On Potential Games and Generalized Nash Equilibrium Problems

Harikrishnan (Hari) Sreekumaran, Andrew L. Liu

School of Industrial Engineering, Purdue University
West Lafayette, IN 47907
hsreekum@purdue.edu, andrewliu@purdue.edu

December 18th, 2012
Outline

1 Motivation and Background

2 A Decentralized Algorithm for Solving Potential GNEPs

3 Numerical Studies

4 Conclusion and Future Work
Motivation: Decentralized Decision Making

- Unmanned air vehicles (UAVs) group coordination
Motivation: Decentralized Decision Making

- Unmanned air vehicles (UAVs) group coordination
- Supply chain network coordination: manufactures, distributors, retailers
Motivation: Decentralized Decision Making

- Unmanned air vehicles (UAVs) group coordination
- Supply chain network coordination: manufactures, distributors, retailers
- Power allocation in Gaussian parallel interference channel [Pang et al. 2008]
Motivation: Decentralized Decision Making

- Unmanned air vehicles (UAVs) group coordination
- Supply chain network coordination: manufactures, distributors, retailers
- Power allocation in Gaussian parallel interference channel [Pang et al. 2008]
- Smart Grid: from macro-grid to micro-grid
Motivation: Decentralized Decision Making

- Unmanned air vehicles (UAVs) group coordination
- Supply chain network coordination: manufactures, distributors, retailers
- Power allocation in Gaussian parallel interference channel [Pang et al. 2008]
- Smart Grid: from macro-grid to micro-grid
Motivation: Decentralized Decision Making

- Unmanned air vehicles (UAVs) group coordination
- Supply chain network coordination: manufactures, distributors, retailers
- Power allocation in Gaussian parallel interference channel [Pang et al. 2008]
- Smart Grid: from macro-grid to micro-grid

Question: Can dynamic interaction lead to a Nash equilibrium?
Motivation: Difficulties in Solving GNEPs

GNEP \leftrightarrow QVI \Rightarrow VI

lost in translation

Questions:

- Is there empirical or experiment evidence to support common-multiplier solutions?
Motivation: Difficulties in Solving GNEPs

GNEP \iff QVI \implies VI

lost in translation

Questions:

- Is there empirical or experiment evidence to support common-multiplier solutions?
- Can GNEPs be solved in a decentralized fashion with provable convergence?
Potential Games: [Monderer & Shapley 96]

Let $G = (\mathcal{F}, X = \prod_{f \in \mathcal{F}} X_f, (\theta_f))$ represent a strategic-form game.

Ordinal Potential Games

A function $\Phi : X \rightarrow \mathbb{R}$ is called an ordinal (exact) potential function for the game G if for each $f \in \mathcal{F}$ and all $x_f \in X_f$,

$$\theta_i(y, x_{-f}) - \theta_i(z, x_{-f}) > 0 \iff \Phi(y, x_{-f}) - \Phi(z, x_{-f}) > 0, \forall y, z \in X_i.$$
Potential Games: [Monderer & Shapley 96]

Let $G = (\mathcal{F}, X = \prod_{f \in \mathcal{F}} X_f, (\theta_f))$ represent a strategic-form game

Ordinal Potential Games

A function $\Phi : X \rightarrow \mathbb{R}$ is called an ordinal (exact) potential function for the game G if for each $f \in \mathcal{F}$ and all $x_{-f} \in X_{-f}$,

$$\theta_i(y, x_{-f}) - \theta_i(z, x_{-f}) > 0 \iff \Phi(y, x_{-f}) - \Phi(z, x_{-f}) > 0, \forall y, z \in X_i.$$
Potential Games: [Monderer & Shapley 96]

Let $G = (\mathcal{F}, X = \prod_{f \in \mathcal{F}} X_f, (\theta_f))$ represent a strategic-form game.

Ordinal Potential Games

A function $\Phi : X \to \mathbb{R}$ is called an ordinal (exact) potential function for the game G if for each $f \in \mathcal{F}$ and all $x_{-f} \in X_{-f}$,

$$\theta_i(y, x_{-f}) - \theta_i(z, x_{-f}) \geq 0 \iff \Phi(y, x_{-f}) - \Phi(z, x_{-f}) \geq 0, \forall y, z \in X_i.$$

Significance of Potential Games

Converts a Nash equilibrium problem to a SINGLE optimization problem

$$\min_x \Phi(x) \quad \text{subject to} \quad x \in X.$$

(P)
Potential Games: [Monderer & Shapley 96]

Let $\mathcal{G} = (\mathcal{F}, X = \prod_{f \in \mathcal{F}} X_f, (\theta_f))$ represent a strategic-form game

Ordinal Potential Games

A function $\Phi : X \rightarrow \mathbb{R}$ is called an ordinal (exact) potential function for the game \mathcal{G} if for each $f \in \mathcal{F}$ and all $x_{-f} \in X_{-f}$,

$$\theta_i(y, x_{-f}) - \theta_i(z, x_{-f}) > 0 \iff \Phi(y, x_{-f}) - \Phi(z, x_{-f}) > 0, \ \forall y, z \in X_i.$$

Significance of Potential Games

Converts a Nash equilibrium problem to a SINGLE optimization problem

$$\min_{x} \Phi(x) \quad \text{subject to} \quad x \in X.$$ (P)
Potential Games: [Monderer & Shapley 96]

Let $G = (F, X = \prod_{f \in F} X_f, (\theta_f))$ represent a strategic-form game

Ordinal Potential Games

A function $\Phi : X \rightarrow \mathbb{R}$ is called an ordinal (exact) potential function for the game G if for each $f \in F$ and all $x_f \in X_f$,

$$\theta_i(y, x_f) - \theta_i(z, x_f) > 0 \iff \Phi(y, x_f) - \Phi(z, x_f) > 0, \forall y, z \in X_i.$$

Significance of Potential Games

Converts a Nash equilibrium problem to a SINGLE optimization problem

$$\min_{x} \Phi(x) \quad \text{subject to} \quad x \in X. \quad (P)$$

Caveat: A Nash equilibrium of G \iff Global optimizer of (P).

