Delambre-Gauss Formulas in Hyperbolic 4-Space

Ying Zhang

(Suzhou University)

Joint work with S. P. Tan and Y. L. Wong

1. Trigonometric formulas for spherical and hyperbolic triangles

Spherical triangles. Consider a spherical triangle in the unit sphere having side-lengths \(a, b, c \in (0, \pi)\) and corresponding opposite interior angles \(\alpha, \beta, \gamma \in (0, \pi)\).

The following Delambre-Gauss formulas were discovered by Delambre in 1807 (published in 1809) and were subsequently discovered independently by Gauss.

Theorem 1.1 (Delambre-Gauss formulas for spherical triangles).

\[
\begin{align*}
\cos \frac{1}{2}(a + b) \sin \frac{1}{2} \gamma &= \cos \frac{1}{2}(\alpha + \beta) \cos \frac{1}{2} c, \\
\sin \frac{1}{2}(a + b) \sin \frac{1}{2} \gamma &= \cos \frac{1}{2}(\alpha - \beta) \sin \frac{1}{2} c, \\
\cos \frac{1}{2}(a - b) \cos \frac{1}{2} \gamma &= \sin \frac{1}{2}(\alpha + \beta) \cos \frac{1}{2} c, \\
\sin \frac{1}{2}(a - b) \cos \frac{1}{2} \gamma &= \sin \frac{1}{2}(\alpha - \beta) \sin \frac{1}{2} c.
\end{align*}
\]

Remark. Note that \(a > b\) iff \(\alpha > \beta\), and \(a + b > \pi\) iff \(\alpha + \beta > \pi\).

Corollary 1.2 (Napier’s analogies for spherical triangles).

\[
\begin{align*}
\frac{\sin \frac{1}{2}(\alpha - \beta)}{\sin \frac{1}{2}(\alpha + \beta)} &= \tan \frac{1}{2}(a - b), \\
\frac{\cos \frac{1}{2}(\alpha - \beta)}{\cos \frac{1}{2}(\alpha + \beta)} &= \tan \frac{1}{2}(a + b), \\
\frac{\sin \frac{1}{2}(a - b)}{\sin \frac{1}{2}(a + b)} &= \tan \frac{1}{2}(\alpha - \beta), \\
\frac{\cos \frac{1}{2}(a - b)}{\cos \frac{1}{2}(a + b)} &= \tan \frac{1}{2}(\alpha + \beta).
\end{align*}
\]
Corollary 1.3 (Law of tangents for spherical triangles).
\[
\tan \frac{1}{2}(a - b) = \tan \frac{1}{2}(\alpha - \beta) \quad \tan \frac{1}{2}(a + b) = \tan \frac{1}{2}(\alpha + \beta).
\]
\[
(9)
\]
Corollary 1.4 (Law I of cosines for spherical triangles).
\[
\cos c = \cos a \cos b + \sin a \sin b \cos \gamma.
\]
\[
(10)
\]
Corollary 1.5 (Law II of cosines for spherical triangles).
\[
\cos \gamma = -\cos \alpha \cos \beta + \sin \alpha \sin \beta \cos c.
\]
\[
(11)
\]
Corollary 1.6 (Law of sines for spherical triangles).
\[
\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}.
\]
\[
(12)
\]
Hyperbolic triangles. Consider a triangle in the hyperbolic plane H^2 having side-lengths $a, b, c > 0$ and corresponding opposite interior angles $\alpha, \beta, \gamma \in (0, \pi)$.

Theorem 1.7 (Delambre-Gauss formulas for hyperbolic triangles).
\[
cosh \frac{1}{2}(a + b) \sin \frac{1}{2} \gamma = \cos \frac{1}{2}(\alpha + \beta) \cosh \frac{1}{2} c,
\]
\[
(13)
\]
\[
sinh \frac{1}{2}(a + b) \sin \frac{1}{2} \gamma = \cos \frac{1}{2}(\alpha - \beta) \sinh \frac{1}{2} c,
\]
\[
(14)
\]
\[
cosh \frac{1}{2}(a - b) \cos \frac{1}{2} \gamma = \sin \frac{1}{2}(\alpha + \beta) \cosh \frac{1}{2} c,
\]
\[
(15)
\]
\[
sinh \frac{1}{2}(a - b) \cos \frac{1}{2} \gamma = \sin \frac{1}{2}(\alpha - \beta) \sinh \frac{1}{2} c.
\]
\[
(16)
\]
Remark. Note that $a > b$ if and only if $\alpha > \beta$.

