Degrees containing no members of thin classes

Wu Guohua

School of Physical and Mathematical Sciences

Nanyang Technological University

CCR 2014
Density Theorems

- Sacks Density Theorem
 - Sacks Coding Strategy
 - Sacks Preservation Strategy
Density Theorems

- Sacks Density Theorem
 - Sacks Coding Strategy
 - Sacks Preservation Strategy

- Fejer’s Density Theorem (nonbranching degrees)
Density Theorems

- Sacks Density Theorem
 - Sacks Coding Strategy
 - Sacks Preservation Strategy

- Fejer’s Density Theorem (nonbranching degrees)

- Slaman’s Density Theorem (branching degrees)
Density Theorems

- Sacks Density Theorem
 - Sacks Coding Strategy
 - Sacks Preservation Strategy

- Fejer’s Density Theorem (nonbranching degrees)

- Slaman’s Density Theorem (branching degrees)

- Ladner-Sasso’s Splitting Theorem (c.e. wtt-degrees)
Density Theorems

- Sacks Density Theorem
 - Sacks Coding Strategy
 - Sacks Preservation Strategy

- Fejer’s Density Theorem (nonbranching degrees)

- Slaman’s Density Theorem (branching degrees)

- Ladner-Sasso’s Splitting Theorem (c.e. wtt-degrees)

- Harrington’s Splitting Theorem (low₂ c.e. degrees)
Intervals of Nonhemimaximal Degrees - a nondensity theorem

- Hemimaximal sets (jump inversion) and Nonhemimaximal degrees
Intervals of Nonhemimaximal Degrees - a nondensity theorem

- Hemimaximal sets (jump inversion) and Nonhemimaximal degrees
- Intervals of nonhemimaximal degrees
We are talking about Π^0_1-classes of the Cantor space.

Jockusch-Soare: Low basis theorem

Grozek-Slaman:

There exists a nonempty Π^0_1-class with all members bounding minimal degrees.
Minimal Π^0_1-Classes and Thin Π^0_1-Classes

- A Π^0_1-class P is *minimal* if for every Π^0_1-subclass Q, either Q is finite or $P \setminus Q$ is finite.

- A Π^0_1-class P is *thin* if every Π^0_1-subclass Q of P is clopen in P.

Theorem [CDJS] Let P be a Π^0_1-class. Then

- If P is minimal and has an incomputable member, then P is thin.

- If P is thin and the Cantor-Bendixson derivative $D(P)$ is a singleton, then P is minimal.
Minimal Π^0_1-Classes and Thin Π^0_1-Classes

- A Π^0_1-class P is **minimal** if for every Π^0_1-subclass Q, either Q is finite or $P \setminus Q$ is finite.

- A Π^0_1-class P is **thin** if every Π^0_1-subclass Q of P is clopen in P.

Theorem [CDJS]
Let P be a Π^0_1-class. Then

- If P is minimal and has an incomputable member, then P is thin.

- If P is thin and the Cantor-Bendixson derivative $D(P)$ is a singleton, then P is minimal.
Degrees of members of thin Π^0_1-classes

Theorem [CDJS]
Let P be a thin Π^0_1-class and $A \in P$. Then $A' \leq_T A \oplus \phi''$. Thus no thin Π^0_1-class can have a member $A \geq_T \phi''$.
Degrees of members of thin Π^0_1-classes

Theorem [CDJS]
Let P be a thin Π^0_1-class and $A \in P$. Then $A' \leq_T A \oplus \emptyset''$.

Thus no thin Π^0_1-class can have a member $A \geq_T \emptyset''$.

Theorem [CDJS]
$0'$ contains a Π^0_1 set as a member of a thin Π^0_1-class.
Degrees of members of thin Π^0_1-classes

Theorem [CDJS]
Let P be a thin Π^0_1-class and $A \in P$. Then $A' \leq_T A \oplus \emptyset''$.

Thus no thin Π^0_1-class can have a member $A \geq_T \emptyset''$.

Theorem [CDJS]
$0'$ contains a Π^0_1 set as a member of a thin Π^0_1-class.

Theorem [CDJS] - a weak density
For any c.e. sets $A \lt_T C$, there is a set B with $A \leq_T B \leq_T C$ and B is a member of a minimal (and hence thin) Π^0_1-class.
Degrees containing no members of thin Π^0_1-classes

Theorem [CDJS]

There is a c.e. set C such that no set $A \equiv_T C$ belongs to any thin Π^0_1-class.
Degrees containing no members of thin Π^0_1-classes

Theorem [CDJS]

There is a c.e. set C such that no set $A \equiv_T C$ belongs to any thin Π^0_1-class.

