Nahm transform for parabolic integrable connections on the Riemann sphere

Szilárd Szabó

Budapest University of Technology and Rényi Institute of Mathematics
Budapest

Singapore, August 4, 2014
OUTLINE

Wild non-abelian Hodge theory on curves

Nahm transform

Hyper-Kähler isometry
OUTLINE

Wild non-abelian Hodge theory on curves

Nahm transform

Hyper-Kähler isometry
OUTLINE

WILD non-abelian Hodge theory on curves

Nahm transform

Hyper-Kähler isometry
Notations

- X: smooth projective curve over \mathbb{C}
- $G = \text{Gl}_r(\mathbb{C})$
- \mathbb{P}^1: the Riemann sphere $\mathbb{C} \cup \{\infty\}$
- $P = \{p_0, p_1, \ldots, p_n\}$: a finite set of distinct points in X
- \mathcal{O}: sheaf of holomorphic functions
- Ω^k: sheaf of smooth k-forms
- Ω^1: sheaf of holomorphic 1-forms
Meromorphic connections and Higgs bundles on curves

Let E be a holomorphic vector bundle of rank r on X and D a meromorphic connection with singularities in P:

$$D : E \longrightarrow \Omega^1(*P) \otimes \mathcal{O}_E$$

satisfying the Leinbiz-rule.

Paralelly, let \mathcal{E} be a holomorphic vector bundle of rank r on X and

$$\theta : \mathcal{E} \longrightarrow \Omega^1(*P) \otimes \mathcal{O}_E$$

a meromorphic Higgs field.
Fixing the irregular parts of D

We fix the behaviour of D near the singular points as follows:

$$D = d + A_n \frac{dz}{z^n} + \cdots + A_2 \frac{dz}{z^2} + O(z^{-1})dz$$

with respect to some local analytic coordinate z and some holomorphic trivialisation, where

$$A_2, \ldots, A_n$$

belong to some torus $t \subset gl_r(C)$. Let

$$H \subset Gl_r(C)$$

stand for the common centraliser of A_2, \ldots, A_n and \mathfrak{h} for its Lie-algebra.
Fixing the irregular parts of θ

Parallely, we assume

$$\theta = T_n \frac{dz}{z^n} + \cdots + T_2 \frac{dz}{z^2} + O(z^{-1})dz$$

with respect to some trivialisation, where

$$T_k = \frac{A_k}{2} \quad (2 \leq k \leq n).$$
Parabolic structure at singular points

A compatible parabolic structure for D is the choice of an element

$$\beta \in t_\mathbb{R}.$$

Up to conjugation we may assume t consists of diagonal matrices, so we have

$$\beta = \text{diag}(\beta_1, \ldots, \beta_r).$$

Similarly, a compatible parabolic structure for θ is the choice of

$$\alpha = \text{diag}(\alpha_1, \ldots, \alpha_r) \in t_\mathbb{R}.$$

To α we associate the parabolic subgroup

$$P_\alpha = \{ g \in \text{Gl}_r(\mathbb{C}) | \ z^\alpha g z^{-\alpha} \text{ exists as } z \to 0 \}$$

and similarly we get P_β with Lie-algebras p_α, p_β respectively.
Residues

We assume that

\[A_1 \in \mathcal{O} \subset \mathfrak{h} \cap \mathfrak{p}_\beta \]

is in a fixed semi-simple adjoint orbit, defined by eigenvalues

\[\mu_1, \ldots, \mu_r \]

and similarly,

\[T_1 \in \mathcal{O}' \subset \mathfrak{h} \cap \mathfrak{p}_\alpha \]

is in a fixed semi-simple adjoint orbit, defined by eigenvalues

\[\lambda_1, \ldots, \lambda_r. \]

These parameters are subject to Simpson’s relations

\[\alpha_i = \Re(\mu_i), \quad \lambda_i = \frac{\mu_i - \beta_i}{2}. \]
Stability of connections

