The computable Lipschitz reducibility and the uniformly non-low $_2$ c.e. degrees

Fan Yun

Department of Mathematics Southeast University, Nanjing, China

June 10, 2014

- In randomness and incomputability we have two fundamental measures: the plain complexity C and the prefix-free complexity K.
- Real α is Δ⁰₂ (c.e.) if it is the limit of a computable (increasing) sequence of rational numbers.
- $\alpha \leq_{\mathcal{K}} \beta$ if $K(\alpha \upharpoonright n) \leq K(\beta \upharpoonright n) + O(1)$.
- ullet $lpha \leq_{\mathcal{C}} eta$ if $C(lpha \upharpoonright n) \leq C(eta \upharpoonright n) + O(1)$
- Solovay reducibility, computable Lipschitz reducibility, relative K-reducibility

- In randomness and incomputability we have two fundamental measures: the plain complexity C and the prefix-free complexity K.
- Real α is Δ_2^0 (c.e.) if it is the limit of a computable (increasing) sequence of rational numbers.
- $\alpha \leq_{\mathcal{K}} \beta$ if $K(\alpha \upharpoonright n) \leq K(\beta \upharpoonright n) + O(1)$.
- $\alpha \leq_C \beta$ if $C(\alpha \upharpoonright n) \leq C(\beta \upharpoonright n) + O(1)$
- Solovay reducibility, computable Lipschitz reducibility, relative K-reducibility

- In randomness and incomputability we have two fundamental measures: the plain complexity C and the prefix-free complexity K.
- Real α is Δ_2^0 (c.e.) if it is the limit of a computable (increasing) sequence of rational numbers.
- $\alpha \leq_{\mathsf{K}} \beta$ if $\mathsf{K}(\alpha \upharpoonright \mathsf{n}) \leq \mathsf{K}(\beta \upharpoonright \mathsf{n}) + O(1)$.
- $\alpha \leq_C \beta$ if $C(\alpha \upharpoonright n) \leq C(\beta \upharpoonright n) + O(1)$.
- Solovay reducibility, computable Lipschitz reducibility, relative K-reducibility

- In randomness and incomputability we have two fundamental measures: the plain complexity C and the prefix-free complexity K.
- Real α is Δ_2^0 (c.e.) if it is the limit of a computable (increasing) sequence of rational numbers.
- $\alpha \leq_{\mathsf{K}} \beta$ if $\mathsf{K}(\alpha \upharpoonright \mathsf{n}) \leq \mathsf{K}(\beta \upharpoonright \mathsf{n}) + O(1)$.
- $\alpha \leq_{\mathcal{C}} \beta$ if $\mathcal{C}(\alpha \upharpoonright n) \leq \mathcal{C}(\beta \upharpoonright n) + \mathcal{O}(1)$.
- Solovay reducibility, computable Lipschitz reducibility, relative K-reducibility

- In randomness and incomputability we have two fundamental measures: the plain complexity C and the prefix-free complexity K.
- Real α is Δ_2^0 (c.e.) if it is the limit of a computable (increasing) sequence of rational numbers.
- $\alpha \leq_{\mathsf{K}} \beta$ if $\mathsf{K}(\alpha \upharpoonright \mathsf{n}) \leq \mathsf{K}(\beta \upharpoonright \mathsf{n}) + O(1)$.
- $\alpha \leq_{\mathcal{C}} \beta$ if $\mathcal{C}(\alpha \upharpoonright n) \leq \mathcal{C}(\beta \upharpoonright n) + \mathcal{O}(1)$.
- Solovay reducibility, computable Lipschitz reducibility, relative K-reducibility

- In randomness and incomputability we have two fundamental measures: the plain complexity C and the prefix-free complexity K.
- Real α is Δ_2^0 (c.e.) if it is the limit of a computable (increasing) sequence of rational numbers.
- $\alpha \leq_{\mathsf{K}} \beta$ if $\mathsf{K}(\alpha \upharpoonright \mathsf{n}) \leq \mathsf{K}(\beta \upharpoonright \mathsf{n}) + O(1)$.
- $\alpha \leq_{\mathcal{C}} \beta$ if $\mathcal{C}(\alpha \upharpoonright n) \leq \mathcal{C}(\beta \upharpoonright n) + \mathcal{O}(1)$.
- Solovay reducibility, computable Lipschitz reducibility, relative K-reducibility

Definition (Downey, Hirschfeldt, 2008)

Given two reals α and β , α is computable Lipschitz (\leq_{cl}) to β if there is a Turing functional Γ and a constant c such that $\alpha = \Gamma^{\beta}$ and the use of Γ on any argument n is bounded by n + c.

If $\alpha \leq_{cl} \beta$, then for all n,

$$K(\alpha \upharpoonright n) \leq K(\beta \upharpoonright n) + O(1)$$

Definition (Downey, Hirschfeldt, 2008)

Given two reals α and β , α is computable Lipschitz (\leq_{cl}) to β if there is a Turing functional Γ and a constant c such that $\alpha = \Gamma^{\beta}$ and the use of Γ on any argument n is bounded by n + c.

