On Discreteness of Commensurators

Mahan Mj,
Department of Mathematics,
RKM Vivekananda University.
Summary and Motivation

Theorem

(Margulis) An irreducible lattice \(\Gamma \) in a semi-simple Lie group \(L \) is arithmetic iff the commensurator \(\text{Comm}(\Gamma) \) is dense.

\[
\text{Comm}(\Gamma) = \{ g \in L : g\Gamma g^{-1} \cap \Gamma \text{ is of finite index in both } \Gamma, g\Gamma g^{-1} \}\]

Question: (Shalom) If \(\Gamma \) is a Zariski dense, infinite covolume, discrete subgroup of a semi-simple Lie group \(L \), describe \(\text{Comm}(\Gamma) \). (i.e. Is it discrete?)
Summary and Motivation

Theorem

(Margulis) An irreducible lattice Γ in a semi-simple Lie group L is arithmetic iff the commensurator $\text{Comm}(\Gamma)$ is dense.

$\text{Comm}(\Gamma) = \{ g \in L : g\Gamma g^{-1} \cap \Gamma \text{ is of finite index in both } \Gamma, g\Gamma g^{-1} \}$

Question: (Shalom) If Γ is a Zariski dense, infinite covolume, discrete subgroup of a semi-simple Lie group L, describe $\text{Comm}(\Gamma)$. (i.e. Is it discrete?)
Summary and Motivation

Theorem

(Margulis) An irreducible lattice Γ in a semi-simple Lie group L is arithmetic iff the commensurator $\text{Comm}(\Gamma)$ is dense.

$\text{Comm}(\Gamma) = \{ g \in L : g\Gamma g^{-1} \cap \Gamma \text{ is of finite index in both } \Gamma, g\Gamma g^{-1} \}$

Question: (Shalom) If Γ is a Zariski dense, infinite covolume, discrete subgroup of a semi-simple Lie group L, describe $\text{Comm}(\Gamma)$. (i.e. Is it discrete?)
Summary and Motivation

Theorem

(Margulis) An irreducible lattice Γ in a semi-simple Lie group L is arithmetic iff the commensurator $\text{Comm}(\Gamma)$ is dense.

$$\text{Comm}(\Gamma) = \{g \in L : g\Gamma g^{-1} \cap \Gamma \text{ is of finite index in both } \Gamma, g\Gamma g^{-1}\}$$

Question: (Shalom) If Γ is a Zariski dense, infinite covolume, discrete subgroup of a semi-simple Lie group L, describe $\text{Comm}(\Gamma)$. (i.e. Is it discrete?)
Answer: (M–) Yes, if

a) The limit set $\Lambda_\Gamma \subset \partial F G$ (=Furstenberg boundary) is not invariant under a simple factor, OR

b) Γ is finitely generated and $G = \text{PSL}_2(\mathbb{C})$.

Theorem

(Greenberg '74) If Γ is a Zariski dense, finitely generated, infinite covolume, discrete subgroup of $G = \text{PSL}_2(\mathbb{C})$, and $\Lambda_\Gamma \neq S_\infty^2$ then $\text{Comm}(\Gamma)$ is discrete.
Answer: (M–) Yes, if
a) The limit set $\Lambda_\Gamma \subset \partial F G$ (=Furstenberg boundary) is not invariant under a simple factor, OR
b) Γ is finitely generated and $G = \text{PSL}_2(\mathbb{C})$.

Theorem

(Greenberg ’74) If Γ is a Zariski dense, finitely generated, infinite covolume, discrete subgroup of $G = \text{PSL}_2(\mathbb{C})$, and $\Lambda_\Gamma \neq S^2_\infty$ then $\text{Comm}(\Gamma)$ is discrete.
Theorem

(Leininger, Long, Reid, ’09) If Γ is a Zariski dense, finitely generated, infinite covolume, discrete subgroup of $G = \text{PSL}_2(\mathbb{C})$, such that Γ is non-free and without parabolics, then $\text{Comm}(\Gamma)$ is discrete.

Also under somewhat weaker assumptions (LLR).
Theorem

(Leininger, Long, Reid, ’09) If Γ is a Zariski dense, finitely generated, infinite covolume, discrete subgroup of $G = \text{PSL}_2(\mathbb{C})$, such that Γ is non-free and without parabolics, then $\text{Comm}(\Gamma)$ is discrete.

