(E_l(w)(h) \) is obtained by realizing \(w \) as a geodesic in \(h \), cutting \(S \) open along \(w \), turning the left-hand side by the weight, and gluing back. Defines a homeomorphism

\[
E_l(w) : \mathcal{T} \to \mathcal{T}.
\]

Extends by continuity to \(E_l : \mathcal{T} \times \mathcal{ML} \to \mathcal{T} \) (Thurston).

Thm (Thurston, Kerckhoff). \(\forall h, h' \in \mathcal{T}, \exists! \lambda \in \mathcal{ML}, h' = E_l(\lambda)(h) \).

Simple proof by Mess (1990) based on AdS geometry.
Extensions of the Earthquake Thm

Extension of the Earthquake Theorem:

- to hyperbolic surfaces with cone singulars of angle $< \pi$. (w/ Francesco Bonsante.)

- to hyperbolic surfaces with geodesic boundary: 2^N earthquakes sending h to h'. (w/ Bonsante, Kirill Krasnov).

The proof of the 1st statement is equivalent to an extension of the Mess parameterization for GH AdS manifolds with “particles” : cone singularities along time-like lines, $\theta < \pi$. The analogous quasifuchsian statement holds : Bers-type theorem for quasifuchsian manifolds with cone singularities of $\theta < \pi$ along infinite lines (LeCueur, Moroianu, S.).

The 2nd statement is based on multi-black holes : like globally hyperbolic manifolds, based on a complete, non-compact surface. AdS analogs of Schottky mflds.
Dynamics of earthquakes

Thm (Bonsante, S.). Let $\lambda, \mu \in \mathcal{ML}$ that fill S. Then $E_r(\lambda) \circ E_r(\mu)$ has a fixed point on T.

Uniqueness?
See talk by Francesco.
A cyclic extension of the earthquake flow

For $\lambda \in \mathcal{ML}$ fixed, $E_l(\lambda)$ defines an action of \mathbb{R} on \mathcal{T}, by $(t, h) \mapsto E_l(t\lambda)(h)$. Analog of horocyclic flow.

We define (w/ Bonsante & Gabriele Mondello) an “extension” : equivalently

- for $c \in \mathcal{T}$, $C_c : S^1 \times \mathcal{T} \to \mathcal{T}$,
- an action D of S^1 on $\mathcal{T} \times \mathcal{T}$.

3 (related) definitions based on

- GH AdS 3-mflds,
- minimal Lagrangian maps,
- holomorphic quadratic differentials.
Properties of the cyclic flow

Some properties:

- Limits to the earthquake flow: if $t_n h^*_n \to \lambda$ then $D_{t_n}(h, h^*_n) \to E_l(\lambda/2)(h)$.

- Extension of the earthquake thm:
 \[\forall \theta \in S^1 \setminus \{0\}, \forall h, h' \in T, \exists! c \in T, C_c(\theta, h) = h'. \]

- Has a complex extension, which limits to McMullen’s complex earthquakes.

- Extends to a S^1 action on the universal Teichmüller space.

The extension of the Earthquake Thm follows from a recent result of Barbot, Béguin and Zeghib on constant Gauss curvature foliations of AdS manifolds.
A homeo of S^1 is \emph{quasi-symmetric} if it is the boundary of a quasi-conformal diffeo of the disk.

Def. $\mathcal{T}_U =$ space of quasi-symmetric orientation-preserving homeos of S^1, up to $\text{PSL}(2, \mathbb{R})$.

Let $\rho_0 \in \mathcal{T}$, then any $\rho \in \mathcal{T}$ is conjugated to ρ_0 by a quasi-conformal diffeo ϕ. Moreover $\partial \phi$ is unique. Therefore all \mathcal{T} embed in \mathcal{T}_U.

Question: canonical quasi-conformal extension(s) to the disk of a quasi-symmetric homeo?

Conj (Schoen). Any quasi-symmetric homeo of S^1 has a unique quasi-conformal harmonic extension to the disk.

Uniqueness. Partial results on existence. True for closed surfaces.
Def. A diffeomorphism \(\phi : H^2 \to H^2 \) is *minimal Lagrangian* if it is area-preserving and its graph is minimal in \(H^2 \times H^2 \).

\(\phi \) is minimal Lagrangian iff \(\phi = v \circ u^{-1} \), where \(u, v : D \to H^2 \) are harmonic maps with opposite Hopf differentials. “Squares” of harmonic map.

Thm (Bonsante, S). Any quasi-symmetric homeomorphism \(h \) of \(S^1 \) has a unique extension as a quasi-conformal minimal Lagrangian diffeomorphism of \(H^2 \).

Known (Schoen, Labourie 1992) for closed surfaces. Also when \(h \) has small dilation (Aiyama, Akutagawa, Wan 2000).
AdS$_3$ as a Lorentz analog of H^3

\[\text{AdS}_3 = \{ x \in \mathbb{R}^{2,2} \mid \langle x, x \rangle = -1 \} . \]

Constant curvature -1, $\pi_1(\text{AdS}_3) = \mathbb{Z}$.