If $\alpha \leq_{cl} \beta$, then for all n,

$$K(\alpha \upharpoonright n) \leq K(\beta \upharpoonright n) + O(1)$$

Definition (Downey, Hirschfeldt, 2008)

Given two reals α and β , α is computable Lipschitz (\leq_{cl}) to β if there is a Turing functional Γ and a constant c such that $\alpha = \Gamma^{\beta}$ and the use of Γ on any argument n is bounded by n + c.

Proposition (Downey, Hirschfeldt and Lafort, 2008)

If $\alpha \leq_{cl} \beta$, then for all n,

$$K(\alpha \upharpoonright n) \leq K(\beta \upharpoonright n) + O(1)$$

Definition (Downey, Hirschfeldt, 2008)

Given two reals α and β , α is computable Lipschitz (\leq_{cl}) to β if there is a Turing functional Γ and a constant c such that $\alpha = \Gamma^{\beta}$ and the use of Γ on any argument n is bounded by n + c.

Proposition (Downey, Hirschfeldt and Lafort, 2008)

If $\alpha \leq_{cl} \beta$, then for all n,

$$K(\alpha \upharpoonright n) \leq K(\beta \upharpoonright n) + O(1)$$

Definition (Downey, Hirschfeldt, 2008)

Given two reals α and β , α is computable Lipschitz (\leq_{cl}) to β if there is a Turing functional Γ and a constant c such that $\alpha = \Gamma^{\beta}$ and the use of Γ on any argument n is bounded by n + c.

Proposition (Downey, Hirschfeldt and Lafort, 2008)

If $\alpha \leq_{cl} \beta$, then for all n,

$$K(\alpha \upharpoonright n) \leq K(\beta \upharpoonright n) + O(1)$$

Definition (Downey, Hirschfeldt, 2008)

Given two reals α and β , α is computable Lipschitz (\leq_{cl}) to β if there is a Turing functional Γ and a constant c such that $\alpha = \Gamma^{\beta}$ and the use of Γ on any argument n is bounded by n + c.

Proposition (Downey, Hirschfeldt and Lafort, 2008)

If $\alpha \leq_{cl} \beta$, then for all n,

$$K(\alpha \upharpoonright n) \leq K(\beta \upharpoonright n) + O(1)$$

Definition (Downey, Hirschfeldt, 2008)

Given two reals α and β , α is computable Lipschitz (\leq_{cl}) to β if there is a Turing functional Γ and a constant c such that $\alpha = \Gamma^{\beta}$ and the use of Γ on any argument n is bounded by n + c.

Proposition (Downey, Hirschfeldt and Lafort, 2008)

If $\alpha \leq_{cl} \beta$, then for all n,

$$K(\alpha \upharpoonright n) \leq K(\beta \upharpoonright n) + O(1)$$

The cl -degrees of c.e. reals is neither a lower semi-lattice, nor an upper semi-lattice.

Theorem (Yu and Ding, 2004)

There is no cl-complete c.e. real.

There are two c.e.reals lpha and eta which have no common upper bound under cl-reducibility in c.e. reals.

Theorem (Barmpalias and Levis, 2006)

The cl -degrees of c.e. reals is neither a lower semi-lattice, nor an upper semi-lattice.

Theorem (Yu and Ding, 2004)

There is no cl-complete c.e. real.

There are two c.e.reals lpha and eta which have no common upper bound under cl-reducibility in c.e. reals.

Theorem (Barmpalias and Levis, 2006)

The ${
m cl}$ -degrees of c.e. reals is neither a lower semi-lattice, nor an upper semi-lattice.

Theorem (Yu and Ding, 2004)

There is no cl-complete c.e. real.

There are two c.e.reals lpha and eta which have no common upper bound under cl-reducibility in c.e. reals.

Theorem (Barmpalias and Lev

The ${
m cl}$ -degrees of c.e. reals is neither a lower semi-lattice, nor an upper semi-lattice.

Theorem (Yu and Ding, 2004)

There is no cl-complete c.e. real.

There are two c.e.reals lpha and eta which have no common upper bound under cl-reducibility in c.e. reals.

Theorem (Barmpalias and Lev

The cl -degrees of c.e. reals is neither a lower semi-lattice, nor an upper semi-lattice.

Theorem (Yu and Ding,2004)

There is no cl-complete c.e. real.

Corollary (Yu and Ding, 2004)

There are two c.e.reals α and β which have no common upper bound under cl-reducibility in c.e. reals.

Theorem (Barmpalias and Lev

The cl -degrees of c.e. reals is neither a lower semi-lattice, nor an upper semi-lattice.

Theorem (Yu and Ding,2004)

There is no cl-complete c.e. real.

Corollary (Yu and Ding, 2004)

There are two c.e.reals α and β which have no common upper bound under cl-reducibility in c.e. reals.

Theorem (Barmpalias and Lev

The cl -degrees of c.e. reals is neither a lower semi-lattice, nor an upper semi-lattice.

Theorem (Yu and Ding, 2004)

There is no cl-complete c.e. real.

Corollary (Yu and Ding, 2004)

There are two c.e.reals α and β which have no common upper bound under cl-reducibility in c.e. reals.