The parabolic degree and slope of E are defined respectively as

$$\text{par-deg}(E) = \deg(E) + \sum_{j=0}^{n} \sum_{k=1}^{r} \beta^j_k$$

and

$$\text{par-slope}(E) = \frac{\text{par-deg}(E)}{\text{rank}(E)}.$$
Stability of connections

The parabolic degree and slope of E are defined respectively as

$$\text{par-deg}(E) = \deg(E) + \sum_{j=0}^{n} \sum_{k=1}^{r} \beta^{j}_{k}$$

and

$$\text{par-slope}(E) = \frac{\text{par-deg}(E)}{\text{rank}(E)}.$$

(E, D) is said to be parabolically stable if for all non-trivial proper subbundle $F \subset E$ such that $\text{Im}(D|_{F}) \subset \Omega^{1}(\ast P) \otimes F$, one has

$$\text{par-slope}(F) < \text{par-slope}(E).$$
Stability of Higgs bundles

The parabolic degree and slope of \mathcal{E} are defined respectively as

$$\text{par-deg}(\mathcal{E}) = \deg(\mathcal{E}) + \sum_{j=0}^{n} \sum_{k=1}^{r} \alpha_{j}^{k}$$

and

$$\text{par-slope}(\mathcal{E}) = \frac{\text{par-deg}(\mathcal{E})}{\text{rank}(\mathcal{E})}.$$
Stability of Higgs bundles

The parabolic degree and slope of \mathcal{E} are defined respectively as

$$\text{par-deg}(\mathcal{E}) = \deg(\mathcal{E}) + \sum_{j=0}^{n} \sum_{k=1}^{r} \alpha_{j}^{k}$$

and

$$\text{par-slope}(\mathcal{E}) = \frac{\text{par-deg}(\mathcal{E})}{\text{rank}(\mathcal{E})}.$$

(\mathcal{E}, θ) is said to be parabolically stable if for all non-trivial proper subbundle $\mathcal{F} \subset \mathcal{E}$ such that $\text{Im}(\theta|_{\mathcal{F}}) \subset \Omega^{1}(\ast P) \otimes \mathcal{F}$, one has

$$\text{par-slope}(\mathcal{F}) < \text{par-slope}(\mathcal{E}).$$
Adapted Hermitian metrics

A Hermitian fiber metric h is adapted to the parabolic structure of (E, D) (respectively (E, θ)) if near all $p_j \in X$ it is mutually bounded with

$$\text{diag}(|z_j|^2 \beta^j_k)_{k=1,\ldots,r},$$

(respectively $\text{diag}(|z_j|^2 \alpha^j_k)$) where z_j is a local holomorphic coordinate of X vanishing at p_j.
Adapted Hermitian metrics

A Hermitian fiber metric h is adapted to the parabolic structure of (E, D) (respectively (\mathcal{E}, θ)) if near all $p_j \in X$ it is mutually bounded with

$$\text{diag}(|z_j|^2\beta^j_k)_{k=1,...,r},$$

(respectively $\text{diag}(|z_j|^2\alpha^j_k)$) where z_j is a local holomorphic coordinate of X vanishing at p_j.

Remark

Without the semi-simplicity assumption on the residues, the form of the matrices involves logarithmic terms corresponding to the weight filtration too.
Let \((E, D)\) be a meromorphic connection endowed with a parabolic structure, and \(h\) an adapted Hermitian metric on it. Consider the decomposition

\[D = D^+ \ + \ \Phi \]

of \(D\) into \(h\)-unitary and self-adjoint parts respectively.
Harmonic metrics