Also under somewhat weaker assumptions (LLR).
(Leininger, Long, Reid, ’09) If Γ is a Zariski dense, finitely generated, infinite covolume, discrete subgroup of $G = \text{PSL}_2(\mathbb{C})$, such that Γ is non-free and without parabolics, then $\text{Comm}(\Gamma)$ is discrete.

Also under somewhat weaker assumptions (LLR).
Non-full Limit sets

- Γ Zariski-dense infinite covolume subgroup of a semi-simple Lie group $L = Isom(X)$.
- X a rank one symmetric space.
- Let $\text{Comm}(\Gamma)$ be the closure of $\text{Comm}(\Gamma)$.
- $L_0 = \text{connected component of the identity, with Lie algebra } l_0$–invariant under adjoint representation.
Non-full Limit sets

- Γ Zariski-dense infinite covolume subgroup of a semi-simple Lie group $L = \text{Isom}(X)$.
- X a rank one symmetric space.
- Let $\text{Comm}(\Gamma)$ be the closure of $\text{Comm}(\Gamma)$.
- $L_0 = \text{connected component of the identity, with Lie algebra } l_0$ invariant under adjoint representation.
Non-full Limit sets

- \(\Gamma \) Zariski-dense infinite covolume subgroup of a semi-simple Lie group \(L = Isom(X) \).
- \(X \) a rank one symmetric space.
- Let \(\text{Comm}(\Gamma) \) be the closure of \(\text{Comm}(\Gamma) \).
- \(L_0 \) = connected component of the identity, with Lie algebra \(l_0 \) invariant under adjoint representation.
Non-full Limit sets

- Γ Zariski-dense infinite covolume subgroup of a semi-simple Lie group $L = Isom(X)$.
- X a rank one symmetric space.
- Let $Comm(\Gamma)$ be the closure of $Comm(\Gamma)$.
- $L_0 = \text{connected component of the identity, with Lie algebra } l_0$–invariant under adjoint representation.
(CRUCIAL!) If L_0 is non-compact, then
\[\Lambda_{L_0} = \Lambda_{\text{Comm}(\Gamma)} = \Lambda_{\Gamma} \] is invariant under L_0.

Zariski density implies $L_0 = L$. Hence $\Lambda_{\Gamma} = \partial X$.

L_0 compact. L_0 fixes some point $x \in X$. L_0 is normal in L. Therefore L_0 fixes all $x \in X$. Therefore L_0 is trivial.
(CRUCIAL!) If L_0 is non-compact, then $\Lambda_{L_0} = \Lambda_{\text{Comm}(\Gamma)} = \Lambda_\Gamma$ is invariant under L_0.

Zariski density implies $L_0 = L$. Hence $\Lambda_\Gamma = \partial X$.

L_0 compact. L_0 fixes some point $x \in X$. L_0 is normal in L. Therefore L_0 fixes all $x \in X$. Therefore L_0 is trivial.
(CRUCIAL!) If \(L_0 \) is non-compact, then
\[\Lambda L_0 = \Lambda_{\text{Comm}(\Gamma)} = \Lambda_{\Gamma} \] is invariant under \(L_0 \).

Zariski density implies \(L_0 = L \). Hence \(\Lambda_{\Gamma} = \partial X \).

\(L_0 \) compact. \(L_0 \) fixes some point \(x \in X \). \(L_0 \) is normal in \(L \). Therefore \(L_0 \) fixes all \(x \in X \). Therefore \(L_0 \) is trivial.
Non-full Limit sets–Higher Rank

Theorem

(Benoist ’97) Let $\Gamma \subset G = \text{Isom}(X)$ be a Zariski dense subgroup. Then Λ_Γ is the unique minimal closed Γ-invariant subset of the Furstenberg boundary G/P.

This Theorem allows us to push through the crucial step in the previous page.

- Λ_Γ is invariant under L_0.
- L_0 is a (virtual) factor.
Non-full Limit sets–Higher Rank

Theorem

(Benoist ’97) Let $\Gamma \subset G = \text{Isom}(X)$ be a Zariski dense subgroup. Then Λ_Γ is the unique minimal closed Γ-invariant subset of the Furstenberg boundary G/P.