Theorem (Barmpalias and Levis, 2006)

The interplay between Turing and cl-reducibility expresses that the particular strong reducibility helps understand and characterize the lowness notion.

A Turing degree **d** is array non-computable if for any total function $f \leq_{wtt} \emptyset'$ there is a total function $g \leq_T \mathbf{d}$ which is not dominated by f.

The interplay between Turing and cl-reducibility expresses that the particular strong reducibility helps understand and characterize the lowness notion.

A Turing degree **d** is array non-computable if for any total function $f \leq_{wtt} \emptyset'$ there is a total function $g \leq_T \mathbf{d}$ which is not dominated by f.

The interplay between Turing and cl-reducibility expresses that the particular strong reducibility helps understand and characterize the lowness notion.

A Turing degree **d** is array non-computable if for any total function $f \leq_{wtt} \emptyset'$ there is a total function $g \leq_T \mathbf{d}$ which is not dominated by f.

For a c.e. degree **d**, the following are equivalent:

- (1) **d** is array non-computable.
- (2) There are c.e. reals $\alpha, \beta \in \mathbf{d}$ which have no common upper bound in the cl-degrees of c.e. reals.
- (3) There is a c.e. real $\beta \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.
- (4) There is a set $A \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.

For a c.e. degree **d**, the following are equivalent:

- (1) **d** is array non-computable.
- (2) There are c.e. reals $\alpha, \beta \in \mathbf{d}$ which have no common upper bound in the cl-degrees of c.e. reals.
- (3) There is a c.e. real $\beta \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.
- (4) There is a set $A \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.

For a c.e. degree **d**, the following are equivalent:

- (1) **d** is array non-computable.
- (2) There are c.e. reals $\alpha, \beta \in \mathbf{d}$ which have no common upper bound in the cl-degrees of c.e. reals.
- (3) There is a c.e. real $eta\in \mathbf{d}$ which is not cl -reducible to any random c.e. real.
- (4) There is a set $A \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.

For a c.e. degree **d**, the following are equivalent:

- (1) **d** is array non-computable.
- (2) There are c.e. reals $\alpha, \beta \in \mathbf{d}$ which have no common upper bound in the cl-degrees of c.e. reals.
- (3) There is a c.e. real $\beta \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.
- (4) There is a set $A \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.

For a c.e. degree **d**, the following are equivalent:

- (1) **d** is array non-computable.
- (2) There are c.e. reals $\alpha, \beta \in \mathbf{d}$ which have no common upper bound in the cl-degrees of c.e. reals.
- (3) There is a c.e. real $\beta \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.
- (4) There is a set $A \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.

For a c.e. degree **d**, the following are equivalent:

- (1) **d** is array non-computable.
- (2) There are c.e. reals $\alpha, \beta \in \mathbf{d}$ which have no common upper bound in the cl-degrees of c.e. reals.
- (3) There is a c.e. real $\beta \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.
- (4) There is a set $A \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.

For a c.e. degree **d**, the following are equivalent:

- (1) **d** is array non-computable.
- (2) There are c.e. reals $\alpha, \beta \in \mathbf{d}$ which have no common upper bound in the cl-degrees of c.e. reals.
- (3) There is a c.e. real $\beta \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.
- (4) There is a set $A \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.

For a c.e. degree **d**, the following are equivalent:

- (1) **d** is array non-computable.
- (2) There are c.e. reals $\alpha, \beta \in \mathbf{d}$ which have no common upper bound in the cl-degrees of c.e. reals.
- (3) There is a c.e. real $\beta \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.
- (4) There is a set $A \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.

For a c.e. degree **d**, the following are equivalent:

- (1) **d** is array non-computable.
- (2) There are c.e. reals $\alpha, \beta \in \mathbf{d}$ which have no common upper bound in the cl-degrees of c.e. reals.
- (3) There is a c.e. real $\beta \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.
- (4) There is a set $A \in \mathbf{d}$ which is not cl-reducible to any random c.e. real.

(A, B) is a cl-maximal pair of c.e. sets if no c.e. set can cl-compute both of them.

Proposition (Barmpalias, 2005; Fan and Lu, 2005

There exists a cl-maximal pair of c.e. sets.

Theorem (Ambos-spies, Ding, Fan and Wolfgang, 2013)

For any c.e. set D the following are equivalent:

- (1) $Deg_T(D)$ is array non-computable.
- (2) There is a cl-maximal pair (A, B) such that $A \equiv_{\mathcal{T}} B \equiv_{\mathcal{T}} D$.
- (3) There is a cl-maximal pair (A, B) such that $A \equiv_T D$.

(A, B) is a cl-maximal pair of c.e. sets if no c.e. set can cl-compute both of them.

Proposition (Barmpalias, 2005; Fan and Lu, 2005)

There exists a cl-maximal pair of c.e. sets

Theorem (Ambos-spies, Ding, Fan and Wolfgang, 2013)

For any c.e. set D the following are equivalent:

- (1) $Deg_{\mathcal{T}}(D)$ is array non-computable.
- (2) There is a cl-maximal pair (A, B) such that $A \equiv_{\mathcal{T}} B \equiv_{\mathcal{T}} D$.
- (3) There is a cl-maximal pair (A, B) such that $A \equiv_T D$.