Corollary 1.8 (Law I of cosines for hyperbolic triangles).
\[
cosh c = \cosh a \cos b - \sinh a \sin b \cos \gamma.
\]
\[
(17)
\]
Corollary 1.9 (Law II of cosines for hyperbolic triangles).
\[
\cos \gamma = -\cos \alpha \cos \beta + \sin \alpha \sin \beta \cosh c.
\]
\[
(18)
\]
Corollary 1.10 (Law of sines for hyperbolic triangles).
\[
\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}.
\]
\[
(19)
\]
Convex right-angled hexagons in H^2. Consider a convex right-angled hexagon in H^2 having side-lengths $l_1, \ldots, l_6 > 0$ in cyclic order.

Theorem 1.11 (Delambre-Gauss formulas for convex r.a.h.’s in H^2).

$$\cosh \frac{1}{2}(l_1 + l_3) \sinh \frac{1}{2}l_2 = \cosh \frac{1}{2}(l_4 + l_6) \cosh \frac{1}{2}l_5, \quad (20)$$

$$\sinh \frac{1}{2}(l_1 + l_3) \sinh \frac{1}{2}l_2 = \cosh \frac{1}{2}(l_4 - l_6) \sinh \frac{1}{2}l_5, \quad (21)$$

$$\cosh \frac{1}{2}(l_1 - l_3) \cosh \frac{1}{2}l_2 = \sinh \frac{1}{2}(l_4 + l_6) \cosh \frac{1}{2}l_5, \quad (22)$$

$$\sinh \frac{1}{2}(l_1 - l_3) \cosh \frac{1}{2}l_2 = \sinh \frac{1}{2}(l_4 - l_6) \sinh \frac{1}{2}l_5. \quad (23)$$

Remark. Note that $l_1 < l_3$ if and only if $l_4 < l_6$.

Corollary 1.12 (Law of cosines for convex r.a.h.’s in H^2).

$$\cosh l_n = -\cosh l_{n+2} \cosh l_{n+4} + \sinh l_{n+2} \sinh l_{n+4} \cosh l_{n+3}. \quad (24)$$

Corollary 1.13 (Law of sines for convex r.a.h.’s in H^2).

$$\frac{\sinh l_1 \sinh l_4}{\sinh l_2} = \frac{\sinh l_3 \sinh l_6}{\sinh l_2}. \quad (25)$$

2. Trigonometric formulas for right-angled hexagons in H^3

Hyperbolic 3-space: H^3.

Right-angled hexagon in H^3. A r.a.h. in H^3 is a cyclically indexed six-tuple (L_1, \ldots, L_6) of lines in H^4 such that, for each n modulo 6, lines L_n and L_{n+1} intersect perpendicularly. It is said to be oriented if all the lines are oriented.

Complex (full) side-lengths σ_n of an oriented r.a.h. in H^3.

For an oriented right-angled hexagon $(\vec{L}_1, \ldots, \vec{L}_6)$ in H^3, let $\sigma_1, \ldots, \sigma_6 \in \mathbb{C}/2\pi i \mathbb{Z}$ be respectively the complex (full) side-lengths of its side-lines $\vec{L}_1, \ldots, \vec{L}_6$.