- Conformal model, in a cylinder.
- Projective model, in a quadric.
- Space-like, time-like, light-like directions. Time-like geodesics are closed of length 2π.
- Totally geodesic space-like planes $\simeq H^2$.
- $\text{Isom}(\text{AdS}_3) = O(2,2)$.
- Boundary at ∞ with Lorentz-conformal structure.
AdS$_3$ as a Lorentz analog of S^3

Recall: $S^3 = SU(2) \simeq SO(3)$, and $Isom(S^3) = O(4) \simeq O(3) \times O(3)$. $AdS_3 = PSL(2, \mathbb{R})$ with its Killing metric. Left and right actions of $PSL(2, \mathbb{R})$, identifies $Isom_0(AdS_3) = PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$ (up to index 2).

Geometrically:

- $\partial_\infty AdS_3$ is foliated by 2 families of lines.
- Thus $\partial_\infty AdS_3 \simeq \mathbb{R}P^1 \times \mathbb{R}P^1$.
- Isometries act projectively on each family,
- Space-like curves in $\partial_\infty AdS_3$ are graphs of functions $\mathbb{R}P^1 \to \mathbb{R}P^1$.
Globally hyperbolic AdS manifolds

Def. An AdS mfd M is *maximal globally hyperbolic* if

- it contains a closed, space-like surface S,
- any inextendible time-like curve intersects S exactly once,
- it is maximal (for inclusion) under those properties.

Then $M \simeq S \times \mathbb{R}$, and $M = \Omega / \rho(\pi_1 S)$, where $\Omega \subset AdS_3$. GH AdS mfd's are strongly reminiscent of quasifuchsian hyperbolic mfd's, but in a way more relevant to Teichmüller theory (Mess).
M has a “limit set” Λ_Γ, which is a Jordan curve. $\Lambda_\Gamma = \partial \Omega \cap \partial_\infty \text{AdS}_3$.
M has a “convex core”, $C(M) = CH(\Lambda_\Gamma)/\Gamma$.
It has two boundary components, both with hyperbolic induced metrics m_\pm, bent along measured laminations l_\pm that fill (Mess).

Question (Mess). can any m_\pm be uniquely realized?
Existence seems to hold (Boubacar Diallo, in progress). **Uniqueness**?

Thm (Bonsante, S.) Any l_-, l_+ that fill can be realized. **Uniqueness**?
A Bers-type parametrization

Given a GHMC AdS mfld M, $\rho : \Gamma \to SO(2, 2) \simeq PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$. So, $(\rho_L, \rho_R) : \Gamma \to PSL(2, \mathbb{R})$.

Thm (Mess).

- ρ_L, ρ_R have maximal Euler number.
- The map $GH \to T \times T$ is a homeomorphism.

The hyperbolic metrics c_L, c_R corresponding to ρ_L, ρ_R are analogs of the conformal metrics at infinity.
Proof of the Earthquake Thm

m_{\pm} are related to c_l, c_r by earthquakes along l_{\pm}. The Earthquake thm follows from this by simple arguments.

- Fix c_l, c_r. By Mess’ thm, there are unique m_{\pm}, l_{\pm}.
- $c_r = E_r(l_+) \circ E_l(l_+)^{-1}(c_l)$
- $E_l(l_+)^{-1} = E_r(l_+)$,
- so $E_r(l_+) \circ E_l(l_+)^{-1} = E_r(2l_+)$.
- Thus $c_r = E_r(2l_+)(c_l)$, and similarly $c_r = E_l(2l_+)(c_l)$.
- Uniqueness follows from the same argument.

The existence of fixed points of $E_l(\lambda) \circ E_l(\mu)$ follow similarly from prescribing l_-, l_+.
Maximal surfaces in AdS

Let $\Sigma \subset AdS_3$ be a space-like graph. We call:

- I the induced metric, J its complex structure,
- B the shape operator, $BX = -\nabla_X N$,
- E the identity.

Def. $h_L, h_R = I((E \pm JB)\cdot, (E \pm JB)\cdot)$.

Prop (Krasnov, S.). if Σ has principal curvatures $|k_i| < 1$ then h_L, h_R are hyperbolic metrics. If h_L, h_R are complete, we obtain $\phi : H^2 \to H^2$.

Related to the left/right representations for GH mfdls.

Prop. Σ is *maximal* iff ϕ is min Lagrangian. It is quasi-conformal iff $|k_i| < 1$ uniformly.

Prop. If in addition $\partial_\infty \Sigma$ is the graph of a quasi-symmetric homeo $\subset \partial_\infty AdS_3 \simeq \mathbb{RP}^1 \times \mathbb{RP}^1$, then h_L, h_R are complete and $\partial_\infty \Sigma$ is the graph of ϕ.

Jean-Marc Schlenker

AdS geometry as a tool for Teichmüller theory
Statement on maximal surfaces

Thm B (Bonsante, S). Let $\Gamma \subset \partial_{\infty} AdS_3$ be the graph of a quasi-symmetric homeo. Then there exists a unique maximal surface $\Sigma \subset AdS_3$ with $|k_i| < 1$ uniformly such that $\partial_{\infty} \Sigma = \Gamma$.

Thm A follows through the correspondance with min Lagrangian maps. Thm B has a partial extension to higher dimensions (existence).

The key step in the proof of Thm B are compactness estimates for maximal surfaces in AdS_n, using results of Barnik (1984).
AdS geometry and its applications to Teichmüller theory remains relatively open.

- Open questions on the boundary of the convex core of GH mflds, and applications to earthquakes.
- Use AdS to prove Schoen’s conjecture on harmonic extensions?
- Extend to AdS setting various results known for quasifuchsian mflds?
- Other questions and applications, not yet discovered??
Thanks for your attention!