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Measures of relative randomness

In randomness and incomputability we have two fundamental
measures: the plain complexity C and the prefix-free
complexity K .

Real α is ∆0
2 (c.e.) if it is the limit of a computable

(increasing) sequence of rational numbers.

α ≤K β if K (α � n) ≤ K (β � n) + O(1).

α ≤C β if C (α � n) ≤ C (β � n) + O(1).

Solovay reducibility, computable Lipschitz reducibility,
relative K -reducibility
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computable Lipschitz reducibility

Definition (Downey,Hirschfeldt,2008)

Given two reals α and β, α is computable Lipschitz (≤cl) to β if
there is a Turing functional Γ and a constant c such that α = Γβ

and the use of Γ on any argument n is bounded by n + c .

Proposition (Downey,Hirschfeldt and Lafort,2008)

If α ≤cl β, then for all n,

K (α � n) ≤ K (β � n) + O(1)

.

The cl-degree only contains either only random reals or
non-random reals.
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Property (Downey, Hirschfeldt,Lafort 2001)

The cl-degrees of c.e. reals is neither a lower semi-lattice, nor an
upper semi-lattice.

Theorem (Yu and Ding,2004)

There is no cl-complete c.e. real.

Corollary (Yu and Ding,2004)

There are two c.e.reals α and β which have no common upper
bound under cl-reducibility in c.e. reals.

Theorem (Barmpalias and Levis,2006)

There is a c.e. real which is not cl-reducible to any Martin-Löf
random c.e. real.
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The interplay between Turing and cl-reducibility expresses that the
particular strong reducibility helps understand and characterize the
lowness notion.

A Turing degree d is array non-computable if for any total function
f ≤wtt ∅′ there is a total function g ≤T d which is not dominated
by f .
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Theorem (Barmpalias, Downey and Greenberg,2010)

For a c.e. degree d, the following are equivalent:

(1) d is array non-computable.

(2) There are c.e. reals α, β ∈ d which have no common upper
bound in the cl-degrees of c.e. reals.

(3) There is a c.e. real β ∈ d which is not cl-reducible to any
random c.e. real.

(4) There is a set A ∈ d which is not cl-reducible to any random
c.e. real.

(α, β) is a cl-maximal pair of c.e. reals if no c.e. real can
cl-compute both of them.
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(A,B) is a cl-maximal pair of c.e. sets if no c.e. set can
cl-compute both of them.

Proposition (Barmpalias,2005; Fan and Lu,2005)

There exists a cl-maximal pair of c.e. sets.

Theorem (Ambos-spies, Ding, Fan and Wolfgang, 2013)

For any c.e. set D the following are equivalent:

(1) DegT (D) is array non-computable.

(2) There is a cl-maximal pair (A,B) such that A ≡T B ≡T D.

(3) There is a cl-maximal pair (A,B) such that A ≡T D.

Fan Yun
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We focus on the c.e. Turing degrees and continue this line of
investigation.

A Turing degree d is array non-computable if for any total function
f ≤wtt ∅′ there is a total function g ≤T d which is not dominated
by f .

A Turing degree d is non-low2 if for any total function f ≤T ∅′
there is a total function g ≤T d which is not dominated by f .
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Theorem (Fan and Yu,2012)

For any non-computable ∆0
2 real α, there is a c.e. real β so that

no c.e. real can cl-computable both of them.

Corollary (Fan and Yu,2012)

Each non-computable c.e. real is the half of a cl-maximal pair of
c.e. reals.

Fan Yun
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Uniformly non-low2

A c.e. Turing degree d is uniformly non-low2 if there is a
computable function h so that if the function Φ∅′

e is total then
Φd
h(e) is total and not dominated by Φ∅′

e . We say h is the uniform
function for d.

Proposition

There is an incomplete uniformly non-low2 c.e. degree d.

Proposition

There is a non-low2 c.e. degree d which is not uniformly non-low2.
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In the c.e. Turing degrees,

{uniformly non−low2} ( {non−low2} ( {array non−computable}.

Theorem 1

If a c.e. Turing degree d is uniformly non-low2,
for any non-computable ∆0

2 real α there is a c.e. real β ∈ d so that
no c.e. real can cl-compute both of them.
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Proof Sketch of Theorem 1:

Re : α 6= Γ
γe0
e1 or β 6= Γ

γe0
e2 for e = 〈e0, e1, e2〉.

β ∈ d

1 Let Qe = R1 ∧ R2 ∧ · · ·Re .

2 We can effectively define a sequences of intervals {Ie}e∈ω so
that in Ie each Ri for 1 ≤ i ≤ e in Qe can be met by the
specific modules.

3 For α ≤T 0′, so does Ie .

4 f (e) = µs(∀i ≤ e)[γi � (max Ii + i) = γi ,s � (max Ii + i)] ≤T 0′.

5 If d is uniformly non-low2, for the uniform function h
h(f ) ≤T d so that h(f ) is not dominated by f .

6 Let h(f ) control the specific modules to define β.

7 Use Recursion Theorem.

8 Code some c.e. set D into β.
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Corollary 1

If a c.e. Turing degree d is uniformly non-low2,
for each c.e. real α ∈ d there is a c.e. real β ∈ d so that (α, β) is
a cl-maximal pair of c.e. reals.
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Definition (Kjos-Hanssen, Wolfgang, Stephen, 2006)

A set A is complex if there is an order (nondecreasing, unbounded,
computable) function h such that K (A � x) > h(x) for all x .

Proposition (Downey, Hirschfeldt,2004)

There is a real (not c.e.) which is not cl-reducible to any random
real (indeed to any complex real).

Theorem (Barmpalias and Levis,2006)

There is a c.e. real which is not cl-reducible to any Martin-Löf
random c.e. real.
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Theorem 2

There is a c.e. real which is not cl-reducible to any complex c.e.
real.

Corollary 2

There is a c.e. real which is not cl-reducible to any wtt-complete
c.e. real.
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A degree d is called generalised low2 if d′′ ≤ (d ∨ 0′)′.

Proposition (Barmpalias, Downey, Greenberg, 2010)

For any non-generalised-low2 degree d, there is some A ≤T d
which is not cl-reducible to any complex real.
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Theorem 3

Each uniformly non-low2 c.e. Turing degree contains a c.e. real
which is not cl-reducible to any complex c.e. real.

Corollary 3

Each uniformly non-low2 c.e. Turing degree contains a c.e. real
which is not cl-reducible to any wtt-complete c.e. real.
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Open questions

Which c.e. Turing degrees contain c.e. reals which are not
cl-reducible to complex c.e. reals?

Is there any characterization of the uniformly non-low2 c.e.
Turing degrees by cl-reducibility?

More properties of the uniformly non-low2 c.e. degrees.
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Thank you!

Fan Yun