Theorem 2.1 (Laws of cosines for oriented r.a.h.’s in H^3).

$$\cosh \sigma_n = \cosh \sigma_{n+2} \cosh \sigma_{n+4} + \sinh \sigma_{n+2} \sinh \sigma_{n+4} \cosh \sigma_{n+3}. \quad (26)$$

Theorem 2.2 (Laws of sines for oriented r.a.h.’s in H^3).

$$\frac{\sinh \sigma_1}{\sinh \sigma_2} = \frac{\sinh \sigma_3}{\sinh \sigma_4} = \frac{\sinh \sigma_5}{\sinh \sigma_6}. \quad (27)$$

Remark. The above two laws for oriented r.a.h.’s in H^3 were known to Schilling as early as in 1891, but a correct treatment of signs seems to be given first by Fenchel in “Elementary Geometry in Hyperbolic Space” published in 1989.
Complex half side-lengths δ_n of an oriented r.a.h. in H^3.

For an oriented r.a.h. $(\vec{L}_1, \cdots, \vec{L}_6)$ in H^3, let $\delta_n \in \mathbb{C}/2\pi i \mathbb{Z}$ be an arbitrary choice of one its two complex half side-lengths for \vec{L}_n, the other being $\delta_n + \pi i \in \mathbb{C}/2\pi i \mathbb{Z}$.

We obtain Delambre-Gauss formulas for oriented right-angled hexagons in H^3.

Theorem 2.3 (Delambre-Gauss formulas for oriented r.a.h.’s in H^3). For an oriented r.a.h. in H^3, there exists $\varepsilon \in \{-1, 1\}$, depending on the choices of the half side-lengths $\delta_1, \cdots, \delta_6$, so that the following formulas (28)–(31) hold:

\[
\begin{align*}
\cosh(\delta_1 + \delta_3) \cosh \delta_2 &= \varepsilon \cosh(\delta_4 + \delta_6) \cosh \delta_5, \\
-\sinh(\delta_1 + \delta_3) \cosh \delta_2 &= \varepsilon \cosh(\delta_4 - \delta_6) \sinh \delta_5, \\
-\cosh(\delta_1 - \delta_3) \sinh \delta_2 &= \varepsilon \sinh(\delta_4 + \delta_6) \cosh \delta_5, \\
\sinh(\delta_1 - \delta_3) \sinh \delta_2 &= \varepsilon \sinh(\delta_4 - \delta_6) \sinh \delta_5,
\end{align*}
\]

Remark. By suitably changing orientations of some of the side-lines, one may obtain the three identities (29)–(31) from the single identity (28).

3. Generalized Delambre-Gauss formulas for oriented, augmented right-angled hexagons in H^4

Hyperbolic 4-space: H^4.

Clifford algebra or the algebra of $\{e_1, e_2\}$-quaternions

$$\mathbb{A}_2 := Cl_{0,2} = \mathbb{R} + \mathbb{R}e_1 + \mathbb{R}e_2 + \mathbb{R}e_1 e_2$$

subject to $e_1^2 = e_2^2 = -1$ and $e_1 e_2 + e_2 e_1 = 0$.

Reverse involution $(\cdot)^\ast : \mathbb{A}_2 \to \mathbb{A}_2$ is defined by

$$(x_0 + x_1 e_1 + x_2 e_2 + x_{12} e_1 e_2)^\ast := x_0 + x_1 e_1 + x_2 e_2 - x_{12} e_1 e_2,$$

with real coefficients x_0, x_1, x_2, x_{12}.

Hyperbolic functions \cosh and \sinh with an \mathbb{A}_2-variable are defined by:

$$\cosh x := \frac{\exp(x) + \exp(-x^\ast)}{2}, \quad \sinh x := \frac{\exp(x) - \exp(-x^\ast)}{2}.$$

Line and plane in H^4. By line and plane in H^4 we mean respectively complete geodesic line and totally geodesic plane in H^4.

Right-angled hexagon in H^4. A r.a.h. in H^4 is a cyclically indexed six-tuple (L_1, \cdots, L_6) of lines in H^4 such that, for each n modulo 6, lines L_n and L_{n+1} intersect perpendicularly. It is said to be oriented if all lines are oriented.
Line-plane flag. A line-plane flag in H^4 is an ordered pair $F = (L, \Pi)$, where L is a line and Π is a plane in H^4. It is said to be **oriented** if both the line L and the plane Π are oriented.

We say that a line L' and a line-plane flag $F = (L, \Pi)$ intersect perpendicularly if L' intersects each of L and Π perpendicularly.