Let \((E, D)\) be a meromorphic connection endowed with a parabolic structure, and \(h\) an adapted Hermitian metric on it. Consider the decomposition

\[D = D^+ + \Phi \]

of \(D\) into \(h\)-unitary and self-adjoint parts respectively. Decompose these parts further according to bidegree:

\[\Omega^1 = \Omega^{1,0} \oplus \Omega^{0,1} \]

\[D^+ = \partial^+ + \bar{\partial}^+ \]

\[\Phi = \theta + \theta^*. \]
Harmonic metrics

Let \((E, D)\) be a meromorphic connection endowed with a parabolic structure, and \(h\) an adapted Hermitian metric on it. Consider the decomposition

\[D = D^+ + \Phi \]

of \(D\) into \(h\)-unitary and self-adjoint parts respectively. Decompose these parts further according to bidegree:

\[\Omega^1 = \Omega^{1,0} \oplus \Omega^{0,1} \]

\[D^+ = \partial^+ + \bar{\partial}^+ \]

\[\Phi = \theta + \theta^*. \]

Then, \(h\) is said to be harmonic if

\[\bar{\partial}^+ \theta = 0. \]
Hermitian–Einstein metrics

Let \((\mathcal{E}, \theta)\) be a meromorphic Higgs field endowed with a parabolic structure, and \(h\) an adapted Hermitian metric on it. Let

\[
D_{\text{Chern}}
\]

denote the Chern connection associated with \(\bar{\partial}\mathcal{E}\) and \(h\) and \(\theta^*\) the adjoint of \(\theta\) with respect to \(h\). Then, \(h\) is said to be Hermitian–Einstein if the connection

\[
D = D_{\text{Chern}} + \theta + \theta^*
\]

is flat. If this holds then \((D, h)\) solve Hitchin’s equations

\[
F_{D^+} + [\theta, \theta^*] = 0
\]

\[
\bar{\partial}^+ \theta = 0.
\]
Wild non-abelian Hodge theory

Theorem (O. Biquard – P. Boalch 2004)

1. Let \((E, D)\) be a parabolically stable meromorphic integrable connection of parabolic degree 0, with polar parts fixed as above. Then, there exists a unique adapted harmonic metric \(h\) (up to a constant).

2. Let \((\mathcal{E}, \theta)\) be a parabolically stable meromorphic Higgs bundle of parabolic degree 0, with polar parts fixed as above. Then, there exists a unique adapted Hermitian–Einstein metric \(h\) (up to a constant).

3. For generic values of the parameters the moduli space \(\mathcal{M}^{\text{irr}}\) of irreducible solutions of Hitchin’s equations with prescribed singularity data up to unitary gauge transformations is a smooth complete hyper-Kähler manifold.
From now on, the parameters are assumed to be generic so that \mathcal{M} is smooth and complete, and $(E, D) \in \mathcal{M}$ with harmonic Hermitian metric h.

The tangent space of \mathcal{M} at (E, D) is given by

$$T_{(E,D)}\mathcal{M} = \{ a \in L^2(X, \Omega^1_X \otimes \text{End}(E)) : D(a) = 0, D^*(a) = 0 \}.$$

The Atiyah–Bott Riemannian structure is given by the natural L^2-metric

$$\sqrt{-1} \int_X \text{tr}(a \wedge a^*).$$
The de Rham and Dolbeault complex structures are respectively given by

\[J(a) = \sqrt{-1}a, \quad I(a) = \sqrt{-1}(a^{0,1})^* - \sqrt{-1}(a^{1,0})^*. \]

Write

\[(D + a)^+ = (\partial^+ - \dot{A}^*) + (\bar{\partial}^+ + \dot{A}) \]

with \(\dot{A} \) of type \((0, 1)\) and let

\[\phi + \dot{\phi} + \dot{\phi}^*, \quad \dot{\phi} \in \Omega^{1,0} \]

denote the self-adjoint part of \(D + a \). Then we have

\[I(\dot{A}, \dot{\phi}) = (\sqrt{-1} \dot{A}, \sqrt{-1} \dot{\phi}). \]
Dolbeault holomorphic symplectic structure

