Some applications of higher Demuth’s theorem

Liang Yu
Institute of mathematics
Nanjing University

June 16, 2014
Demuth’s theorem

Theorem (Demuth (1988))

If r_0 is Martin-Löf random and $z \leq_{tt} r_0$ is nonrecursive, then $z \equiv_T r_1$ for some Martin-Löf random real r_1.
The philosophy of Demuth’s theorem

Demuth’s theorem is a kind of formalization of the following thesis

“Any information computed by a random oracle is either trivial or useless.”
The philosophy of Demuth’s theorem

Demuth’s theorem is a kind of formalization of the following thesis

“Any information computed by a random oracle is either trivial or useless.”

However, the appearance of the truth table reduction in the theorem makes the theorem a little imperfect.
Higher Demuth’s theorem

Theorem (Chong and Y.)

If r_0 is Π^1_1-random and $z \leq_h r_0$ is nonhyperarithmetic, then $z \equiv_h r_1$ for some Π^1_1 random real r_1.

The partial relativization of the theorem can be read as:

If r_0 is $\Pi^1_1(x)$-random and $z \leq_h r_0$ is nonhyperarithmetic, then $z \equiv_h r_1$ for some $\Pi^1_1(x)$ random real r_1.
Sacks’s theorem

Given a set of real A, let $\mathcal{U}_h(A) = \{y \mid \exists x \in A(y \geq_h x)\}$.

Theorem (Sacks (1969))

If x is no hyperarithmetic, then $\mathcal{U}_h(\{x\})$ is null.
Kripke’s theorem

Sacks’s theorem was greatly strengthened by Kripke.

Theorem (Kripke (1969))

If A is null, closed under hyperarithmetic equivalence relation and does not contain a hyperarithmetic real, then $\mathcal{U}_h(A)$ is null.

Proof.

Suppose not. Then fix a real x so that A does not contain any $\Pi^1_1(x)$-random real. But $\mathcal{U}_h(A)$ must contain such a real. Relativizing the higher Demuth’s theorem to x, A must contain a $\Pi^1_1(x)$-random real, a contradiction.
An antichain of hyperdegrees is a set of hyperdegrees so that it has at least two elements and any two of them are incomparable.

Theorem (Y.)

- If A has positive measure, then A contains two reals $x \leq_m y$ but $x \not\leq_h y$.
- There exists a maximal nonmeasurable antichain of hyperdegrees.
A null maximal antichain of hyperdegrees.

Theorem (Chong and Y.)

There is a null maximal antichain A of hyperdegrees. Actually, every Π^1_1 random real is strictly hyperarithmetically below some real in A.

Note that any nontrivial upper cone of hyperdegrees does not contain a maximal antichain.
The proof

1. If g is sufficiently generic, then g form a minimal pair (in the hyperdegree sense) with any Π^1_1-random reals;
2. For any hypdegree x, there are 2^{\aleph_0} many generic reals $\{g_\alpha\}_\alpha$ which mutually form an exact pair over the low cone of x.
3. By induction and try to avoid Π^1_1-random reals.
Some additional results.

Proposition

- Given a set A of antichain of hyperdegrees. If $\mathcal{U}_h(A)$ is measurable, then it must be null.
- There is a nonmeasurable set A of hyperdegrees so that $\mathcal{U}_h(A)$ is conull.
Measure theory of Turing degrees

Given a set of reals A, let $\mathcal{U}_T(A) = \{ y \exists x \in A (y \geq_T x) \}$.

Theorem (Sacks (1963); de Leeuw, Moore, Shannon, and Shapiro (1956))

If x is not recursive, then $\mathcal{U}_T(\{ x \})$ is null.

Theorem (Kurtz (1981) and Kautz (1991))

There is a null set A of Turing degrees which does not contain 0 so that $\mathcal{U}_T(A)$ is conull.
Antichains of Turing degrees

- There is nonmeasurable maximal antichain of Turing degrees.
- If A is antichain of Turing degrees so that $\mathcal{U}_T(A)$ is measurable, then so is A.
Jockusch’s question

Question (Jockusch (2006))

- Is there a measurable maximal antichain of Turing degrees?
- Is there a maximal antichain A of Turing degrees so that $\mathcal{U}_T(A)$ is null?

The first question can be easily answered under CH.
Theorem (Kurtz and Kautz)
Every 2-random real is REA.

Theorem (Wang (2011))
If x is REA, then x is r.e. above some 1-generic real g.
Lemma (Chong and Y.)

If x is REA, then for any $n \geq 1$, there are n-many Turing incomparable 1-generic reals $\{g_i\}_{i \leq n}$ so that for any $i \neq j \leq n$, $g_i \oplus g_j \equiv_T x$.
The main theorem

Theorem (Chong and Y.)

There is a maximal antichain A of Turing degrees so that $\mu(\mathcal{U}_T(A)) = 1$.
The proof

1. Fix a null maximal antichain B of hyperdegrees so that each Π^1_1-random real is hyperarithmetically below some element in B;

2. Putting all the previous genericity results together and by an induction locally working below some element in B.
Theorem (Chong and Y.)

- There is a null maximal antichain A of Turing degrees so that $\mu(\mathcal{U}_T(A)) = 0$.
- There is a null maximal antichain A of Turing degrees so that $\mathcal{U}_T(A)$ is not measurable.
Demuth’s theorem on L-degrees

Theorem (Forklore)

If r_0 is random over L and $z \in L[r_0] \setminus L$, then $z \equiv_L r_1$ for some L-random real r_1.

So random forcing only adds random reals.
Kripke’s results in L

Theorem

Suppose that for any real x, $\omega_1^{L[x]}$ is countable. The for any null set A of constructible degrees not containing 0_L, $\mathcal{U}_L(A)$ is null.
A question

Question

Is there a Π^0_1 set of maximal antichain of Turing degrees?
Thank you