Augmented right-angled hexagon in $H^4.$ An a.r.a.h. in H^4 is a cyclically indexed six-tuple (S_1, \cdots, S_6) such that either S_1, S_3, S_5 are all lines and S_2, S_4, S_6 are all line-plane flags in H^4, or S_1, S_3, S_5 are all line-plane flags and S_2, S_4, S_6 are all lines in H^4, and such that, for each n modulo 6, S_n and S_{n+1} intersect perpendicularly. It is said to be **oriented** if all S_n, $n = 1, \cdots, 6$ are oriented.

Two e_2-complex half distances $\delta_F(L_1, L_2) \in (\mathbb{R} + \mathbb{R}e_2)/2\pi e_2 \mathbb{Z}$ from L_1 to L_2 along a common perpendicular $\vec{F} = (\vec{L}, \vec{\Pi})$ in H^4.

The two values of $\delta_F(L_1, L_2)$ differ by πe_2.

Two $\{e_1, e_2\}$-quaternion half distances $\delta_F(F_1, F_2) \in A_2 \mod \text{(period)}$ from F_1 to F_2 along a common perpendicular \vec{L} in H^4.

The two values of $\delta_L(F_1, F_2)$ differ by πu for some $u \in \sqrt{-1} \subset A_2$.

Theorem 3.1 (Delambre-Gauss formulas for oriented a.r.a.h.’s in H^4). For an oriented, augmented right-angled hexagon $(\vec{L}_1, \vec{F}_2, \vec{L}_3, \vec{F}_4, \vec{L}_5, \vec{F}_6)$ in H^4 with arbitrary choices of $\{e_1, e_2\}$-quaternion half side-lengths $\delta_1, \delta_3, \delta_5$ and arbitrary choices of e_2-complex half side-lengths $\delta_2, \delta_4, \delta_6$, the following formulas hold:

\[
\begin{align*}
\sinh \delta_1 \cosh \delta_2 \sinh \delta_3 + \cosh \delta_1 \cosh \delta_2 \cosh \delta_3 & = \varepsilon (\sinh \delta_4 \cosh \delta_5 \sinh \delta_6 + \cosh \delta_4 \cosh \delta_5 \cosh \delta_6); \\
\sinh \delta_1 \sinh \delta_2 \sinh \delta_3 - \cosh \delta_1 \sinh \delta_2 \cosh \delta_3 & = \varepsilon (\sinh \delta_4 \sinh \delta_5 \cosh \delta_6 + \cosh \delta_4 \cosh \delta_5 \sinh \delta_6); \\
\sinh \delta_1 \cosh \delta_2 \cosh \delta_3 + \cosh \delta_1 \cosh \delta_2 \sinh \delta_3 & = \varepsilon (\sinh \delta_4 \cosh \delta_5 \sinh \delta_6 - \cosh \delta_4 \cosh \delta_5 \cosh \delta_6); \\
\sinh \delta_1 \sinh \delta_2 \cosh \delta_3 - \cosh \delta_1 \sinh \delta_2 \sinh \delta_3 & = \varepsilon (\sinh \delta_4 \sinh \delta_5 \cosh \delta_6 - \cosh \delta_4 \cosh \delta_5 \sinh \delta_6),
\end{align*}
\]

with $\varepsilon = 1$ or -1, depending on the choices of the six half side-lengths $\{\delta_n\}_{n=1}^6$.

Remark. Formulas (32)–(35) above can be abbreviated as follows:

\[
\begin{align*}
(scs + ccc)_{123}^* & = \varepsilon (scs + ccc)_{456}; \\
(sss - csc)_{123}^* & = \varepsilon (ssc + ccs)_{456}; \\
(scc + ccs)_{123}^* & = \varepsilon (sss - csc)_{456}; \\
(scc - ccs)_{123}^* & = \varepsilon (ssc - css)_{456}.
\end{align*}
\]

Remark. The formulas (32)–(35) above are left **invariant** under taking the reverse involution (*) and shifting the indices by $123456 \rightarrow 456123$.