Given a hyper-Kähler manifold (M, g, I, J, K), let

$$\omega_J(., .) = g(., J.), \quad \omega_K(., .) = g(., K.)$$

be the Kähler forms and

$$\Omega_I = \omega_J + \sqrt{-1}\omega_K.$$

Then (I, Ω_I) defines a holomorphic symplectic structure on M. For M with g, I, J, K defined as above this structure is given by

$$\Omega_I(((\dot{A}, \dot{\Phi}), (\dot{B}, \dot{\Psi})) = \int_X \text{tr}(\dot{\Psi} \wedge \dot{A} - \dot{\Phi} \wedge \dot{B}).$$
Isometries between moduli spaces

Question

Are there isometries between the wild Hitchin moduli spaces?
Isometries between moduli spaces

Question

Are there isometries between the wild Hitchin moduli spaces?

Yes, some are given by Nahm transformation.
Assumption on points at finite distance

From now on we let $X = \mathbb{P}^1$, $p_1, \ldots, p_n \in \mathbb{C}$, $p_0 = \infty$. D is supposed to have a logarithmic singularity (i.e., $n = 1$) at p_j for $j \in \{1, \ldots, n\}$: in a local trivialisation of E near p_j, one has

$$D = d + \frac{A^j(z)}{z - p_j} dz,$$

where A^j is a holomorphic matrix-valued function defined near p_j. Furthermore, the residue

$$A^j(p_j) = \text{diag}(0, \ldots, 0, \mu^{j}_{r_j+1}, \ldots, \mu^{j}_r),$$

is diagonal, with μ^{j}_k non-zero and generic.
Assumption at infinity

D is supposed to have an irregular singularity with $n - 1 = 1$ at infinity: in a local trivialisation of E near ∞, one has

$$D = d + Adz + B \frac{dz}{z} + \text{lower order terms},$$

where

$$A = \text{diag}(\xi_1, \ldots, \xi_1, \ldots \ldots \ldots, \xi_{n'}, \ldots, \xi_{n'})$$
$$B = \text{diag}(\mu_1^0, \ldots, \mu_{a_2}^0, \ldots \ldots, \mu_{1+a_n'}^0, \ldots, \mu_{r}^0)$$

(the leading order term and residue, respectively). Here the ξ_k are pairwise distinct constants, and the μ_i^0 are generic non-zero.

(Notation: $a_1 = 0, a_{n'+1} = r$.)
Let \(\hat{C} \) and \(\hat{P}^1 \) be another copy of \(C \) and \(P^1 \) respectively. Call \(\hat{P} = \{\xi_1, \ldots, \xi_{n'}\} \) the transformed singular set. For any \(\xi \in \hat{C} \setminus \hat{P} \), define the twisted connection as

\[
D_\xi = D - \xi dz.
\]
Expontential twist

Let $\hat{\mathcal{C}}$ and $\hat{\mathbb{P}}^1$ be another copy of \mathcal{C} and \mathbb{P}^1 respectively. Call $\hat{\mathbb{P}} = \{\xi_1, \ldots, \xi_{n'}\}$ the transformed singular set. For any $\xi \in \hat{\mathcal{C}} \setminus \hat{\mathbb{P}}$, define the twisted connection as

$$D_\xi = D - \xi dz.$$

Let D_ξ^* stand for the adjoint operator of D_ξ with respect to h, and define the twisted Laplace operator

$$\Delta_\xi = D_\xi D_\xi^* + D_\xi^* D_\xi$$

as an unbounded operator acting on $L^2(\Omega^1 \otimes E)$.
The kernel of the twisted Laplacian

For any $\xi \in \widehat{C \setminus P}$, the twisted Laplace operator

$$\Delta_\xi : L^2(\Omega^1 \otimes E) \longrightarrow L^2(\Omega^1 \otimes E)$$

has finite dimensional kernel.
The kernel of the twisted Laplacian

For any $\xi \in \hat{C} \setminus \hat{P}$, the twisted Laplace operator

$$\Delta_\xi : L^2(\Omega^1 \otimes E) \longrightarrow L^2(\Omega^1 \otimes E)$$

has finite dimensional kernel. The vector spaces $\text{ker}(\Delta_\xi)$ form a smooth family of finite-dimensional subspaces of $L^2(\Omega^1 \otimes E)$ of the same dimension, parametrized by $\hat{C} \setminus \hat{P}$.
Definition