(A, B) is a cl-maximal pair of c.e. sets if no c.e. set can cl-compute both of them.

Proposition (Barmpalias, 2005; Fan and Lu, 2005)

There exists a cl-maximal pair of c.e. sets.

For any c.e. $\operatorname{\mathsf{set}} D$ the following are equivalent:

- (1) $Deg_{\mathcal{T}}(D)$ is array non-computable.
- (2) There is a cl-maximal pair (A,B) such that $A\equiv_{\mathcal{T}} B\equiv_{\mathcal{T}} D$.
- (3) There is a cl-maximal pair (A, B) such that $A \equiv_T D$.

Proposition (Barmpalias, 2005; Fan and Lu, 2005)

There exists a cl-maximal pair of c.e. sets.

- (1) $Deg_{\mathcal{T}}(D)$ is array non-computable.
- (2) There is a cl-maximal pair (A, B) such that $A \equiv_T B \equiv_T D$.
- (3) There is a cl-maximal pair (A, B) such that $A \equiv_T D$.

Proposition (Barmpalias, 2005; Fan and Lu, 2005)

There exists a cl-maximal pair of c.e. sets.

Theorem (Ambos-spies, Ding, Fan and Wolfgang, 2013)

- (1) $Deg_T(D)$ is array non-computable.
- (2) There is a cl-maximal pair (A, B) such that $A \equiv_T B \equiv_T D$.
- (3) There is a cl-maximal pair (A, B) such that $A \equiv_T D$.

Proposition (Barmpalias, 2005; Fan and Lu, 2005)

There exists a cl-maximal pair of c.e. sets.

Theorem (Ambos-spies, Ding, Fan and Wolfgang, 2013)

- (1) $Deg_T(D)$ is array non-computable.
- (2) There is a cl-maximal pair (A, B) such that $A \equiv_T B \equiv_T D$.
- (3) There is a cl-maximal pair (A, B) such that $A \equiv_T D$.

Proposition (Barmpalias, 2005; Fan and Lu, 2005)

There exists a cl-maximal pair of c.e. sets.

Theorem (Ambos-spies, Ding, Fan and Wolfgang, 2013)

- (1) $Deg_T(D)$ is array non-computable.
- (2) There is a cl-maximal pair (A, B) such that $A \equiv_T B \equiv_T D$.
- (3) There is a cl-maximal pair (A, B) such that $A \equiv_T D$.

Proposition (Barmpalias, 2005; Fan and Lu, 2005)

There exists a cl-maximal pair of c.e. sets.

Theorem (Ambos-spies, Ding, Fan and Wolfgang, 2013)

- (1) $Deg_T(D)$ is array non-computable.
- (2) There is a cl-maximal pair (A, B) such that $A \equiv_T B \equiv_T D$.
- (3) There is a cl-maximal pair (A, B) such that $A \equiv_T D$.

Proposition (Barmpalias, 2005; Fan and Lu, 2005)

There exists a cl-maximal pair of c.e. sets.

Theorem (Ambos-spies, Ding, Fan and Wolfgang, 2013)

- (1) $Deg_T(D)$ is array non-computable.
- (2) There is a cl-maximal pair (A, B) such that $A \equiv_T B \equiv_T D$.
- (3) There is a cl-maximal pair (A, B) such that $A \equiv_T D$.

Proposition (Barmpalias, 2005; Fan and Lu, 2005)

There exists a cl-maximal pair of c.e. sets.

Theorem (Ambos-spies, Ding, Fan and Wolfgang, 2013)

- (1) $Deg_T(D)$ is array non-computable.
- (2) There is a cl-maximal pair (A, B) such that $A \equiv_T B \equiv_T D$.
- (3) There is a cl-maximal pair (A, B) such that $A \equiv_T D$.

We focus on the c.e. Turing degrees and continue this line of investigation.

A Turing degree **d** is array non-computable if for any total function $f \leq_{wtt} \emptyset'$ there is a total function $g \leq_T \mathbf{d}$ which is not dominated by f.

A Turing degree **d** is non-low₂ if for any total function $f \leq_T \emptyset'$ there is a total function $g \leq_T \mathbf{d}$ which is not dominated by f.

We focus on the c.e. Turing degrees and continue this line of investigation.

A Turing degree **d** is array non-computable if for any total function $f \leq_{wtt} \emptyset'$ there is a total function $g \leq_{\mathcal{T}} \mathbf{d}$ which is not dominated by f.

A Turing degree **d** is non-low₂ if for any total function $f \leq_T \emptyset'$ there is a total function $g \leq_T \mathbf{d}$ which is not dominated by f.

We focus on the c.e. Turing degrees and continue this line of investigation.

A Turing degree **d** is array non-computable if for any total function $f \leq_{wtt} \emptyset'$ there is a total function $g \leq_T \mathbf{d}$ which is not dominated by f.

A Turing degree **d** is non-low₂ if for any total function $f \leq_T \emptyset'$ there is a total function $g \leq_T \mathbf{d}$ which is not dominated by f.

Theorem (Fan and Yu,2012)

For any non-computable Δ_2^0 real α , there is a c.e. real β so that no c.e. real can cl-computable both of them.