This Theorem allows us to push through the crucial step in the previous page.

- Λ_Γ is invariant under L_0.
- L_0 is a (virtual) factor.
Non-full Limit sets–Higher Rank

Theorem

(Benoist ’97) Let $\Gamma \subset G = \text{Isom}(X)$ be a Zariski dense subgroup. Then Λ_Γ is the unique minimal closed Γ-invariant subset of the Furstenberg boundary G/P.

This Theorem allows us to push through the crucial step in the previous page.

- Λ_Γ is invariant under L_0.
- L_0 is a (virtual) factor.
Non-full Limit sets–Higher Rank

Theorem

(Benoist ’97) Let \(\Gamma \subset G = \text{Isom}(X) \) be a Zariski dense subgroup. Then \(\Lambda_\Gamma \) is the unique minimal closed \(\Gamma \)-invariant subset of the Furstenberg boundary \(G/P \).

This Theorem allows us to push through the crucial step in the previous page.

- \(\Lambda_\Gamma \) is invariant under \(L_0 \).
- \(L_0 \) is a (virtual) factor.
Theorem

(Benoist ’97) Let $\Gamma \subset G = \text{Isom}(X)$ be a Zariski dense subgroup. Then Λ_Γ is the unique minimal closed Γ-invariant subset of the Furstenberg boundary G/P.

This Theorem allows us to push through the crucial step in the previous page.

- Λ_Γ is invariant under L_0.
- L_0 is a (virtual) factor.
Full Limit Sets–Kleinian Groups
For the rest of the talk, Γ-f.g. Kleinian group with $\Lambda_\Gamma = S^2_\infty$. Then G (as an abstract group) is hyperbolic relative to its parabolic subgroups.
For concreteness: $G =$ surface group with or without parabolics.
Full Limit Sets–Kleinian Groups
For the rest of the talk, Γ-f.g. Kleinian group with $\Lambda_\Gamma = S^2_\infty$. Then G (as an abstract group) is hyperbolic relative to its parabolic subgroups. For concreteness: $G =$ surface group with or without parabolics.
Theorem (M–) G – f.g. Kleinian group. $i : \Gamma_G \rightarrow \mathbb{H}^3$ identifies Cayley graph of G with orbit of a point in \mathbb{H}^3.

Then i extends continuously to a map $\hat{i} : \hat{\Gamma}_G \rightarrow \mathbb{D}^3$, where $\hat{\Gamma}_G$ denotes the (relative) hyperbolic compactification of Γ_G.

Let ∂i denote the restriction of \hat{i} to the boundary $\partial \Gamma$ of Γ.

Then $\partial i(a) = \partial i(b)$ for $a \neq b \in \partial \Gamma$ if and only if a, b are either ideal end-points of a leaf of an ending lamination of G, or ideal boundary points of a complementary ideal polygon.
Theorem (M–) \(G \) –f.g. Kleinian group. \(i : \Gamma_G \rightarrow \mathbb{H}^3 \) identifies Cayley graph of \(G \) with orbit of a point in \(\mathbb{H}^3 \). Then \(i \) extends continuously to a map \(\hat{i} : \hat{\Gamma}_G \rightarrow \mathbb{D}^3 \), where \(\hat{\Gamma}_G \) denotes the (relative) hyperbolic compactification of \(\Gamma_G \).

