ON ROGERS SEMILATTICES OF ANALYTICAL HIERARCHY

MARINA DORZHEVA

We investigate some algebraic properties of Rogers semilattices of analytical hierarchy: existence of minimal elements, ideals without minimal elements. For an at most countable non-empty family S of subjects of the natural series, its numbering $\alpha : \mathbb{N} \rightarrow S$ is said to be Σ_{n+1}^1-computable if the set $\{(x, y) \mid x \in \alpha(y)\} \in \Sigma_{n+1}^1$. The set of all Σ_{n+1}^1-computable numberings of the family S is denoted by $Com_{n+1}^1(S)$. Enumeration $\nu \in Com_{n+1}^1(S)$ is called minimal, if for every $\mu \in Com_{n+1}^1(S)$ such that $\mu \leq \nu$, performed $\nu \equiv \mu$. One of the most important minimal numberings is Friedberg's numbering. Owings showed in [2] that there is no Π_1^1-computable Friedberg enumeration of all Π_1^1-sets using metarecursion theory. This result is obtained in classic computability theory for higher levels of analytical hierarchy.

Theorem

1. There are infinitely many minimal numberings of an infinite family S of Π_{n+1}^1-sets.
2. There is no a Π_{n+1}^1-computable Friedberg enumeration of all Π_{n+1}^1-sets.
3. Elementary theory of any nontrivial Rogers semilattices of analytical hierarchy is undecidable.
4. Let S be infinite family of Σ_{n+1}^1-sets, $Com_{n+1}^1(S) \neq \emptyset$. Then there exists a numbering $\beta \in Com_{n+1}^1(S)$ such that $\hat{\beta}$ (the principal ideal of Rogers semilattices $\mathcal{R}_{n+1}^1(S)$ generated by $\deg(\beta)$) contains no minimal elements.

This work was supported by RFBR (grant 14-01-31278).

References

Novosibirsk State University, 2 Pirogova Street, Novosibirsk, Russia

E-mail address: dm-3004@inbox.ru