Corollary (Fan and Yu,2012)

Each non-computable c.e. real is the half of a cl-maximal pair of c.e. reals.

Theorem (Fan and Yu,2012)

For any non-computable Δ_2^0 real α , there is a c.e. real β so that no c.e. real can cl-computable both of them.

Corollary (Fan and Yu,2012)

Each non-computable c.e. real is the half of a cl-maximal pair of c.e. reals.

Theorem (Fan and Yu,2012)

For any non-computable Δ_2^0 real α , there is a c.e. real β so that no c.e. real can cl-computable both of them.

Corollary (Fan and Yu,2012)

Each non-computable c.e. real is the half of a cl-maximal pair of c.e. reals.

A c.e. Turing degree **d** is uniformly non-low₂ if there is a computable function h so that if the function $\Phi_e^{\emptyset'}$ is total then $\Phi_{h(e)}^{\mathbf{d}}$ is total and not dominated by $\Phi_e^{\emptyset'}$. We say h is the uniform function for **d**.

Proposition

There is an incomplete uniformly non-low $_2$ c.e. degree ${\bf d}$

Proposition

There is a non-low₂ c.e. degree d which is not uniformly non-low₂.

A c.e. Turing degree \mathbf{d} is uniformly non-low₂ if there is a computable function h so that if the function $\Phi_e^{\emptyset'}$ is total then $\Phi_{h(e)}^{\mathbf{d}}$ is total and not dominated by $\Phi_e^{\emptyset'}$. We say h is the uniform function for \mathbf{d} .

There is an incomplete uniformly non-low $_2$ c.e. degree ${f d}$.

There is a new law or a downer of which is not write.

There is a non-low $_2$ c.e. degree **d** which is not uniformly non-low $_2$.

A c.e. Turing degree \mathbf{d} is uniformly non-low₂ if there is a computable function h so that if the function $\Phi_e^{\emptyset'}$ is total then $\Phi_{h(e)}^{\mathbf{d}}$ is total and not dominated by $\Phi_e^{\emptyset'}$. We say h is the uniform function for \mathbf{d} .

Proposition

There is an incomplete uniformly non-low₂ c.e. degree \mathbf{d} .

There is a non-low₂ c.e. degree **d** which is not uniformly non-low₂.

A c.e. Turing degree \mathbf{d} is uniformly non-low₂ if there is a computable function h so that if the function $\Phi_e^{\emptyset'}$ is total then $\Phi_{h(e)}^{\mathbf{d}}$ is total and not dominated by $\Phi_e^{\emptyset'}$. We say h is the uniform function for \mathbf{d} .

Proposition

There is an incomplete uniformly non-low₂ c.e. degree \mathbf{d} .

There is a non-low₂ c.e. degree **d** which is not uniformly non-low₂.

A c.e. Turing degree \mathbf{d} is uniformly non-low₂ if there is a computable function h so that if the function $\Phi_e^{\emptyset'}$ is total then $\Phi_{h(e)}^{\mathbf{d}}$ is total and not dominated by $\Phi_e^{\emptyset'}$. We say h is the uniform function for \mathbf{d} .

Proposition

There is an incomplete uniformly non-low₂ c.e. degree \mathbf{d} .

Proposition

There is a non-low₂ c.e. degree \mathbf{d} which is not uniformly non-low₂.

A c.e. Turing degree \mathbf{d} is uniformly non-low₂ if there is a computable function h so that if the function $\Phi_e^{\emptyset'}$ is total then $\Phi_{h(e)}^{\mathbf{d}}$ is total and not dominated by $\Phi_e^{\emptyset'}$. We say h is the uniform function for \mathbf{d} .

Proposition

There is an incomplete uniformly non-low₂ c.e. degree \mathbf{d} .

Proposition

There is a non-low₂ c.e. degree \mathbf{d} which is not uniformly non-low₂.

A c.e. Turing degree \mathbf{d} is uniformly non-low₂ if there is a computable function h so that if the function $\Phi_e^{\emptyset'}$ is total then $\Phi_{h(e)}^{\mathbf{d}}$ is total and not dominated by $\Phi_e^{\emptyset'}$. We say h is the uniform function for \mathbf{d} .

Proposition

There is an incomplete uniformly non-low₂ c.e. degree \mathbf{d} .

Proposition

There is a non-low₂ c.e. degree \mathbf{d} which is not uniformly non-low₂.

 $\{ uniformly \ non-low_2 \} \subsetneq \{ non-low_2 \} \subsetneq \{ array \ non-computable \}.$

Theorem 1

If a c.e. Turing degree ${\bf d}$ is uniformly non-low₂, for any non-computable Δ_2^0 real α there is a c.e. real $\beta\in {\bf d}$ so that no c.e. real can cl-compute both of them.

 $\{uniformly\ non-low_2\} \subsetneq \{non-low_2\} \subsetneq \{array\ non-computable\}.$

Theorem 1

If a c.e. Turing degree ${\bf d}$ is uniformly non-low₂, for any non-computable Δ_2^0 real α there is a c.e. real $\beta\in{\bf d}$ so that no c.e. real can ${\bf c}$ l-compute both of them.