Let \(\partial i \) denote the restriction of \(\hat{i} \) to the boundary \(\partial \Gamma \) of \(\Gamma \). Then \(\partial i(a) = \partial i(b) \) for \(a \neq b \in \partial \Gamma \) if and only if \(a, b \) are either ideal end-points of a leaf of an ending lamination of \(G \), or ideal boundary points of a complementary ideal polygon.
Theorem (M–) \(G \) –f.g. Kleinian group. \(i : \Gamma_G \to \mathbb{H}^3 \) identifies Cayley graph of \(G \) with orbit of a point in \(\mathbb{H}^3 \).
Then \(i \) extends continuously to a map \(\hat{i} : \hat{\Gamma}_G \to \mathbb{D}^3 \), where \(\hat{\Gamma}_G \) denotes the (relative) hyperbolic compactification of \(\Gamma_G \).
Let \(\partial i \) denote the restriction of \(\hat{i} \) to the boundary \(\partial \Gamma \) of \(\Gamma \).
Then \(\partial i(a) = \partial i(b) \) for \(a \neq b \in \partial \Gamma \) if and only if \(a, b \) are either ideal end-points of a leaf of an ending lamination of \(G \), or ideal boundary points of a complementary ideal polygon.
Theorem (M–) G –f.g. Kleinian group. $i : \Gamma_G \to \mathbb{H}^3$ identifies Cayley graph of G with orbit of a point in \mathbb{H}^3. Then i extends continuously to a map $\hat{i} : \hat{\Gamma}_G \to \mathbb{D}^3$, where $\hat{\Gamma}_G$ denotes the (relative) hyperbolic compactification of Γ_G. Let ∂i denote the restriction of \hat{i} to the boundary $\partial \Gamma$ of Γ. Then $\partial i(a) = \partial i(b)$ for $a \neq b \in \partial \Gamma$ if and only if a, b are either ideal end-points of a leaf of an ending lamination of G, or ideal boundary points of a complementary ideal polygon.
Cannon-Thurston Relations

A **Cannon-Thurston map** \(\hat{i} \) from \(\hat{G} \) to \(\hat{X} \) is a continuous extension of \(i \). The restriction of \(\hat{i} \) to \(\partial G \) will be denoted by \(\partial i \). The map \(\partial i \) induces a relation \(R_{CT} \) on \(\partial G \) where \(x \sim y \) if \(\partial i(x) = \partial i(y) \) for \(x, y \in \partial G \).

Distinct pairs of points identified by \(\partial i \) will be denoted as \(R_{2CT} \), which is a subset of \(\partial^2(G) \).

\(R_{CT} \) is a closed relation on \(\partial G \).

Lemma

Suppose \(G \) acts on \(X \) without accidental parabolics. If \((x, y) \in R_{CT} \) and \(x \neq y \), then \(x \) cannot be a pole of \(G \).
Cannon-Thurston Relations

A **Cannon-Thurston map** \hat{i} from \hat{G} to \hat{X} is a continuous extension of i. The restriction of \hat{i} to ∂G will be denoted by ∂i. The map ∂i induces a relation \mathcal{R}_{CT} on ∂G where $x \sim y$ if $\partial i(x) = \partial i(y)$ for $x, y \in \partial G$.

Distinct pairs of points identified by ∂i will be denoted as \mathcal{R}^2_{CT}, which is a subset of $\partial^2(G)$.

\mathcal{R}_{CT} is a closed relation on ∂G.

Lemma

Suppose G acts on X without accidental parabolics. If $(x, y) \in \mathcal{R}_{CT}$ and $x \neq y$, then x cannot be a pole of G.

Mahan Mj
Cannon-Thurston Relations

A **Cannon-Thurston map** \hat{i} from \hat{G} to \hat{X} is a continuous extension of i. The restriction of \hat{i} to ∂G will be denoted by $\partial \hat{i}$. The map $\partial \hat{i}$ induces a relation \mathcal{R}_{CT} on ∂G where $x \sim y$ if $\partial \hat{i}(x) = \partial \hat{i}(y)$ for $x, y \in \partial G$.

Distinct pairs of points identified by $\partial \hat{i}$ will be denoted as \mathcal{R}^2_{CT}, which is a subset of $\partial^2(G)$.

\mathcal{R}_{CT} is a closed relation on ∂G

Lemma

Suppose G acts on X without accidental parabolics. If $(x, y) \in \mathcal{R}_{CT}$ and $x \neq y$, then x cannot be a pole of G.
Cannon-Thurston Relations

A **Cannon-Thurston map** \hat{i} from \hat{G} to \hat{X} is a continuous extension of i. The restriction of \hat{i} to ∂G will be denoted by ∂i. The map ∂i induces a relation R_{CT} on ∂G where $x \sim y$ if $\partial i(x) = \partial i(y)$ for $x, y \in \partial G$.

Distinct pairs of points identified by ∂i will be denoted as R^2_{CT}, which is a subset of $\partial^2(G)$.

R_{CT} is a closed relation on ∂G.

Lemma

Suppose G acts on X *without accidental parabolics* If $(x, y) \in R_{CT}$ and $x \neq y$, *then* x *cannot be a pole of* G.

