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Corollary 2

There is a c.e. real which is not cl-reducible to any wtt-complete
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Open questions

@ Which c.e. Turing degrees contain c.e. reals which are not
cl-reducible to complex c.e. reals?

@ Is there any characterization of the uniformly non-low; c.e.
Turing degrees by cl-reducibility?

@ More properties of the uniformly non-lows c.e. degrees.



Thank you!



