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Motivation

Many mathematical objects cannot be coded by integers, yet we can
perform infinitary constructions with these objects

§ constructing the algebraic closure of a field

§ constructing the levels Lα of the constructible universe L

This motivates the study of infinitary computations, which give a precise
meaning to various intuitive infinitary constructions.



Infinite time computations

Hamkins, Welch, Koepke and others studied Turing programs with
infinite hardware and infinite time.

§ analogies to Turing computability

§ halting times

§ relation with Π1
1 and Σ1

2 sets

Goals

§ analogies to algorithmic randomness

§ computability from a set of real oracles of positive measure



Infinite time Turing machines

Consider a Turing program which runs on the hardware of a Turing
machine, but with infinite time (ITTM, Hamkins-Kidder 2000).

§ the tape is a Turing tape

§ the time is the ordinals (Ord)

The machine works as follows.

§ the state is the liminf of the states at previous times

§ the head moves to the liminf of its previous positions if this is finite,
and to 0 otherwise

§ the contents of each cell is the liminf of the contents at previous
times

Example
Test if a symbol occurs infinitely often.
Test if a tree has an infinite branch.



Ordinal time/tape Turing machines

Consider a Turing program which runs on infinite hardware (OTM,
Koepke 2006).

§ the tape has length the ordinals

§ the time is the ordinals

The transition in limit times is defined as follows.

§ the state is the liminf of the states at previous times

§ the head moves to the liminf of its previous positions

§ the contents of each cell is the liminf of the contents at previous
times

Example
Add ordinals. α ` β is defined by

§ α ` pβ ` 1q “ pα ` βq ` 1

§ α ` λ “ supβăλ α ` β for limits λ

We represent α by a symbol in place α.



Computations

tape Ñ

time Ó

state head 0 1 2 3 4 5 ¨ ¨ ¨ ω ¨ ¨ ¨

0 0 0 0 0 0 0 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨
1 1 1 1 0 0 0 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨
2 0 2 1 0 0 0 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨
3 1 3 1 0 1 0 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨
4 0 4 1 0 1 0 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨
5 1 5 1 0 1 0 0 0 ¨ ¨ ¨ 0 ¨ ¨ ¨
6 0 6 1 0 1 0 1 0 ¨ ¨ ¨ 0 ¨ ¨ ¨
7 1 7 1 0 1 0 1 0 ¨ ¨ ¨ 0 ¨ ¨ ¨
8 0 8 1 0 1 0 1 0 ¨ ¨ ¨ 0 ¨ ¨ ¨
9 1 9 1 0 1 0 1 0 ¨ ¨ ¨ 0 ¨ ¨ ¨
...

...
...

...
...

...
...

...
...

...
...

...
ω 0 ω 1 0 1 0 1 0 ¨ ¨ ¨ 0 ¨ ¨ ¨

ω ` 1 1 ω ` 1 1 0 1 0 1 0 ¨ ¨ ¨ 1 ¨ ¨ ¨
...

...
...

...
...

...
...

...
...

...
...

...



Computations from many oracles

Lemma (de Leuw-Moore-Shannon-Shapiro, Sacks)
If A Ď 2N, µpAq ą 0, and x P 2N is computable from all y P A, then x is
computable.

Proof.
There is an interval Us with µpAXUsq

µpUsq ą 0.5 by the Lebesgue density

theorem. Assume µpAq ą 0.5.

Each bit is computed from some s0, ..., sn with
µpUs0 Y ... Y Usn q ą 0.5.

Is this true for infinite computations?

§ the machine can read all input bits during a computation

§ we cannot list all possible input words



Computable sets

Definition
x , y P 2N, A Ď 2N.

§ x is OTM-computable from y (x ďOTM y) if there is an OTM P
such that P halts on input y with output x (Py “ x).

§ A is OTM-computable if there is an OTM P such that P halts on
all inputs x P 2N, and x P A iff Px “ 0.

§ ITTMs compute Π1
1 and Σ1

1 sets of reals (Hamkins-Lewis)

§ OTMs compute ∆1
2 sets of reals (Koepke-Seyfferth)

§ OTMs with ordinal oracles compute L (Koepke)



The constructible universe

The computable reals are those in some Lα for various machines.

Definition
L0 :“ H

Lα`1 :“ Def pLα, Pq :“ tX Ď Lα | X “ tx P Lα | pLα, Pq ( ϕpx , aqu for
some a P Lα and some first order formula ϕu

L :“
Ť

αPOrd Lα



Halting times

Definition
Let ηx denote the supremum of halting times of OTMs with oracle x .