Known Classes of Potential Games

- Congestion games [Rosenthal 73].
Known Classes of Potential Games

- Congestion games [Rosenthal 73].
Known Classes of Potential Games

- Congestion games [Rosenthal 73].

- 1-dimension Nash-Cournot games: \(\theta_f = P(Q)q_f - c_f q_f \)
 Potential function: \(\Phi(q_1, \ldots, q_F) = q_1 q_2 \cdots q_F (P(Q) - c_f) \).
Known Classes of Potential Games

- Congestion games [Rosenthal 73].

- 1-dimension Nash-Cournot games: \(\theta_f = P(Q)q_f - c_f q_f \)
 Potential function: \(\Phi(q_1, \ldots, q_F) = q_1 q_2 \cdots q_F (P(Q) - c_f) \).
Known Classes of Potential Games

- Congestion games [Rosenthal 73].

- 1-dimension Nash-Cournot games: \(\theta_f = P(Q)q_f - c_f q_f \)

 Potential function: \(\Phi(q_1, \ldots, q_F) = q_1 q_2 \cdots q_F (P(Q) - c_f) \).

- \(\theta_f(x_f, x_{-f}) = \theta_f(x_f) \) (but \(X_f = X_f(x_{-f}) \))

 Potential function: \(\Phi(x_1, \ldots, x_F) = \sum_{f \in F} \theta_f(x_f) \).
Known Classes of Potential Games

- Congestion games [Rosenthal 73].

- 1-dimension Nash-Cournot games: $\theta_f = P(Q)q_f - c_f q_f$

 Potential function: $\Phi(q_1, \ldots, q_F) = q_1 q_2 \cdots q_F (P(Q) - c_f)$.

- $\theta_f(x_f, x_{\neg f}) = \theta_f(x_f)$ (but $X_f = X_f(x_{\neg f})$)

 Potential function: $\Phi(x_1, \ldots, x_F) = \sum_{f \in F} \theta_f(x_f)$.

Workshop on Complementarity And Its Extensions, Singapore, 2012
Known Classes of Potential Games

- Congestion games [Rosenthal 73].

- 1-dimension Nash-Cournot games: \(\theta_f = P(Q)q_f - c_f q_f \)
 Potential function: \(\Phi(q_1, \ldots, q_F) = q_1 q_2 \cdots q_F (P(Q) - c_f) \).

- \(\theta_f(x_f, x_{-f}) = \theta_f(x_f) \) (but \(X_f = X_f(x_{-f}) \))
 Potential function: \(\Phi(x_1, \ldots, x_F) = \sum_{f \in \mathcal{F}} \theta_f(x_f) \).

- \(\theta_f(x_f, x_{-f}) = C(x_1, , x_F) + d_f(x_f) \)
 Potential function: \(\Phi(x_1, \ldots, x_F) = C(x_1, , x_F) + \sum_{f \in \mathcal{F}} d_f(x_f) \).
Benefits of Studying Potential GNEPs

- Study the *evolution* of games (best-response dynamics)
Benefits of Studying Potential GNEPs

- Study the **evolution** of games (best-response dynamics)
- Provide a **focal point** among **multiple equilibria**
Benefits of Studying Potential GNEPs

- Study the evolution of games (best-response dynamics)
- Provide a focal point among multiple equilibria
- Amenable to decentralized control/decision-making
Benefits of Studying Potential GNEPs

- Study the **evolution** of games (best-response dynamics)
- Provide a **focal point** among **multiple equilibria**
- Amenable to **decentralized** control/decision-making
- Easier to study the effects of **bounded rationality** (better-response vs. best-response)
Outline

1. Motivation and Background
2. A Decentralized Algorithm for Solving Potential GNEPs
3. Numerical Studies
4. Conclusion and Future Work
Game Formulation and Assumptions

Generalized Nash Equilibrium Problems (GNEPs)

Each agent f solves the following problem, parameterized by x_{-f},

$$\begin{align*}
 \text{minimize} & \quad \theta_f(x_f, x_{-f}) \\
 \text{subject to} & \quad x_f \in X_f(x_{-f}).
\end{align*}$$

(GNEP)

GNE: $\theta_f(x^*_f, x^*_{-f}) \leq \theta_f(x_f, x^*_{-f}), \quad \forall x_f \in X_f(x^*_{-f})$.

Workshop on Complementarity And Its Extensions, Singapore, 2012
Game Formulation and Assumptions

Generalized Nash Equilibrium Problems (GNEPs)

Each agent f solves the following problem, parameterized by x_{-f},

\[
\begin{align*}
\text{minimize} & \quad \theta_f(x_f, x_{-f}) \\
\text{subject to} & \quad x_f \in X_f(x_{-f}).
\end{align*}
\]

(GNEP)

\[\theta_f(x_f^*, x_{-f}^*) \leq \theta_f(x_f, x_{-f}^*), \quad \forall x_f \in X_f(x_{-f}^*).\]
Game Formulation and Assumptions

Generalized Nash Equilibrium Problems (GNEPs)

Each agent f solves the following problem, parameterized by x_{-f},

\[
\begin{align*}
\text{minimize} & \quad \theta_f(x_f, x_{-f}) \\
\text{subject to} & \quad x_f \in X_f(x_{-f}).
\end{align*}
\]

\[\text{(GNEP)}\]

GNE: \ \theta_f(x_f^*, x_{-f}^*) \leq \theta_f(x_f, x_{-f}^*), \ \forall x_f \in X_f(x_{-f}^*).