Mahan Mj
Cannon-Thurston Relations (Contd.)
Density of Orbits of cosets of \mathcal{R}_{CT} in the Hausdorff metric:
Let $K \subset \mathcal{R}_{CT}$ be a coset (equivalence class) of the relation.
Let $C_c(\partial G)$ denote the space of closed subsets of ∂G with the Hausdorff metric.
Then for all $x \in \partial G$, the singleton set $\{x\}$ is an accumulation point of $\{g.K : g \in G\}$.

Mahan Mj
Cannon-Thurston Relations (Contd.)
Density of Orbits of cosets of \mathcal{R}_{CT} in the Hausdorff metric:
Let $K \subset \mathcal{R}_{CT}$ be a coset (equivalence class) of the relation.
Let $C_c(\partial G)$ denote the space of closed subsets of ∂G with the Hausdorff metric.
Then for all $x \in \partial G$, the singleton set $\{x\}$ is an accumulation point of $\{g.K : g \in G\}$.
Cannon-Thurston Relations (Contd.)

Density of Orbits of cosets of \mathcal{R}_{CT} in the Hausdorff metric:

Let $K \subset \mathcal{R}_{CT}$ be a coset (equivalence class) of the relation.

Let $C_c(\partial G)$ denote the space of closed subsets of ∂G with the Hausdorff metric.

Then for all $x \in \partial G$, the singleton set $\{x\}$ is an accumulation point of $\{g.K : g \in G\}$.

Mahan Mj
Cannon-Thurston Relations (Contd.)
Density of Orbits of cosets of R_{CT} in the Hausdorff metric:
Let $K \subset R_{CT}$ be a coset (equivalence class) of the relation.
Let $C_c(\partial G)$ denote the space of closed subsets of ∂G with the Hausdorff metric.
Then for all $x \in \partial G$, the singleton set $\{x\}$ is an accumulation point of $\{g.K : g \in G\}$.
Cannon-Thurston Relations (Contd.)
\(\bar{f} \in \text{Comm}(G) \) implies \(f \in \text{Homeo}(\partial G) \).

"Non-proof": Pull \(\text{Comm}(G) \)-action back to \(\partial G \). Then \(\text{Comm}(G) \) preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of \(L \)--discrete.

Let \(f_n \) be a sequence of homeomorphisms of \((\partial G, d)\) that preserves the cosets of \(R_{CT} \), where \(d \) denotes some visual metric.

Let \(\bar{f}_n \) denote the induced homeomorphisms of \(\Lambda_G \).

If \(f_n \to id \) in the uniform topology on \(\text{Homeo}(\partial G) \) then \(\bar{f}_n \to id \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \).

Conversely, if \(\bar{f}_n \to id \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \) then for every pole \(p \in \partial G \), \(d(p, f_n(p)) \to 0 \).
Cannon-Thurston Relations (Contd.)
\(f \in \text{Comm}(G) \) implies \(f \in \text{Homeo}(\partial G) \).

"Non-proof": Pull \(\text{Comm}(G) \)-action back to \(\partial G \). Then \(\text{Comm}(G) \) preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of \(L\)-discrete.

Let \(f_n \) be a sequence of homeomorphisms of \((\partial G, d) \) that preserves the cosets of \(R_{CT} \), where \(d \) denotes some visual metric.

Let \(f_n \) denote the induced homeomorphisms of \(\Lambda_G \).

If \(f_n \to id \) in the uniform topology on \(\text{Homeo}(\partial G) \) then \(f_n \to id \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \).

Conversely, if \(f_n \to id \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \) then for every pole \(p \in \partial G \), \(d(p, f_n(p)) \to 0 \).
Cannon-Thurston Relations (Contd.)

\(\bar{f} \in \text{Comm}(G) \) implies \(f \in \text{Homeo}(\partial G) \).

"Non-proof": Pull \(\text{Comm}(G) \)-action back to \(\partial G \). Then \(\text{Comm}(G) \) preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of \(L \)-discrete.

Let \(f_n \) be a sequence of homeomorphisms of \((\partial G, d)\) that preserves the cosets of \(R_{CT} \), where \(d \) denotes some visual metric.

Let \(\bar{f}_n \) denote the induced homeomorphisms of \(\Lambda_G \).

If \(f_n \to id \) in the uniform topology on \(\text{Homeo}(\partial G) \) then \(\bar{f}_n \to id \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \).

