Title: Finite element methods for non H1 space very weak solutions. Part I. Multiscale and stabilization for convection-dominated problems

Speaker: Professor Huoyuan Duan (Nankai University, Tianjin, China)

Abstract: In this talk I will report my recent work on multiscale stabilization finite element method for convection-dominated problem. The solution of this type of problem exhibits boundary-and/or interior layer effects in the classical finite element method. In other words, when there are a finite number of subregions in which the H^1 semi-norm of the solution is large but the H^2 semi-norm not, the finite element solution does not well approximate the exact solution in the vicinity of the boundary-and interior layers and even in the entire domain. Here “large” is of course a relative and user-tunable concept, depending on one or more physical parameters, such as the diffusivity, the convection field, the reaction, and even the mesh size. The solution of the convection-dominated problem is indeed in H^2 space, but due to the large H^1 semi-norm, I view it as quasi non H^1 space very weak solution, although the really non H^1 space very weak solution usually lives with infinity H^1 semi-norm. I will report our new multiscale and stabilization finite element method for convection-dominated problems. Numerical tests for a series of benchmark problems yield excellent numerical results and the boundary-and interior layers are clearly visible on uniform meshes with quite coarser mesh sizes. I emphasize that the solution in the benchmark problem is really non H^1 space very weak solution due to discontinuous boundary data, although the theoretical analysis still relies on the assumption that the H^1 and H^2 semi-norms of the solution are not large. The open problem is how to develop a finite element method, together with its mathematical theory, which can be really suitable for not only really non H^1 space very weak solution but also the quasi non H^1 space very weak solution like the solution that belongs H^2 space and even H^2 space but lives with boundary-and interior layers. Recently, I have developed L^2 projected finite element methods for really non H^1 space very weak solution with infinity H^1 semi-norm, with applications to Maxwell’s equations. As Part II of my work, I will report this for Maxwell’s equations in a later date in National University of Singapore.

Acknowledgements: This speaker is partially supported by the National Natural Science Foundation of China under the grants 11071132 and 11171168 and the Research Fund for the Doctoral Program of Higher Education of China under the grant 20100031110002. This speaker would like to thank Professor Roger C. E. Tan, for his support during the speaker’s visiting National University of Singapore. The speaker’s thanks also go to Professor Weizhu Bao and Professor Weiqing Ren for their kind invitation to give this talk at Institute for Mathematical Sciences of National University of Singapore.