Lemma
The following conditions are equivalent for reals x , y.

§ x is ∆1
2 in y

§ x ďOTM y

§ x P Lηy ry s



OTM computations in L

Theorem
Suppose that V “ L. There is a real x and a co-countable set A Ď 2N

such that

§ x is OTM-computable from every y P A but

§ x is not OTM-computable.

Corollary
Assume that V “ L.

§ Let z denote the halting problem for OTMs. Then z ďOTM x for
every non-OTM-computable real x.

§ For all reals x and y, x ďOTM y or y ďOTM x.



Cohen and random reals

Definition
Suppose that x P 2N.

§ x is Cohen over Lα if x P B for every comeager Borel set B with a
Borel code in Lα.

§ x is random over Lα if x P B for every measure 1 Borel set B with a
Borel code in Lα.

§ related to forcing in set theory

§ related to randomness in computability



OTM computations from many oracles

Theorem
§ Suppose that for every x P 2N, the set of random reals over Lrxs has

measure 1 (iff every Σ1
2 set is Lebesgue measurable).

If A Ď 2N has positive measure and x is OTM-computable from
every y P A, then x is OTM-computable.

§ Suppose that for every x P 2N, the set of Cohen reals over Lrxs is
comeager (iff every Σ1

2 set has the property of Baire).

If A is a nonmeager set with the property of Baire and x is
OTM-computable from every y P A, then x is OTM-computable.



OTM computations with ordinal parameters

Lemma
A real x is OTM-computable from y with ordinal oracles iff x P Lry s, i.e.
x is constructible from y.

In L, and in any model in which p2NqL is not Lebesgue measurable, our
question is trivial.

The following result follows easily from work of Judah-Shelah.

Theorem
There is a forcing P in L such that in any P-generic extension of L there
is a measure 1 set A Ď 2N and

§ every x P A can be constructed from every y P A

§ A contains no constructible real

§ p2NqL has measure 0



OTM computations with ordinal parameters

Theorem
§ Suppose that for every real x, there is a random real over Lrxs.

If A has positive measure and x P 2N is constructible from each
y P A, then x P L.

§ Suppose that for every real x, there is a Cohen real over Lrxs.

If A is a nonmeager Borel set and x P 2N is constructible from each
y P A, then x P L.

Question
Is it consistent that there is a nonconstructible real x and a Borel set A
of measure 1 such that x is OTM-computable without parameters from
every y P A?



ITTM writable reals

Definition
Suppose that x P 2N.

§ Let λx denote the supremum of ITTM-writable ordinals (write-halt)
with oracle x .

§ Let ζx denote the supremum of ITTM-eventually writable ordinals
(write-keep) with oracle x .

§ Let Σx denote the supremum of ITTM-accidentally writable ordinals
(write) with oracle x .

Theorem (Welch)

§ The reals writable (eventually writable, accidentally writable) in the
oracle x are exactly those in Lλx rxs (Lζx rxs, LΣx rxs).

§ ζx ,Σx is the lexically least pair of ordinals with Lζx rxs ăΣ2
LΣx rxs

§ λx is minimal with Lλx rxs ăΣ1
Lζx rxs.



ITTM computations from many oracles

Lemma
If x is Cohen generic over LΣ`1 then

§ Lλrxs ăΣ1
Lζrxs ăΣ2

LΣrxs.

§ λx “ λ, ζx “ ζ and Σx “ Σ.

Theorem
Suppose that A Ď 2N is a nonmeager Borel set and x P 2N.

If x is writable (eventually writable, accidentally writable) in every oracle
y P A, then x is writable (eventually writable, accidentally writable).

Conjecture
Suppose that A Ď 2N is a set with positive measure and x P 2N.

If x is writable (eventually writable, accidentally writable) in every oracle
y P A, then x is writable (eventually writable, accidentally writable).



Infinite time register machines

An infinite time register machine (ITRM) stores integers in finitely many
registers and works in ordinal time.

Theorem
Suppose that x is a real and A is a set of positive measure such that x is
ITRM-computable from all y P A. Then x is ITRM-computable.

Consider the variant of ordinal time/tape Turing machine whose time is
bounded by an ordinal α.

Theorem
There are unboundedly many countable admissible ordinals α such that
every real x which is α-computable from all elements of a set A of
positive measure is α-computable.



Question
Are there analogous results for other ideals, such as the ideals associated
to perfect set forcing or the forcing for adding a dominating function?