Assumptions

\[\theta_f(x_f, x_{-f}) : \mathbb{R}^n \rightarrow \mathbb{R}, \text{continuously differentiable and convex in } x_f\]

Non-shared constraints:

\[X_f(x_{-f}) := \{ x_f \in \mathbb{R}^n | g_{fl}(x_f, x_{-f}) \leq 0 \} \]

\[g_{fl}(\cdot, \cdot) : \mathbb{R}^n \rightarrow \mathbb{R}^m_f \text{ with } g_{fl}(\cdot, x_{-f}) \text{ continuously differentiable and } g_{fl}(\cdot, x_{-f}) \text{ convex}, \ l = 1, 2, \ldots, m_f.\]
Game Formulation and Assumptions

Generalized Nash Equilibrium Problems (GNEPs)

Each agent f solves the following problem, parameterized by x_{-f},

\[
\begin{align*}
\text{minimize} & \quad \theta_f(x_f, x_{-f}) \\
\text{subject to} & \quad x_f \in X_f(x_{-f}).
\end{align*}
\]

(GNEP)

GNE: $\theta_f(x_f^*, x_{-f}^*) \leq \theta_f(x_f, x_{-f}^*), \forall x_f \in X_f(x_{-f}^*)$.

Assumptions

- $\theta(x_f, x_{-f}) : \mathbb{R}^n \Rightarrow \mathbb{R}$, continuously differentiable and convex in x_f
Game Formulation and Assumptions

Generalized Nash Equilibrium Problems (GNEPs)

Each agent f solves the following problem, parameterized by x_{-f},

$$\min_{x_f} \theta_f(x_f, x_{-f})$$

subject to $x_f \in X_f(x_{-f})$.

(GNEP)

GNE: $\theta_f(x^*_f, x^*_{-f}) \leq \theta_f(x_f, x^*_{-f}), \ \forall x_f \in X_f(x^*_{-f})$.

Assumptions

- $\theta(x_f, x_{-f}) : \mathbb{R}^n \Rightarrow \mathbb{R}$, continuously differentiable and convex in x_f

- Non-shared constraints: $X_f(x_{-f}) := \{ x_f \in \mathbb{R}^{n_f} | g_f(x_f, x_{-f}) \leq 0 \}$
Game Formulation and Assumptions

Generalized Nash Equilibrium Problems (GNEPs)

Each agent f solves the following problem, parameterized by x_f,

$$\begin{align*}
\text{minimize} & \quad \theta_f(x_f, x_{-f}) \\
\text{subject to} & \quad x_f \in X_f(x_{-f}).
\end{align*}$$

(GNEP)

GNE: $\theta_f(x_f^*, x_{-f}^*) \leq \theta_f(x_f, x_{-f}^*), \quad \forall x_f \in X_f(x_{-f}^*).$

Assumptions

- $\theta(x_f, x_{-f}) : \mathbb{R}^n \to \mathbb{R}$, continuously differentiable and convex in x_f
- Non-shared constraints: $X_f(x_{-f}) := \{x_f \in \mathbb{R}^n | g_f(x_f, x_{-f}) \leq 0\}$
- $g_f(x_f, x_{-f}) : \mathbb{R}^n \to \mathbb{R}^{m_f}$ with $g_{fl}(\cdot, \cdot)$ continuously differentiable and $g_{fl}(\cdot, x_{-f})$ convex, $l = 1, 2, \ldots, m_f$.
Summary of Results in the Literature

- Naive Gauss-Seidel doesn’t work even for potential GNEPs [Facchinei et al. 11]
Summary of Results in the Literature

- Naive Gauss-Seidel doesn’t work even for potential GNEPs [Facchinei et al. 11]
Summary of Results in the Literature

- Naive Gauss-Seidel doesn’t work even for potential GNEPs [Facchinei et al. 11]

- Potential GNEPs with shared constraints – proven convergence with a regularization term [Facchinei et al. 11]
Summary of Results in the Literature

- Naive Gauss-Seidel doesn’t work even for potential GNEPs [Facchini et al. 11]

- Potential GNEPs with shared constraints – proven convergence with a regularization term [Facchini et al. 11]
Summary of Results in the Literature

- Naive Gauss-Seidel doesn’t work even for potential GNEPs [Facchinei et al. 11]

- Potential GNEPs with shared constraints – proven convergence with a regularization term [Facchinei et al. 11]

- Dealing with non-shared constraints – exact penalty approach [Facchinei & Kanzow 10]
Summary of Results in the Literature

- Naive Gauss-Seidel doesn’t work even for potential GNEPs [Facchinei et al. 11]

- Potential GNEPs with shared constraints – proven convergence with a regularization term [Facchinei et al. 11]

- Dealing with non-shared constraints – exact penalty approach [Facchinei & Kanzow 10]
Summary of Results in the Literature

- Naive Gauss-Seidel doesn’t work even for potential GNEPs [Facchinei et al. 11]

- Potential GNEPs with shared constraints – proven convergence with a regularization term [Facchinei et al. 11]

- Dealing with non-shared constraints – exact penalty approach [Facchinei & Kanzow 10]

Our idea to solve potential GNEPs with non-shared constraints: Regularization (Facchinei & Kanzow 10) + Exact penalty (Facchinei et al. 11)
Hybrid Gauss-Seidel with Exact Penalty Algorithm

Let $g^+(x_f, x_{-f}) := \max\{0, g(x_f, x_{-f})\}$. Each agent f solves

$$\min_{x_f} P(x_f, x_{-f}; \rho_f) := \theta_f(x_f, x_{-f}) + \rho_f||g^+_f(x_f, x_{-f})||_\gamma,$$

$(PNEP)$
Hybrid Gauss-Seidel with Exact Penalty Algorithm

Let $g^+(x_f, x_{-f}) := \max\{0, g(x_f, x_{-f})\}$. Each agent f solves

$$\min_{x_f} P(x_f, x_{-f}; \rho_f) := \theta_f(x_f, x_{-f}) + \rho_f ||g_f^+(x_f, x_{-f})||_\gamma,$$