 $\{uniformly\ non-low_2\} \subsetneq \{non-low_2\} \subsetneq \{array\ non-computable\}.$

Theorem 1

If a c.e. Turing degree ${\bf d}$ is uniformly non-low₂, for any non-computable Δ_2^0 real α there is a c.e. real $\beta\in{\bf d}$ so that no c.e. real can ${\bf c}$ l-compute both of them.

 $\{uniformly\ non-low_2\} \subsetneq \{non-low_2\} \subsetneq \{array\ non-computable\}.$

Theorem 1

If a c.e. Turing degree ${\bf d}$ is uniformly non-low₂, for any non-computable Δ_2^0 real α there is a c.e. real $\beta\in{\bf d}$ so that no c.e. real can ${\bf c}$ l-compute both of them.

- $R_e: \alpha \neq \Gamma_{e_1}^{\gamma_{e_0}}$ or $\beta \neq \Gamma_{e_2}^{\gamma_{e_0}}$ for $e = \langle e_0, e_1, e_2 \rangle$.
- $B \in \mathbf{d}$
- ① Let $Q_e = R_1 \wedge R_2 \wedge \cdots R_e$.
- ② We can effectively define a sequences of intervals $\{I_e\}_{e\in\omega}$ so that in I_e each R_i for $1\leq i\leq e$ in Q_e can be met by the specific modules.
- ⑤ For $\alpha \leq_T 0'$, so does I_e .
- **⑤** If **d** is uniformly non-low₂, for the uniform function h $h(f) ≤_T \mathbf{d}$ so that h(f) is not dominated by f.
- **1** Let h(f) control the specific modules to define β .
- Use Recursion Theorem
- **3** Code some c.e. set D into β .

- $R_e: \alpha \neq \Gamma_{e_1}^{\gamma_{e_0}}$ or $\beta \neq \Gamma_{e_2}^{\gamma_{e_0}}$ for $e = \langle e_0, e_1, e_2 \rangle$.
- $\beta \in \mathbf{d}$
- Let $Q_e = R_1 \wedge R_2 \wedge \cdots R_e$.
- ② We can effectively define a sequences of intervals $\{I_e\}_{e\in\omega}$ so that in I_e each R_i for $1\leq i\leq e$ in Q_e can be met by the specific modules.
- ⑤ For $\alpha \leq_T 0'$, so does I_e .
- ③ If **d** is uniformly non-low₂, for the uniform function h $h(f) ≤_T \mathbf{d}$ so that h(f) is not dominated by f.
- **1** Let h(f) control the specific modules to define β .
- Use Recursion Theorem.
- \odot Code some c.e. set D into β

- $R_e: \alpha \neq \Gamma_{e_1}^{\gamma_{e_0}}$ or $\beta \neq \Gamma_{e_2}^{\gamma_{e_0}}$ for $e = \langle e_0, e_1, e_2 \rangle$.
- $\beta \in \mathbf{d}$
- ② We can effectively define a sequences of intervals $\{I_e\}_{e\in\omega}$ so that in I_e each R_i for $1\leq i\leq e$ in Q_e can be met by the specific modules.
- ⑤ For $\alpha \leq_T 0'$, so does I_e .
- **3** If **d** is uniformly non-low₂, for the uniform function h $h(f) \leq_T \mathbf{d}$ so that h(f) is not dominated by f.
- **1** Let h(f) control the specific modules to define β .
- Use Recursion Theorem.
- **8** Code some c.e. set D into β .

- $R_e: \alpha \neq \Gamma_{e_1}^{\gamma_{e_0}}$ or $\beta \neq \Gamma_{e_2}^{\gamma_{e_0}}$ for $e = \langle e_0, e_1, e_2 \rangle$.
- $\beta \in \mathbf{d}$
- ② We can effectively define a sequences of intervals $\{I_e\}_{e\in\omega}$ so that in I_e each R_i for $1\leq i\leq e$ in Q_e can be met by the specific modules.
- 3 For $\alpha \leq_T 0'$, so does l_e .
- ⑤ If **d** is uniformly non-low₂, for the uniform function h $h(f) ≤_T \mathbf{d}$ so that h(f) is not dominated by f.
- **1** Let h(f) control the specific modules to define β .
- Use Recursion Theorem.
- **3** Code some c.e. set D into β .

- $R_e: \alpha \neq \Gamma_{e_1}^{\gamma_{e_0}}$ or $\beta \neq \Gamma_{e_2}^{\gamma_{e_0}}$ for $e = \langle e_0, e_1, e_2 \rangle$.
- $\beta \in \mathbf{d}$
- ② We can effectively define a sequences of intervals $\{I_e\}_{e\in\omega}$ so that in I_e each R_i for $1\leq i\leq e$ in Q_e can be met by the specific modules.
- **3** For $\alpha \leq_T 0'$, so does I_e .
- ③ If **d** is uniformly non-low₂, for the uniform function h $h(f) ≤_T \mathbf{d}$ so that h(f) is not dominated by f.
- **1** Let h(f) control the specific modules to define β .
- Use Recursion Theorem.
- **3** Code some c.e. set D into β .