4. Ideas of Proof

Theorem 4.1. For an oriented r.a.h. $(\tilde{L}_1, \tilde{L}_2, \cdots, \tilde{L}_6)$ in H^3, let $M_n \in \text{Isom}^+(H^3)$, n modulo 6, be such that $M_n(\tilde{L}_n) = \tilde{L}_n$ and $M_n(\tilde{L}_{n-1}) = \tilde{L}_{n+1}$. Then

$$M_0 M_5 M_4 M_3 M_2 M_1 = 1d.$$ (36)

Theorem 4.2. For an oriented r.a.h. $(\tilde{L}_1, \tilde{L}_2, \cdots, \tilde{L}_6)$ in H^3, let $M_n \in \text{Isom}^+(H^3)$, n modulo 6, be as in Theorem 4.1 and let $T_n \in \text{Isom}^+(H^3)$ be a conjugate of M_n such that $T_n(\tilde{L}_1) = \tilde{L}_1$ if $n = 1, 3, 5$ and $T_n(\tilde{L}_2) = \tilde{L}_2$ if $n = 2, 4, 6$. Then

$$T_1 T_2 T_3 T_4 T_5 T_6 = 1d.$$ (37)

Theorem 4.3. For an oriented a.r.a.h. $(\tilde{S}_1, \cdots, \tilde{S}_6)$ in H^4, let $M_n \in \text{Isom}^+(H^4)$, n modulo 6, be such that $M_n(\tilde{S}_n) = \tilde{S}_n$ and $M_n(\tilde{S}_{n-1}) = \tilde{S}_{n+1}$. Then

$$M_0 M_5 M_4 M_3 M_2 M_1 = 1d.$$ (38)

Theorem 4.4. For an oriented a.r.a.h. $(\tilde{S}_1, \cdots, \tilde{S}_6)$ in H^4, let $M_n \in \text{Isom}^+(H^4)$, n modulo 6, be as in Theorem 4.3 and let $T_n \in \text{Isom}^+(H^4)$ be a conjugate of M_n such that $T_n(\tilde{S}_1) = \tilde{S}_1$ if $n = 1, 3, 5$ and $T_n(\tilde{S}_2) = \tilde{S}_2$ if $n = 2, 4, 6$. Then

$$T_1 T_2 T_3 T_4 T_5 T_6 = 1d.$$ (39)

Proof of Delambre-Gauss formulas for oriented a.r.a.h.’s in H^4. In the upper half-space model of $H^{n+2} \equiv \mathbb{R} + \mathbb{R}e_1 + \cdots + \mathbb{R}e_n + \mathbb{R}^+e_{n+1}$, we have

$$\text{Isom}^+(H^n) \equiv \text{PSL}(2, \Gamma_n \cup 0),$$

where $\Gamma_n \subset A_n^\mathbb{C}$ is the full Clifford group and a Vahlen matrix $A \in \text{SL}(2, \Gamma_n \cup 0)$ acts on H^{n+2} as a fractional linear transformation:

$$Ax = (ax + b)(cx + d)^{-1}.$$

Note that $\Gamma_1 \cup 0 = A_1 \equiv C$ and $\Gamma_2 \cup 0 = A_2$. Now choose special positions for \tilde{S}_1 and \tilde{S}_2 as follows:

$$\tilde{S}_1 = \tilde{L}_1 = \tilde{L}_{[1, \infty]}; \quad \tilde{S}_2 = \tilde{F}_2 = (\tilde{L}_{[-1, 1]} \cdot \tilde{F}_{[-1, 1]} \cdot \varepsilon_{-1, e_1}).$$

We obtain an identity of 2×2 matrices by replacing each isometry T_n in (39) by a Vahlen matrix A_n, and the identity isometry by εI for some $\varepsilon \in \{-1, 1\}$. Precisely, we have

$$A_1 A_2 A_3 = \varepsilon (A_4 A_5 A_6)^{-1}.$$

Working out the product matrices on both sides and equating the corresponding entries, we obtain the Delambre-Gauss formulas by suitable manipulations. □

THANK YOU!