(PNEP)

Key Steps in the Algorithm

At a Gauss-Seidel iteration k
Hybrid Gauss-Seidel with Exact Penalty Algorithm

Let \(g^+(x_f, x_{-f}) := \max\{0, g(x_f, x_{-f})\} \). Each agent \(f \) solves

\[
\text{minimize } P(x_f, x_{-f}; \rho_f) := \theta_f(x_f, x_{-f}) + \rho_f ||g^+_f(x_f, x_{-f})||_\gamma,
\]

\((PNEP)\)

Key Steps in the Algorithm

At a Gauss-Seidel iteration \(k \)

\[
\text{for } f = 1, \ldots, F \text{ do compute a solution } x_f^{k+1} \text{ of}
\]

\[
\min_{x_f} \theta(x_1^{k+1}, \ldots, x_f, x_{f+1}^k, \ldots, x_F^k) + \tau ||x_f - x_f^k||^2 + \rho_f ||g^+_f(x_f, x_{-f})||
\]

Set \(x^{k,f+1} = (x_1^{k+1}, \ldots, x_f^{k+1}, x_{f+1}^k, \ldots, x_F^k) \).
Hybrid Gauss-Seidel with Exact Penalty Algorithm

Let $g^+(x_f, x_{-f}) := \max\{0, g(x_f, x_{-f})\}$. Each agent f solves

$$\min_{x_f} P(x_f, x_{-f}; \rho_f) := \theta_f(x_f, x_{-f}) + \rho_f \|g_f^+(x_f, x_{-f})\|_\gamma,$$

(PNEP)

Key Steps in the Algorithm

At a Gauss-Seidel iteration k

for $f = 1, \ldots, F$ do compute a solution x_f^{k+1} of

$$\min_{x_f} \theta(x_1^{k+1}, \ldots, x_f, x_{f+1}^k, \ldots, x_F^k) + \tau \|x_f - x_f^k\|^2 + \rho_f \|g_f^+(x_f, x_{-f})\|$$

Set $x^{k,f+1} = (x_1^{k+1}, \ldots, x_f^{k+1}, x_{f+1}^k, \ldots, x_F^k)$.
Hybrid Gauss-Seidel with Exact Penalty Algorithm

Let \(g^+(x_f, x_{-f}) := \max\{0, g(x_f, x_{-f})\} \). Each agent \(f \) solves

\[
\text{minimize } P(x_f, x_{-f}; \rho_f) := \theta_f(x_f, x_{-f}) + \rho_f \|g^+_f(x_f, x_{-f})\|_\gamma,
\]

(PNEP)

Key Steps in the Algorithm

At a Gauss-Seidel iteration \(k \)

for \(f = 1, \ldots, F \) do compute a solution \(x_{f}^{k+1} \) of

\[
\text{min}_{x_f} \theta(x_1^{k+1}, \ldots, x_f, x_{f+1}^k, \ldots, x_F^k) + \tau \|x_f - x_f^k\|^2 + \rho_f \|g^+_f(x_f, x_{-f})\|_\gamma
\]

Set \(x^{k+1} = (x_1^{k+1}, \ldots, x_f^{k+1}, x_{f+1}^k, \ldots, x_F^k) \).

IF

\[
\|\nabla_{x_f^{k+1}} \theta_f(x_f^{k+1}, x_{-f}) + 2\tau \|x_f^{k+1} - x_f^k\|_\gamma > c_f \left(\rho_f \left\| \nabla_{x_f^{k+1}} \|g^+_f(x_f^{k+1}, x_{-f})\|_\gamma \right\| \right)
\]

Update \(\rho_f \)
Convergence

- In [Facchinei et al. 11] (shared constraints GNEPs), for every k and f, $x^{k,f}$ is feasible (to the GNEP) – we DON’T have it here.
Convergence

- In [Facchinei et al. 11] (shared constraints GNEPs), for every k and f, $x^{k,f}$ is feasible (to the GNEP) – we DON’T have it here.
Convergence

- In [Facchinei et al. 11] (shared constraints GNEPs), for every \(k \) and \(f \), \(x^{k,f} \) is feasible (to the GNEP) – we DON’T have it here.

Remedy: introduce the Strong Ordinal Potential Function A function \(\Phi : X \rightarrow \mathbb{R} \) is called a strong ordinal potential function for the game \(\mathcal{G} \) if for each \(f \in \mathcal{F} \) and all \(x_{-f} \in X_{-f} \),

\[
\theta_i(y, x_{-f}) - \theta_i(z, x_{-f}) > 0 \iff \Phi(y, x_{-f}) - \Phi(z, x_{-f}) > 0, \ \forall y, z \in \mathbb{R}^n \text{(not } X_i) .
\]
Convergence

- In [Facchinei et al. 11] (shared constraints GNEPs), for every k and f, $x^{k,f}$ is feasible (to the GNEP) – we DON’T have it here.

Remedy: introduce the Strong Ordinal Potential Function A function $\Phi : X \rightarrow \mathbb{R}$ is called a strong ordinal potential function for the game G if for each $f \in F$ and all $x_{-f} \in X_{-f}$,

$$\theta_i(y, x_{-f}) - \theta_i(z, x_{-f}) > 0 \iff \Phi(y, x_{-f}) - \Phi(z, x_{-f}) > 0, \forall y, z \in \mathbb{R}^n \text{ (not } X_i).$$

Strong (ordinal) potential function will guarantee that

$$\lim_{k \to \infty, k \in \mathcal{K}} x^{k,f} = \bar{x}, \forall f.$$
Convergence

- In [Facchinei et al. 11] (shared constraints GNEPs), for every k and f, $x^{k,f}$ is feasible (to the GNEP) – we DON’T have it here.

