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Overview

I Sets Have Simple Members:
Incompleteness meets Occam’s Razor

I New General Proof Technique:
Separate Enumeration and Combinatorics

I Algorithmic Foundations of Quantum Mechanics

I Quantum Chain Rule

I Random Measurements

I Generalized No Communication Theorem

I Equivalences Between Quantum Entropies
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Mutual Information with Halting Sequence

I Leverage the term: I(x ;H) = K(x)−K(x |H).

I Information non growth: we have I(A(x);H) <+ I(x ;H).

I No Go Theorems

I If string x has high value P then I(x ;H) is high.
I Therefore is no algorithm that can produce x with high P.

I Any total extension U : {0, 1}∗ → {0, 1} of first 2n inputs of
universal partial predicate u : {0, 1}∗ → {0, 1} has
n <log I(U;H).
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“Finitize” Theorems

Theorem

I K(x) is not recursive.

⇒

Theorem

I Any set γ of 2n unique pairs 〈x ,K(x)〉 has n <log I(γ;H).

Problem (June 19th)

I What is I(γ;H) for a set γ of n strings
containing k entries 〈x , [x is random]〉.

Problem (June 20th)

What properties does I(x ; ∅′′) have?



“Finitize” Theorems

Theorem

I K(x) is not recursive.

⇒

Theorem

I Any set γ of 2n unique pairs 〈x ,K(x)〉 has n <log I(γ;H).

Problem (June 19th)

I What is I(γ;H) for a set γ of n strings
containing k entries 〈x , [x is random]〉.

Problem (June 20th)

What properties does I(x ; ∅′′) have?



Sets have Simple Members

Definition (Prior of a Set)

For a set D, we have m(D) =
∑

x∈D m(x).

Theorem
minx∈D − logm(x) <log − logm(D) + I(D;H).

The prior of natural sets are dominated by its simplest element.
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All Sampling Methods have Outliers

Definition (Deficiency of Randomness)

For computable measure P, we have:
d(a|P) = − logP(a)−K(a).

Theorem
log ‖D‖ <log maxa∈D d(a|P) + I(D;H).

All natural samples D of size 2n have an outlier x∈D with score n.



New Proof Technique

I Separate enumerative and combinatorial arguments.

1. Start with definitions

2. Make everything computable m→ m′.

3. Perform combinatorics

4. Convert back m′ → m. (Error term I(;H)).



Quantum Results

I Generalize randomness notions from Cantor
space Ω to Hilbert space Hn of n qubits.

I Use Gács entropy-2 of quantum state |ψ〉.
I H(|ψ〉) = − log

∑
|φ〉m(|φ〉)〈φ|ψ〉2.

Theorem (Chain Rule Inequality)

H(|ψ〉) + H(|φ〉|Encode(ψ)) <log H(|ψ〉|φ〉).

Theorem (Relation between Entropies)

H(|ψ〉) <log Kq(|ψ〉) ≤ H(|ψ〉) + I(|ψ〉;H).
H(|ψ〉) <log QC (|ψ〉).
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