Observation [DWY]

Degrees containing members of thin classes are not closed under join.
CDJS’s Construction of a NONTHIN degree

Construct a single set C such that the degree of C does not contain any member of thin class.
CDJS’s Construction of a \textit{Nonthin} degree

Construct a single set C such that the degree of C does not contain any member of thin class.

C is constructed to meet the following requirements:

R_e: if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, then

\blacksquare either $C \neq \Psi_e(\Phi_e(C))$,

\blacksquare $\Phi_e(C)$ is not in $[T]$,

\blacksquare $[T]$ is not thin.

We will construct a subtree S_e of T such that if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, with $C = \Psi_e(\Phi_e(C))$, and $\Phi_e(C)$ a branch in $[T]$, then $[S_e]$ witnesses that $[T]$ is not thin.

\blacksquare Compare it with the construction of nonhemimaximal degrees.
CDJS’s Construction of a *NONTIN* degree

Construct a single set C such that the degree of C does not contain any member of thin class.

C is constructed to meet the following requirements:

\mathcal{R}_e: if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, then

- either $C \neq \Psi_e(\Phi_e(C))$, or
- $\Phi_e(C)$ is not in $[T_e]$, or
- $[T_e]$ is not thin.
CDJS’s Construction of a \textit{Nonthin} degree

Construct a single set C such that the degree of C does not contain any member of thin class.

C is constructed to meet the following requirements:

\begin{align*}
\mathcal{R}_e: \text{ if } & \Phi_e(C) \text{ and } \Psi_e(\Phi_e(C)) \text{ are both total, then } \\
\quad \begin{align*}
\quad \begin{align*}
\text{either } & C \neq \Psi_e(\Phi_e(C)), \text{ or } \\
\text{either } & \Phi_e(C) \text{ is not in } [T_e], \text{ or } \\
\text{either } & [T_e] \text{ is not thin.}
\end{align*}
\end{align*}
\end{align*}

We will construct a subtree S_e of T_e such that if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, with $C = \Psi_e(\Phi_e(C))$, and $\Phi_e(C)$ a branch in $[T_e]$, then $[S_e]$ witnesses that $[T_e]$ is not thin.
CDJS’s Construction of a \textit{NORTHIN} degree

Construct a single set C such that the degree of C does not contain any member of thin class.

C is constructed to meet the following requirements:

\mathcal{R}_e: if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, then

- either $C \neq \Psi_e(\Phi_e(C))$, or
- $\Phi_e(C)$ is not in $[T_e]$, or
- $[T_e]$ is not thin.

We will construct a subtree S_e of T_e such that if $\Phi_e(C)$ and $\Psi_e(\Phi_e(C))$ are both total, with $C = \Psi_e(\Phi_e(C))$, and $\Phi_e(C)$ a branch in $[T_e]$, then $[S_e]$ witnesses that $[T_e]$ is not thin.

- Compare it with the construction of \textit{nonhemimaximal degrees}.
Subrequirements

\(\mathcal{R}_{e,i} \): There exist an interval \((x_{e,i}, z_{e,i})\) such that \([T_e]\) contains a branch extending \(\Phi_e(C) \upharpoonright x_{e,i}\), but not \(\Phi_e(C) \upharpoonright z_{e,i}\).

- If \(i\) is even, then all nodes in \(T_e\) extending \(\Phi_e(C) \upharpoonright x_{e,i}\), but not \(\Phi_e(C) \upharpoonright z_{e,i}\), will be put on \(S_e\).
- If \(i\) is odd, then all nodes in \(T_e\) extending \(\Phi_e(C) \upharpoonright x_{e,i}\), but not \(\Phi_e(C) \upharpoonright z_{e,i}\), will be terminated on \(S_e\).

So, if all the \(\mathcal{R}_{e,i}\)-subrequirements are satisfied, then \([S_e]\) is a subclass of \([T_e]\), containing, and also missing, infinitely many branches of \([T_e]\).
Subrequirements

\(\mathcal{R}_{e,i} \): There exist an interval \((x_{e,i}, z_{e,i})\) such that \([T_e]\) contains a branch extending \(\Phi_e(C) \upharpoonright x_{e,i}\), but not \(\Phi_e(C) \upharpoonright z_{e,i}\).