Conversely, if \(\bar{f}_n \to id \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \) then for every pole \(p \in \partial G \), \(d(p, f_n(p)) \to 0 \).
Cannon-Thurston Relations (Contd.)

\(\overline{f} \in \text{Comm}(G) \) implies \(f \in \text{Homeo}(\partial G) \).

"Non-proof": Pull \(\text{Comm}(G) \)-action back to \(\partial G \). Then \(\text{Comm}(G) \) preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of \(L \)-discrete.

Let \(f_n \) be a sequence of homeomorphisms of \((\partial G, d) \) that preserves the cosets of \(\mathcal{R}_{CT} \), where \(d \) denotes some visual metric.

Let \(\overline{f_n} \) denote the induced homeomorphisms of \(\Lambda_G \).

If \(f_n \to \text{id} \) in the uniform topology on \(\text{Homeo}(\partial G) \) then \(\overline{f_n} \to \text{id} \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \).

Conversely, if \(\overline{f_n} \to \text{id} \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \) then for every pole \(p \in \partial G, \ d(p, f_n(p)) \to 0 \).
Cannon-Thurston Relations (Contd.)
\(f \in \text{Comm}(G) \) implies \(f \in \text{Homeo}(\partial G) \).

"Non-proof": Pull \(\text{Comm}(G) \)-action back to \(\partial G \). Then \(\text{Comm}(G) \) preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of \(L \)--discrete.

Let \(f_n \) be a sequence of homeomorphisms of \((\partial G, d) \) that preserves the cosets of \(R_{CT} \), where \(d \) denotes some visual metric.

Let \(\overline{f}_n \) denote the induced homeomorphisms of \(\Lambda_G \).

If \(f_n \to id \) in the uniform topology on \(\text{Homeo}(\partial G) \) then \(\overline{f}_n \to id \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \).

Conversely, if \(\overline{f}_n \to id \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \) then for every pole \(p \in \partial G \), \(d(p, f_n(p)) \to 0 \).
Cannon-Thurston Relations (Contd.)

\(\bar{f} \in \text{Comm}(G) \) implies \(f \in \text{Homeo}(\partial G) \).

"Non-proof": Pull Comm\((G)\)-action back to \(\partial G \). Then Comm\((G)\) preserves closed totally disconnected relation. Hence its a closed totally disconnected subgroup of L–discrete.

Let \(f_n \) be a sequence of homeomorphisms of \((\partial G, d)\) that preserves the cosets of \(R_{CT} \), where \(d \) denotes some visual metric.

Let \(\bar{f}_n \) denote the induced homeomorphisms of \(\Lambda_G \).

If \(f_n \to id \) in the uniform topology on \(\text{Homeo}(\partial G) \) then \(\bar{f}_n \to id \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \).

Conversely, if \(\bar{f}_n \to id \) in the uniform topology on \(\text{Homeo}(\Lambda_G) \) then for every pole \(p \in \partial G \), \(d(p, f_n(p)) \to 0 \).
 Totally Degenerate Surface Groups

Lemma

Let $\overline{f}_n \in \text{Comm}(H)$ be a sequence of commensurators converging to the identity in $\text{Isom}(\mathbb{H}^3)$ and let f_n be the induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S)(= S^1)$ of the group $\pi_1(S)$. Then $f_n \to \text{Id} \in \text{Homeo}(S^1)$.

Proof Idea Follows.
Totally Degenerate Surface Groups

Lemma

Let $\overline{f}_n \in \text{Comm}(H)$ be a sequence of commensurators converging to the identity in $\text{Isom}(\mathbb{H}^3)$ and let f_n be the induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S)(= S^1)$ of the group $\pi_1(S)$. Then $f_n \to \text{Id} \in \text{Homeo}(S^1)$.

Proof Idea Follows.
Totally Degenerate Surface Groups

Lemma

Let $f_n \in \text{Comm}(H)$ be a sequence of commensurators converging to the identity in $\text{Isom}(\mathbb{H}^3)$ and let f_n be the induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S) (= S^1)$ of the group $\pi_1(S)$. Then $f_n \to \text{Id} \in \text{Homeo}(S^1)$.