Remedy: introduce the Strong Ordinal Potential Function

A function $\Phi : X \rightarrow \mathbb{R}$ is called an strong ordinal potential function for the game G if for each $f \in F$ and all $x_{-f} \in X_{-f},$

$$\theta_{i}(y, x_{-f}) - \theta_{i}(z, x_{-f}) > 0 \iff \Phi(y, x_{-f}) - \Phi(z, x_{-f}) > 0, \ \forall y, z \in \mathbb{R}^{n} (\text{not } X_{i}).$$

Strong (ordinal) potential function will guarantee that

$$\lim_{k \to \infty, k \in K} x^{k,f} = \bar{x}, \ \forall f.$$

- Exact penalization (finite penalty term upgrade): We say that the GNEP satisfies the EMFCQ at a point \bar{x} if for every player $f = 1, \ldots, F$, there exists d_{f} such that $\nabla_{x_{f}}g_{fi}(\bar{x}_{f}, \bar{x}_{-f})^{T}d_{f} < 0 \ \forall i \in I_{f}^{+}(\bar{x})$, where $I_{f}^{+}(\bar{x}) := \{i \in \{1, \ldots, m_{f}\} \mid g_{fi}(\bar{x}_{f}, \bar{x}_{-f}) \geq 0\}$ is the index set of all active and violated constraints at the point \bar{x}.
Convergence

- In [Facchinei et al. 11] (shared constraints GNEPs), for every k and f, $x^{k,f}$ is feasible (to the GNEP) – we DON’T have it here.

Remedy: introduce the Strong Ordinal Potential Function A function $\Phi : X \rightarrow \mathbb{R}$ is called an strong ordinal potential function for the game G if for each $f \in F$ and all $x_{-f} \in X_{-f}$,

$$\theta_i(y, x_{-f}) - \theta_i(z, x_{-f}) > 0 \iff \Phi(y, x_{-f}) - \Phi(z, x_{-f}) > 0, \ \forall y, z \in \mathbb{R}^n \text{ (not } X_i).$$

Strong (ordinal) potential function will guarantee that

$$\lim_{k \to \infty, k \in K} x^{k,f} = \bar{x}, \ \forall f.$$

- Exact penalization (finite penalty term upgrade): We say that the GNEP satisfies the EMFCQ at a point \bar{x} if for every player $f = 1, \ldots, F$, there exists d_f such that $\nabla_{x_f} g_f(\bar{x}_f, \bar{x}_{-f})^T d_f < 0 \ \forall i \in I_f^+(\bar{x})$, where $I_f^+(\bar{x}) := \{ i \in \{1, \ldots, m_f\} \mid g_f(\bar{x}_f, \bar{x}_{-f}) \geq 0 \}$ is the index set of all active and violated constraints at the point \bar{x}.

Workshop on Complementarity And Its Extensions, Singapore, 2012
Convergence

- In [Facchinei et al. 11] (shared constraints GNEPs), for every k and f, $x^{k,f}$ is feasible (to the GNEP) – we DON’T have it here.

Remedy: introduce the Strong Ordinal Potential Function

A function $\Phi : X \to \mathbb{R}$ is called an strong ordinal potential function for the game G if for each $f \in F$ and all $x_{-f} \in X_{-f}$,

$$\theta_i(y, x_{-f}) - \theta_i(z, x_{-f}) > 0 \iff \Phi(y, x_{-f}) - \Phi(z, x_{-f}) > 0, \forall y, z \in \mathbb{R}^n (\text{not } X_i).$$

Strong (ordinal) potential function will guarantee that

$$\lim_{k \to \infty, k \in K} x^{k,f} = \bar{x}, \forall f.$$

- Exact penalization (finite penalty term upgrade): We say that the GNEP satisfies the EMFCQ at a point \bar{x} if for every player $f = 1, \ldots, F$, there exists d_f such that

$$\nabla_{x_f} g_i(\bar{x}_f, \bar{x}_{-f})^T d_f < 0 \quad \forall i \in l_f^+(\bar{x}),$$

where

$$l_f^+(\bar{x}) := \{ i \in \{1, \ldots, m_f\} \mid g_i(\bar{x}_f, \bar{x}_{-f}) \geq 0 \}$$

is the index set of all active and violated constraints at the point \bar{x}.

EMFCQ holds at every cluster point $\bar{x} \implies$ Exact Penalization.
Outline

1. Motivation and Background
2. A Decentralized Algorithm for Solving Potential GNEPs
3. Numerical Studies
4. Conclusion and Future Work
Interdiction Problems

Interdiction problem – a defender seeks to *destroy, neutralize, or delay* its enemy's potential to launch effective attacks.
Interdiction Problems

Interdiction problem – a defender seeks to *destroy, neutralize, or delay* its enemy's potential to launch effective attacks.
Interdiction Problems

Interdiction problem – a defender seeks to *destroy, neutralize, or delay* its enemy’s potential to launch effective attacks.
Interdiction Problems

Interdiction problem – a defender seeks to *destroy, neutralize, or delay* its enemy's potential to launch effective attacks.
Multiple Interdictors

Interdiction Games

We propose to study a class of decentralized network interdiction games that include multiple agents. In an interdiction problem, a defender seeks to destroy, neutralize, or delay its enemy's potential to launch effective attacks. Interdiction problems have been studied in a variety of military and homeland security contexts, such as coordinating tactical air strikes, combatting drug trafficking, and defending against the smuggling of nuclear material. For example, a supervising body may assign several agents to interdict different adversaries in a common system (such as unmanned aerial vehicles (UAVs) in a geographic network), in a system. However, in reality, planning is often performed from a centralized point of view, while execution is decentralized. There has been little work so far to study and address the loss in efficiency associated with decentralized decision-making in network interdiction situations, which will significantly advance the knowledge of decentralized decision-making in network interdiction.