The smooth vector bundle with fiber over $\xi \in \hat{\mathcal{C}} \setminus \hat{\mathcal{P}}$ equal to $\ker(\Delta_\xi)$ is called the transformed smooth vector bundle. We denote it by \hat{E}, and its fiber over ξ by \hat{E}_ξ.
Definition

The smooth vector bundle with fiber over $\xi \in \mathcal{C} \setminus \mathcal{P}$ equal to $\ker(\Delta_\xi)$ is called the transformed smooth vector bundle. We denote it by \hat{E}, and its fiber over ξ by \hat{E}_ξ.

Let $\varphi(z), \psi(z) \in \hat{E}_\xi$ for some $\xi \in \mathcal{C} \setminus \mathcal{P}$.

Definition

The transformed Hermitian metric \hat{h} is defined on the fiber \hat{E}_ξ by the formula

$$\hat{h}(\varphi, \psi) = \int_{\mathcal{C}} h(\varphi(z), \psi(z)).$$
THE TRANSFORMED FLAT CONNECTION

L^2-metric on sections of $\Omega^1 \otimes E$ induces an orthogonal projection

$$\pi_\xi : L^2(P^1, \Omega^1 \otimes E) \rightarrow \hat{E}_\xi.$$

Fix $\xi_0 \in \hat{C} \setminus \hat{P}$ and let $\varphi_1(z), \ldots, \varphi_{r'}(z)$ be a basis of \hat{E}_{ξ_0}. These sections are exponentially decreasing at infinity. In particular, for all ξ sufficiently close to ξ_0 in $\hat{C} \setminus \hat{P}$ one can consider the sections

$$\varphi_j(\xi; z) = \pi_\xi(e^{(\xi-\xi_0)z} \varphi_j(z)) \in \hat{E}_\xi.$$
The transformed flat connection

L^2-metric on sections of $\Omega^1 \otimes E$ induces an orthogonal projection

$$\pi_\xi : L^2(\mathbb{P}^1, \Omega^1 \otimes E) \longrightarrow \hat{E}_\xi.$$

Fix $\xi_0 \in \hat{C} \setminus \hat{P}$ and let $\varphi_1(z), \ldots, \varphi_{r'}(z)$ be a basis of \hat{E}_{ξ_0}. These sections are exponentially decreasing at infinity. In particular, for all ξ sufficiently close to ξ_0 in $\hat{C} \setminus \hat{P}$ one can consider the sections

$$\varphi_j(\xi; z) = \pi_\xi(e^{(\xi-\xi_0)z}\varphi_j(z)) \in \hat{E}_\xi.$$

Definition

The transformed flat connection \hat{D} on \hat{E} is defined by the basis of local parallel sections $\varphi_j(\xi; z)$ for $j \in \{1, \ldots, r'\}$.
Definition

The metric extension of \hat{E} over $\xi_l \in \hat{P}$ (respectively $\hat{\infty}$) is the lattice consisting of local holomorphic sections outside of ξ_l (respectively $\hat{\infty}$) whose \hat{h}-norm is bounded from above by a constant.

We denote

$$(\hat{E}, \hat{D}, \hat{h}) = \mathcal{N}(E, D, h).$$
Properties of the transform

Theorem (Sz 2008)

- \hat{D} is an integrable connection on \hat{E}, with logarithmic singularities in $\xi_1 \in \hat{P}$ and an irregular singularity of Poincaré-rank 1 ($n = 2$) at $\hat{\infty}$.

- The metric extension induces a parabolic structure on \hat{E} at the singular points.

- The corresponding eigenvalues and parabolic weights transform according to the diagrams on the next two slides. In particular, \hat{E} is of rank $\sum_{j=1}^{n} (r - r_j)$ and of parabolic degree 0.