- $R_e: \alpha \neq \Gamma_{e_1}^{\gamma_{e_0}}$ or $\beta \neq \Gamma_{e_2}^{\gamma_{e_0}}$ for $e = \langle e_0, e_1, e_2 \rangle$.
- $\beta \in \mathbf{d}$
- ② We can effectively define a sequences of intervals $\{I_e\}_{e\in\omega}$ so that in I_e each R_i for $1\leq i\leq e$ in Q_e can be met by the specific modules.
- **3** For $\alpha \leq_{\mathcal{T}} 0'$, so does I_e .
- ⑤ If **d** is uniformly non-low₂, for the uniform function h $h(f) ≤_T \mathbf{d}$ so that h(f) is not dominated by f.
- **1** Let h(f) control the specific modules to define β .
- Use Recursion Theorem.
- **8** Code some c.e. set D into β .

- $R_e: \alpha \neq \Gamma_{e_1}^{\gamma_{e_0}}$ or $\beta \neq \Gamma_{e_2}^{\gamma_{e_0}}$ for $e = \langle e_0, e_1, e_2 \rangle$.
- $\beta \in \mathbf{d}$
- ② We can effectively define a sequences of intervals $\{I_e\}_{e\in\omega}$ so that in I_e each R_i for $1\leq i\leq e$ in Q_e can be met by the specific modules.
- **3** For $\alpha \leq_T 0'$, so does I_e .
- **3** If **d** is uniformly non-low₂, for the uniform function h $h(f) \leq_T \mathbf{d}$ so that h(f) is not dominated by f.
- **1** Let h(f) control the specific modules to define β .
- Use Recursion Theorem.
- **8** Code some c.e. set D into β .

- $R_e: \alpha \neq \Gamma_{e_1}^{\gamma_{e_0}}$ or $\beta \neq \Gamma_{e_2}^{\gamma_{e_0}}$ for $e = \langle e_0, e_1, e_2 \rangle$.
- $\beta \in \mathbf{d}$
- ② We can effectively define a sequences of intervals $\{I_e\}_{e\in\omega}$ so that in I_e each R_i for $1\leq i\leq e$ in Q_e can be met by the specific modules.
- **3** For $\alpha \leq_T 0'$, so does I_e .
- **1** If **d** is uniformly non-low₂, for the uniform function h $h(f) \leq_T \mathbf{d}$ so that h(f) is not dominated by f.
- **1** Let h(f) control the specific modules to define β .
- Use Recursion Theorem.
- 8 Code some c.e. set D into β .

- $R_e: \alpha \neq \Gamma_{e_1}^{\gamma_{e_0}}$ or $\beta \neq \Gamma_{e_2}^{\gamma_{e_0}}$ for $e = \langle e_0, e_1, e_2 \rangle$.
- $\beta \in \mathbf{d}$
- ② We can effectively define a sequences of intervals $\{I_e\}_{e\in\omega}$ so that in I_e each R_i for $1\leq i\leq e$ in Q_e can be met by the specific modules.
- **3** For $\alpha \leq_T 0'$, so does I_e .
- **3** If **d** is uniformly non-low₂, for the uniform function h $h(f) \leq_T \mathbf{d}$ so that h(f) is not dominated by f.
- **1** Let h(f) control the specific modules to define β .
- Use Recursion Theorem.
- \odot Code some c.e. set D into β .

- $R_e: \alpha \neq \Gamma_{e_1}^{\gamma_{e_0}}$ or $\beta \neq \Gamma_{e_2}^{\gamma_{e_0}}$ for $e = \langle e_0, e_1, e_2 \rangle$.
- $\beta \in \mathbf{d}$
- ② We can effectively define a sequences of intervals $\{I_e\}_{e\in\omega}$ so that in I_e each R_i for $1\leq i\leq e$ in Q_e can be met by the specific modules.
- **3** For $\alpha \leq_T 0'$, so does I_e .
- **⑤** If **d** is uniformly non-low₂, for the uniform function h $h(f) ≤_T \mathbf{d}$ so that h(f) is not dominated by f.
- **1** Let h(f) control the specific modules to define β .
- Use Recursion Theorem.
- **8** Code some c.e. set D into β .

Corollary 1

If a c.e. Turing degree \mathbf{d} is uniformly non-low₂, for each c.e. real $\alpha \in \mathbf{d}$ there is a c.e. real $\beta \in \mathbf{d}$ so that (α, β) is a cl-maximal pair of c.e. reals.

Corollary 1

If a c.e. Turing degree \mathbf{d} is uniformly non-low₂, for each c.e. real $\alpha \in \mathbf{d}$ there is a c.e. real $\beta \in \mathbf{d}$ so that (α, β) is a cl-maximal pair of c.e. reals.

Corollary 1

If a c.e. Turing degree \mathbf{d} is uniformly non-low₂, for each c.e. real $\alpha \in \mathbf{d}$ there is a c.e. real $\beta \in \mathbf{d}$ so that (α, β) is a cl -maximal pair of c.e. reals.

A set A is complex if there is an order (nondecreasing, unbounded, computable) function h such that $K(A \upharpoonright x) > h(x)$ for all x.

Proposition (Downey, Hirschfeldt,2004)

There is a real (not c.e.) which is not cl-reducible to any random real (indeed to any complex real).