- If \(i\) is even, then all nodes in \(T_e\) extending \(\Phi_e(C) \upharpoonright x_{e,i}\), but not \(\Phi_e(C) \upharpoonright z_{e,i}\), will be put on \(S_e\).

- If \(i\) is odd, then all nodes in \(T_e\) extending \(\Phi_e(C) \upharpoonright x_{e,i}\), but not \(\Phi_e(C) \upharpoonright z_{e,i}\), will be terminated on \(S_e\).

So, if all the \(\mathcal{R}_{e,i}\)-subrequirements are satisfied, then \([S_e]\) is a subclass of \([T_e]\), containing, and also missing, infinitely many branches of \([T_e]\).

- The crucial point is after one region is terminated, \(\Phi_e(C)\) will never come back to this region again, in the remainder of the construction.
Subrequirements

\(R_{e, i} \): There exist an interval \((x_{e, i}, z_{e, i})\) such that \([T_e]\) contains a branch extending \(\Phi_e(C) \upharpoonright x_{e, i}\), but not \(\Phi_e(C) \upharpoonright z_{e, i}\).

- If \(i\) is even, then all nodes in \(T_e\) extending \(\Phi_e(C) \upharpoonright x_{e, i}\), but not \(\Phi_e(C) \upharpoonright z_{e, i}\), will be put on \(S_e\).

- If \(i\) is odd, then all nodes in \(T_e\) extending \(\Phi_e(C) \upharpoonright x_{e, i}\), but not \(\Phi_e(C) \upharpoonright z_{e, i}\), will be terminated on \(S_e\).

So, if all the \(R_{e, i}\)-subrequirements are satisfied, then \([S_e]\) is a subclass of \([T_e]\), containing, and also missing, infinitely many branches of \([T_e]\).

- The crucial point is after one region is terminated, \(\Phi_e(C)\) will never come back to this region again, in the remainder of the construction.

- Threading strategy, for the consistency between \(R\)-strategies.
Upwards Density of NONTIN degrees

A joint work with Downey and Yang.
Upwards Density of NONTHIN degrees

A joint work with Downey and Yang.

- Fix B as an incomplete c.e. set.

Construct a c.e. set C such that the degree of $B \oplus C$ does not contain any member of thin classes.
Upwards Density of NONTINH degrees

A joint work with Downey and Yang.

- Fix B as an incomplete c.e. set.

Construct a c.e. set C such that the degree of $B \oplus C$ does not contain any member of thin classes.

 If $B \oplus C$ has NONTINH degree, then it is incomplete, as CDJS already proved that $0'$ contains elements of thin classes.
Requirements

C is constructed to meet the following requirements:

R_e: if $\Phi_e(B \oplus C)$, $\psi_e(\Phi_e(B \oplus C))$ and $\Theta_e(\Phi_e(B \oplus C))$ are all total, then

- either $C \neq \psi_e(\Phi_e(B \oplus C))$, or
- $B \neq \Theta_e(\Phi_e(B \oplus C))$, or
- $\Phi_e(B \oplus C)$ is not in $[T_e]$, or
- $[T_e]$ is not thin.
Requirements

C is constructed to meet the following requirements:

\[\mathcal{R}_e: \text{ if } \Phi_e(B \oplus C), \psi_e(\Phi_e(B \oplus C)) \text{ and } \Theta_e(\Phi_e(B \oplus C)) \text{ are all total, then } \]

- either \(C \neq \psi_e(\Phi_e(B \oplus C)) \), or
- \(B \neq \Theta_e(\Phi_e(B \oplus C)) \), or
- \(\Phi_e(B \oplus C) \text{ is not in } [T_e] \), or
- \([T_e] \text{ is not thin.} \)

Concerns:
Requirements

C is constructed to meet the following requirements:

\mathcal{R}_e: if $\Phi_e(B \oplus C)$, $\Psi_e(\Phi_e(B \oplus C))$ and $\Theta_e(\Phi_e(B \oplus C))$ are all total, then

- either $C \neq \Psi_e(\Phi_e(B \oplus C))$, or
- $B \neq \Theta_e(\Phi_e(B \oplus C))$, or
- $\Phi_e(B \oplus C)$ is not in $[T_e]$, or
- $[T_e]$ is not thin.

Concerns:

- Divergence
- Threading strategy

- B’s change can bring $\Phi_e(B \oplus C)$ into a terminated region. What shall we do?
Full density: True.
Full density: True.

Thanks!