Proof Idea Follows.
Totally Degenerate Surface Groups
Totally Degenerate Surface Groups

Theorem

Let H be a totally degenerate surface Kleinian group. Then the commensurator $\text{Comm}(H)$ of H is discrete in $\text{PSL}_2(\mathbb{C})$.

$f_n \in \text{Comm}(H)$— sequence of commensurators converging to the identity in $\text{Isom}(\mathbb{H}^3)$

f_n — induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S)(= S^1)$
Totally Degenerate Surface Groups

Theorem

*Let H be a totally degenerate surface Kleinian group. Then the commensurator $\text{Comm}(H)$ of H is discrete in $\text{PSL}_2(\mathbb{C})$.***

$f_n \in \text{Comm}(H)$—sequence of commensurators converging to the identity in $\text{Isom}(\mathbb{H}^3)$

f_n—induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S)(= S^1)$
Totally Degenerate Surface Groups

Theorem

Let H be a totally degenerate surface Kleinian group. Then the commensurator $\text{Comm}(H)$ of H is discrete in $\text{PSL}_2(\mathbb{C})$.

$\overline{f_n} \in \text{Comm}(H)$— sequence of commensurators converging to the identity in $\text{Isom}(\mathbb{H}^3)$

f_n — induced homeomorphisms on the (relative) hyperbolic boundary $\partial \pi_1(S)(=S^1)$
Theorem

Let H be a totally degenerate surface Kleinian group. Then the commensurator $\text{Comm}(H)$ of H is discrete in $\text{PSL}_2(\mathbb{C})$.

$f_n \in \text{Comm}(H)$—sequence of commensurators converging to the identity in $\text{Isom}(\mathbb{H}^3)$

f_n — induced homeomorphisms on the (relative) hyperbolic boundary $\partial\pi_1(S)(=S^1)$
Totally Degenerate Surface Groups
By previous Lemma, for any ideal polygon Δ with boundary in the ending lamination there exists $N = N(\Delta)$ such that f_n fixes all the vertices of Δ for all $n \geq N$.

Let $z_\Delta \in S^2_\infty$ be the common image of the end-points of Δ under the Cannon-Thurston map.

Choose ideal polygons $\Delta_1, \cdots, \Delta_k$ such that the common images $\{z_1, \cdots, z_k\}$ is Zariski dense in S^2_∞.

Hence for all $n \geq \max_{i=1 \cdots k}\{N(\Delta_i)\}$, $f_n = Id$. □
Totally Degenerate Surface Groups

By previous Lemma, for any ideal polygon Δ with boundary in the ending lamination there exists $N = N(\Delta)$ such that f_n fixes all the vertices of Δ for all $n \geq N$.

Let $z_\Delta \in S^2_\infty$ be the common image of the end-points of Δ under the Cannon-Thurston map.

Choose ideal polygons $\Delta_1, \cdots, \Delta_k$ such that the common images $\{z_1, \cdots, z_k\}$ is Zariski dense in S^2_∞.

Hence for all $n \geq \max_{i=1 \cdots k}\{N(\Delta_i)\}$, $f_n = Id$. □
Totally Degenerate Surface Groups
By previous Lemma, for any ideal polygon Δ with boundary in the ending lamination there exists $N = N(\Delta)$ such that f_n fixes all the vertices of Δ for all $n \geq N$.
Let $z_\Delta \in S_\infty^2$ be the common image of the end-points of Δ under the Cannon-Thurston map.
Choose ideal polygons $\Delta_1, \cdots, \Delta_k$ such that the common images $\{z_1, \cdots, z_k\}$ is Zariski dense in S_∞^2.
Hence for all $n \geq \max_{i=1 \cdots k} N(\Delta_i)$, $f_n = ld$. □
Totally Degenerate Surface Groups
By previous Lemma, for any ideal polygon Δ with boundary in the ending lamination there exists $N = N(\Delta)$ such that f_n fixes all the vertices of Δ for all $n \geq N$.
Let $z_\Delta \in S_\infty^2$ be the common image of the end-points of Δ under the Cannon-Thurston map.
Choose ideal polygons $\Delta_1, \cdots, \Delta_k$ such that the common images $\{z_1, \cdots, z_k\}$ is Zariski dense in S_∞^2.
Hence for all $n \geq \max_{i=1}^k \{N(\Delta_i)\}$, $\overline{f_n} = Id$. □