There is a c.e. real which is not cl-reducible to any Martin-Löf random c.e. real

A set A is complex if there is an order (nondecreasing, unbounded, computable) function h such that $K(A \upharpoonright x) > h(x)$ for all x.

Proposition (Downey, Hirschfeldt,2004)

There is a real (not c.e.) which is not cl-reducible to any random real (indeed to any complex real).

There is a c.e. real which is not cl-reducible to any Martin-Löf random c.e. real

A set A is complex if there is an order (nondecreasing, unbounded, computable) function h such that $K(A \upharpoonright x) > h(x)$ for all x.

Proposition (Downey, Hirschfeldt, 2004)

There is a real (not c.e.) which is not cl-reducible to any random real (indeed to any complex real).

There is a c.e. real which is not cl-reducible to any Martin-Löf random c.e. real.

A set A is complex if there is an order (nondecreasing, unbounded, computable) function h such that $K(A \upharpoonright x) > h(x)$ for all x.

Proposition (Downey, Hirschfeldt, 2004)

There is a real (not c.e.) which is not cl-reducible to any random real (indeed to any complex real).

There is a c.e. real which is not cl-reducible to any Martin-Löf random c.e. real.

A set A is complex if there is an order (nondecreasing, unbounded, computable) function h such that $K(A \upharpoonright x) > h(x)$ for all x.

Proposition (Downey, Hirschfeldt, 2004)

There is a real (not c.e.) which is not cl-reducible to any random real (indeed to any complex real).

Theorem (Barmpalias and Levis, 2006)

There is a c.e. real which is not cl-reducible to any Martin-Löf random c.e. real.

A set A is complex if there is an order (nondecreasing, unbounded, computable) function h such that $K(A \upharpoonright x) > h(x)$ for all x.

Proposition (Downey, Hirschfeldt, 2004)

There is a real (not c.e.) which is not cl-reducible to any random real (indeed to any complex real).

Theorem (Barmpalias and Levis, 2006)

There is a c.e. real which is not cl-reducible to any Martin-Löf random c.e. real.

A set A is complex if there is an order (nondecreasing, unbounded, computable) function h such that $K(A \upharpoonright x) > h(x)$ for all x.

Proposition (Downey, Hirschfeldt, 2004)

There is a real (not c.e.) which is not cl-reducible to any random real (indeed to any complex real).

Theorem (Barmpalias and Levis, 2006)

There is a c.e. real which is not cl-reducible to any Martin-Löf random c.e. real.

There is a c.e. real which is not cl-reducible to any complex c.e. real.

Corollary 2

There is a c.e. real which is not cl-reducible to any wtt-complete c.e. real.

There is a c.e. real which is not cl-reducible to any complex c.e. real.

Corollary 2

There is a c.e. real which is not cl-reducible to any wtt-complete c.e. real.

Proposition (Barmpalias, Downey, Greenberg, 2010)

For any non-generalised-low $_2$ degree d, there is some $A \leq_{\mathcal{T}}$ dwhich is not cl-reducible to any complex real.

Proposition (Barmpalias, Downey, Greenberg, 2010)

For any non-generalised-low₂ degree \mathbf{d} , there is some $A \leq_{\mathcal{T}} \mathbf{d}$ which is not cl-reducible to any complex real.

Proposition (Barmpalias, Downey, Greenberg, 2010)

For any non-generalised-low₂ degree **d**, there is some $A \leq_{\mathcal{T}} \mathbf{d}$ which is not cl-reducible to any complex real.

Proposition (Barmpalias, Downey, Greenberg, 2010)

For any non-generalised-low₂ degree **d**, there is some $A \leq_{\mathcal{T}} \mathbf{d}$ which is not cl-reducible to any complex real.

Each uniformly non-low $_2$ c.e. Turing degree contains a c.e. real which is not cl-reducible to any complex c.e. real.

Each uniformly non-low $_2$ c.e. Turing degree contains a c.e. real which is not cl-reducible to any wtt-complete c.e. real.

Each uniformly non- low_2 c.e. Turing degree contains a c.e. real which is not cl-reducible to any wtt-complete c.e. real.

Each uniformly non-low $_2$ c.e. Turing degree contains a c.e. real which is not cl-reducible to any complex c.e. real.

Corollary 3

Open questions

- Which c.e. Turing degrees contain c.e. reals which are not *cl*-reducible to complex c.e. reals?
- Is there any characterization of the uniformly non-low₂ c.e.
 Turing degrees by cl-reducibility?
- More properties of the uniformly non-lowo c.e. degrees

Open questions

- Which c.e. Turing degrees contain c.e. reals which are not *cl*-reducible to complex c.e. reals?
- Is there any characterization of the uniformly non-low₂ c.e.
 Turing degrees by cl-reducibility?
- More properties of the uniformly non-lowo c.e. degrees

Open questions

- Which c.e. Turing degrees contain c.e. reals which are not cl-reducible to complex c.e. reals?
- Is there any characterization of the uniformly non-low₂ c.e.
 Turing degrees by cl-reducibility?
- ullet More properties of the uniformly non-low₂ c.e. degrees.

Thank you!