Proposed research directions

Interdiction games are a class of games in which two or more players compete against each other in a network. Each player in an interdiction game has a set of actions that it can take to interdict the network, and each action has a cost associated with it. The goal of each player is to minimize its own cost while maximizing the cost to its opponent. Interdiction games are typically modeled as a game of imperfect information, where each player has incomplete information about the actions of its opponent. A decentralized algorithm for solving potential Generalized Nash Equilibrium Problems (GNEPs) numerically is proposed in this paper. The motivation and background of the research is presented in the introduction, followed by a motivating example and a discussion on the current state of the art in network interdiction games. The numerical studies section presents the results of applying the proposed algorithm to a variety of benchmark problems, and the conclusion and future work section summarizes the main findings of the research and outlines potential areas for future work.
Multiple Interdictors

Interdiction Games

- Multiple interdictors
Multiple Interdictors

Interdiction Games

- Multiple interdictors
- Each interdictor has its adversary (evader, follower, etc)
Multiple Interdictors

Interdiction Games

- Multiple interdictors
- Each interdictor has its adversary (evader, follower, etc)
- Each interdictor has its own objectives, interdicting costs and budgets
Multiple Interdictors

Interdiction Games

- Multiple interdictors
- Each interdictor has its adversary (evader, follower, etc)
- Each interdictor has its own objectives, interdicting costs and budgets
- The interdictors share a network $G(N, A)$ (transportation network, communication network, supply chain network, etc)
Multiple Interdictors

Interdiction Games

- Multiple interdictors
- Each interdictor has its adversary (evader, follower, etc)
- Each interdictor has its own objectives, interdicting costs and budgets
- The interdictors share a network $G(N, A)$ (transportation network, communication network, supply chain network, etc)
Multiple Interdictors

Interdiction Games

- Multiple interdictors
- Each interdictor has its adversary (evader, follower, etc)
- Each interdictor has its own objectives, interdicting costs and budgets
- The interdictors share a network $G(N, A)$ (transportation network, communication network, supply chain network, etc)

A Motivating Example

![Network Diagram]

Suppose there are two agents, each tasked with pro-

The proposed research, built upon the intersection of game theory, optimization, and computer science,

There has been little work so far to study and address the loss in efficiency associated with decentralized

Interdiction problems have traditionally been looked at from a centralized decision-maker's point of view:

In a system. However, in reality, planning is often performed from a centralized point of view, while execution

Overall, this research will significantly advance the knowledge of decentralized decision-making in network interdiction situations,

For example, a supervising body may assign several agents to interdict

loss. To fill this knowledge gap, we propose to establish theoretical foundations and computational frameworks

missions in network-centric warfare environments have become increasingly common and important, we

Interdiction problems have been studied in a variety of military and homeland security

In an interdiction problem, a defender seeks to destroy, neutralize, or delay its enemy's potential to launch

Interdiction Games

$
\begin{align*}
\text{Agent 1} \quad &\text{would increase the length of arc } (s_1, a) \text{ by 1 and Agent 2 would increase the length of arc } (s_2, a) \text{ by 1 unit,} \\
\text{Suppose the agents cannot} \quad &\text{coordinate with each other and must act independently (i.e., in a decentralized manner). In this case, Agent 1} \\
\text{incur the same interdiction costs, and both have an interdiction budget of} \quad &\text{1.1} \\
\text{Overall, this research will significantly advance the knowledge of decentralized decision-making in network interdiction situations,} \\
\text{and improve the Air Force's capability to rapidly and accurately make decisions and swiftly respond to} \\
\text{fast-changing environments faced by decentralized agents. It will also directly contribute to several priority} \\
\text{areas of the Air Force's Science and Technology Program, as listed in} \\
\text{Proposed research directions} \\
\text{and each agent is responsible for computing and implementing its own interdiction strategy. Without any} \\
\text{communication or coordination between the agents, one might expect that the cost or effectiveness of the} \\
\text{in a system. However, in reality, planning is often performed from a centralized point of view, while execution} \\
\text{loss. To fill this knowledge gap, we propose to establish theoretical foundations and computational frameworks} \\
\text{Interdiction problems have been studied in a variety of military and homeland security} \\
\text{Interdiction problems have traditionally been looked at from a centralized decision-maker's point of view:} \\
\text{Interdicting parts of the system in order to achieve different, and potentially conflicting objectives. The} \\
\text{interacting on a commonly shared network, each with different adversaries. Each agent is interested in} \\
\text{decentralized interdiction strategy is far from optimal.} \\
\text{1.1} \\
\text{Multiple Interdictors} \\
\text{Multiple interdictors} \\
\text{Each interdictor has its adversary (evader, follower, etc)} \\
\text{Each interdictor has its own objectives, interdicting costs and budgets} \\
\text{The interdictors share a network } G(N, A) \text{ (transportation network, communication network, supply chain network, etc)} \\
\end{align*}
$

A Motivating Example

Suppose there are two agents, each tasked with pro-

The proposed research, built upon the intersection of game theory, optimization, and computer science,

There has been little work so far to study and address the loss in efficiency associated with decentralized

Interdiction problems have traditionally been looked at from a centralized decision-maker's point of view:

In a system. However, in reality, planning is often performed from a centralized point of view, while execution

Overall, this research will significantly advance the knowledge of decentralized decision-making in network interdiction situations,

For example, a supervising body may assign several agents to interdict

loss. To fill this knowledge gap, we propose to establish theoretical foundations and computational frameworks

missions in network-centric warfare environments have become increasingly common and important, we

Interdiction problems have been studied in a variety of military and homeland security

In an interdiction problem, a defender seeks to destroy, neutralize, or delay its enemy's potential to launch

Interdiction Games

$
\begin{align*}
\text{Agent 1} \quad &\text{would increase the length of arc } (s_1, a) \text{ by 1 and Agent 2 would increase the length of arc } (s_2, a) \text{ by 1 unit,} \\
\text{Suppose the agents cannot} \quad &\text{coordinate with each other and must act independently (i.e., in a decentralized manner). In this case, Agent 1} \\
\text{incur the same interdiction costs, and both have an interdiction budget of} \quad &\text{1.1} \\
\text{Overall, this research will significantly advance the knowledge of decentralized decision-making in network interdiction situations,} \\
\text{and improve the Air Force's capability to rapidly and accurately make decisions and swiftly respond to} \\
\text{fast-changing environments faced by decentralized agents. It will also directly contribute to several priority} \\
\text{areas of the Air Force's Science and Technology Program, as listed in} \\
\text{Proposed research directions} \\
\text{and each agent is responsible for computing and implementing its own interdiction strategy. Without any} \\
\text{communication or coordination between the agents, one might expect that the cost or effectiveness of the} \\
\text{in a system. However, in reality, planning is often performed from a centralized point of view, while execution} \\
\text{loss. To fill this knowledge gap, we propose to establish theoretical foundations and computational frameworks} \\
\text{Interdiction problems have been studied in a variety of military and homeland security} \\
\text{Interdiction problems have traditionally been looked at from a centralized decision-maker's point of view:} \\
\text{Interdicting parts of the system in order to achieve different, and potentially conflicting objectives. The} \\
\text{interacting on a commonly shared network, each with different adversaries. Each agent is interested in} \\
\text{decentralized interdiction strategy is far from optimal.} \\
\text{1.1} \\
\text{Multiple Interdictors} \\
\text{Multiple interdictors} \\
\text{Each interdictor has its adversary (evader, follower, etc)} \\
\text{Each interdictor has its own objectives, interdicting costs and budgets} \\
\text{The interdictors share a network } G(N, A) \text{ (transportation network, communication network, supply chain network, etc)} \\
\end{align*}
$
Shortest Path Interdiction Games

Bilevel game

Let \(d(a(x_1, \ldots, x_n)) \) denote the arc length after upper level interdiction. For each \(i = 1, \ldots, n \):

\[
\max_{x_i} f_i(x_i, x_i - x) \quad \text{s.t.} \quad \sum_{a \in A} c_i(a(x_i, x_i - x)) \leq B_i x_i \quad x_i \in X_i.
\]

where

\[
f_i(x_1, \ldots, x_n) = \begin{cases} \min \sum_{a \in p^*} d_a(x_1, \ldots, x_n) & \text{if } p^* \text{ is a } s_i-t_i \text{-path in aftermath network of } (x) \end{cases}
\]
Shortest Path Interdiction Games

Bilevel game

- **Upper level**: interdictor maximizing path length via x

Where $f_i(x_1,\ldots,x_n) = \begin{cases} \min \sum_{a \in p^*} d_a(x_1,\ldots,x_n) \\ s.t. p^* \text{ is a } s_i-t_i \text{ path in aftermath network of } (x) \end{cases}$
Shortest Path Interdiction Games

Bilevel game

- Upper level: interdictor maximizing path length via x
- Lower level: adversary finding the shortest path
Shortest Path Interdiction Games

Bilevel game

- Upper level: interdictor maximizing path length via x
- Lower level: adversary finding the shortest path
- Let $d_a(x^1, \ldots, x^n)$ denote the arc length after upper level interdiction
Shortest Path Interdiction Games

Bilevel game

- Upper level: interdictor maximizing path length via x
- Lower level: adversary finding the shortest path
- Let $d_a(x^1, \ldots, x^n)$ denote the arc length after upper level interdiction
Shortest Path Interdiction Games

Bilevel game

- Upper level: interdictor maximizing path length via x
- Lower level: adversary finding the shortest path
- Let $d_a(x^1, \ldots, x^n)$ denote the arc length after upper level interdiction

For each $i = 1, \ldots, n$:

$$\max_{x^i} f_i(x^i, x^{-i})$$

s.t. $\sum_{a \in A} c_a^i(x^i, x^{-i}) \leq B_i$

$x^i \in X^i$.

where

$$f_i(x^1, \ldots, x^n) = \begin{cases} \min_{a \in p^*} \sum_{a \in p^*} d_a(x^1, \ldots, x^n) \\ \text{s.t. } p^* \text{ is a } s_i-t_i \text{ path in aftermath network of } (x). \end{cases}$$
Shortest Path Interdiction Games – Reformulation

Using the dual of the lower-level shortest path problem, the bilevel program → one-level problem for each $i = 1, \ldots, n$.

\[
\begin{align*}
\text{max} \quad & y^i_t - y^i_s \\
\text{s.t.} \quad & y^i_v - y^i_u \leq d_{uv}(x^i, x^{-i}) \quad \text{for all } (u, v) \in A, \\
& \sum_{a \in A} c^i_a(x^i, x^{-i}) \leq B^i \\
& x^i \in X^i, \quad y^i_v \geq 0 \quad \text{for all } v \in V.
\end{align*}
\]
Shortest Path Interdiction Games – Reformulation

Using the dual of the lower-level shortest path problem, the bilevel program \(\rightarrow \) one-level problem for each \(i = 1, \ldots, n \).

\[
\begin{align*}
\max_{x^i, y^i} & \quad y^i_{t_i} - y^i_{s_i} \\
\text{s.t} & \quad y^i_v - y^i_u \leq d_{uv}(x^i, x^{-i}) \quad \text{for all } (u, v) \in A, \\
& \quad \sum_{a \in A} c^i_a(x^i, x^{-i}) \leq B_i \\
& \quad x^i \in X^i, \quad y^i_v \geq 0 \quad \text{for all } v \in V.
\end{align*}
\] (SPI)

- \(X^i = \mathbb{R}^A_{\geq 0}, \ i = 1, \ldots n, \) and \(d_a(x^i, x^{-i}) = d_a^0 + \sum_{i=1}^{n} x^i_a. \)
Shortest Path Interdiction Games — Reformulation

Using the dual of the lower-level shortest path problem, the bilevel program \(\rightarrow \) one-level problem for each \(i = 1, \ldots, n \).

\[
\begin{align*}
\max_{x^i, y^i} \quad & y^i_{t_i} - y^i_{s_i} \\
\text{s.t.} \quad & y^i_v - y^i_u \leq d_{uv}(x^i, x^{-i}) \quad \text{for all } (u, v) \in A, \\
& \sum_{a \in A} c^i_a(x^i, x^{-i}) \leq B_i \\
& x^i \in X^i, \quad y^i_v \geq 0 \quad \text{for all } v \in V.
\end{align*}
\]

- \(X^i = \mathbb{R}^A_{\geq 0}, \ i = 1, \ldots, n \), and \(d_a(x^i, x^{-i}) = d_a^o + \sum_{i=1}^n x^i_a \).
- \(X^i = \{0, 1\}^A, \ i = 1, \ldots, n \), and \(d_a(x^i, \ldots, x^{-i}) = d_a^o + e_a \max_{i \in N} x^i_a \).
An Example

\[s_1 = \cdots = s_n = r_0 \]

![Figure 1: Network for example. Arc labels represent unit interdiction costs.](image)

- Figure 1: Network for example. Arc labels represent unit interdiction costs.
Another Example – Water Resource Management

\[
\text{maximize} \quad \theta_f(q_f, q_{-f}) = P(Q)q_f - c_f(q_f)
\]

subject to \[\sum_{h \in F} q_h \leq Q^{max} \].
Outline

1. Motivation and Background
2. A Decentralized Algorithm for Solving Potential GNEPs
3. Numerical Studies
4. Conclusion and Future Work
Conclusions

- Presented a decentralized algorithm to solve a class of (strong) potential GNEPs without shared constraints.
Conclusions

- Presented a decentralized algorithm to solve a class of (strong) potential GNEPs without shared constraints.

- Could use decentralized algorithms to provide empirical or experimental justification for GNEP solutions.
Conclusions

- Presented a decentralized algorithm to solve a class of (strong) potential GNEPs without shared constraints.

- Could use decentralized algorithms to provide empirical or experimental justification for GNEP solutions.

- The non-shared constraints cause theoretical difficulties for decentralized algorithms.
Future Work

- Other ways to deal with the non-shared constraints (e.g., Nash bargaining)
Future Work

- Other ways to deal with the non-shared constraints (e.g. Nash bargaining)
- Behavior interpretation – Does best-response make sense? (Incentive compatibility)
Future Work

- Other ways to deal with the non-shared constraints (e.g. Nash bargaining)
- Behavior interpretation – Does best-response make sense? (Incentive compatibility)
- Convergence speed (polynomial or exponential w.r.t. the number of players?)
Future Work

- Other ways to deal with the non-shared constraints (e.g. Nash bargaining)
- Behavior interpretation – Does best-response make sense? (Incentive compatibility)
- Convergence speed (polynomial or exponential w.r.t. the number of players?)
- Nonconvex GNEPs, EPECs
Future Work

- Other ways to deal with the non-shared constraints (e.g. Nash bargaining)
- Behavior interpretation – Does best-response make sense? (Incentive compatibility)
- Convergence speed (polynomial or exponential w.r.t. the number of players?)
- Nonconvex GNEPs, EPECs
- Bounded rationality
Future Work

- Other ways to deal with the non-shared constraints (e.g. Nash bargaining)
- Behavior interpretation – Does best-response make sense? (Incentive compatibility)
- Convergence speed (polynomial or exponential w.r.t. the number of players?)
- Nonconvex GNEPs, EPECs
- Bounded rationality
 - Better response vs. best response
Future Work

- Other ways to deal with the non-shared constraints (e.g. Nash bargaining)
- Behavior interpretation – Does best-response make sense? (Incentive compatibility)
- Convergence speed (polynomial or exponential w.r.t. the number of players?)
- Nonconvex GNEPs, EPECs
- Bounded rationality
 - Better response vs. best response
 - Incomplete information (e.g., uncertainty)
Future Work

- Other ways to deal with the non-shared constraints (e.g. Nash bargaining)
- Behavior interpretation – Does best-response make sense? (Incentive compatibility)
- Convergence speed (polynomial or exponential w.r.t. the number of players?)
- Nonconvex GNEPs, EPECs
- Bounded rationality
 - Better response vs. best response
 - Incomplete information (e.g., uncertainty)
 - Imperfect information (history of games unknown)
Future Work

- Other ways to deal with the non-shared constraints (e.g. Nash bargaining)
- Behavior interpretation – Does best-response make sense? (Incentive compatibility)
- Convergence speed (polynomial or exponential w.r.t. the number of players?)
- Nonconvex GNEPs, EPECs
- Bounded rationality
 - Better response vs. best response
 - Incomplete information (e.g., uncertainty)
 - Imperfect information (history of games unknown)
- Large-population potential games
Future Work

- Other ways to deal with the non-shared constraints (e.g., Nash bargaining)
- Behavior interpretation – Does best-response make sense? (Incentive compatibility)
- Convergence speed (polynomial or exponential w.r.t. the number of players?)
- Nonconvex GNEPs, EPECs
- Bounded rationality
 - Better response vs. best response
 - Incomplete information (e.g., uncertainty)
 - Imperfect information (history of games unknown)
- Large-population potential games
- Extend the classes of potential GNEPs
Thank you!

Acknowledgements: This research is partially supported by U. S. Air Force Office of Scientific Research grant FA9550-12-1-0275.
References