- The metric \hat{h} is harmonic for \hat{D}.

- Nahm transform \mathcal{N} is involutive (up to a sign).
Transform of the eigenvalues

\[\begin{array}{cccccc}
\infty & p_1 & \cdots & p_n \\
- & - & - & - & - & - \\
\xi_1 + z^{-1} \mu_1^0 & 0 & 0 \\
\vdots & 0 & \vdots \\
\xi_1 + z^{-1} \mu_{a_2}^0 & : & 0 \\
\vdots & 0 & \mu_{r_{n+1}}^n \\
\xi_{n'} + z^{-1} \mu_{1+a_{n'}}^0 & \mu_{r_1+1}^1 & \vdots \\
\vdots & \vdots & \vdots \\
\xi_{n'} + z^{-1} \mu_{r}^0 & \mu_r^1 & \mu_r^n \\
\end{array}\]
Transform of the eigenvalues

\[\begin{align*}
\infty &\quad p_1 &\cdots &\quad p_n &\quad \hat{\infty} \\
- & - & - & - & - \\
\xi_1 + z^{-1} \mu_1^0 & 0 & 0 & -p_1 + \zeta^{-1} \mu_{r_1+1}^1 \\
\vdots & 0 & \vdots & \vdots & \vdots \\
\xi_1 + z^{-1} \mu_{a_2}^0 & \vdots & 0 & -p_1 + \zeta^{-1} \mu_{r}^1 \\
\vdots & \mu_{r_1+1}^1 & \mu_{r_n+1}^n & \vdots & \vdots \\
\xi_{n'} + z^{-1} \mu_{1+a_{n'}}^0 & \mu_{r_1+1}^1 & \vdots & -p_n + \zeta^{-1} \mu_{r_{n+1}}^n \\
\vdots & \mu_{r}^1 & \mu_{r}^n & \mu_{r}^n & -p_n + \zeta^{-1} \mu_{r}^n \\
\xi_{n'} + z^{-1} \mu_{r}^0 & \mu_{r}^1 & \mu_{r}^n & \mu_{r}^n & \mu_{r}^n
\end{align*}\]
Transform of the eigenvalues

\[
\begin{align*}
\infty & \quad p_1 & \quad \cdots & \quad p_n & \quad \infty & \quad \xi_1 \\
- & - & - & - & - & - \\
\xi_1 + z^{-1} \mu_1^0 & \quad 0 & \quad 0 & \quad -p_1 + \zeta^{-1} \mu_{r_1+1} & \quad 0 \\
\vdots & \quad 0 & \quad \vdots & \quad \vdots & \quad 0 \\
\xi_1 + z^{-1} \mu_{a_2}^0 & \quad \vdots & \quad 0 & \quad -p_1 + \zeta^{-1} \mu_1 & \quad \vdots \\
\vdots & \quad 0 & \quad \vdots & \quad \mu_{r_{n+1}} & \quad 0 \\
\xi_{n'} + z^{-1} \mu_{1+a_{n'}}^0 & \quad \mu_{r_1+1}^1 & \quad \vdots & \quad -p_n + \zeta^{-1} \mu_{r_{n+1}} & \quad \mu_{a_2}^0 \\
\vdots & \quad \vdots & \quad \vdots & \quad \vdots & \quad \vdots \\
\xi_{n'} + z^{-1} \mu_{r}^0 & \quad \mu_r & \quad \mu_r^n & \quad -p_n + \zeta^{-1} \mu_r & \quad \mu_{a_2}^0
\end{align*}
\]
Transform of the Eigenvalues

<table>
<thead>
<tr>
<th></th>
<th>∞</th>
<th>p_1</th>
<th>...</th>
<th>p_n</th>
<th>$\hat{\infty}$</th>
<th>ξ_1</th>
<th>...</th>
<th>$\xi_{n'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\xi_1 + z^{-1}\mu_1^0$</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>$-p_1 + \zeta^{-1}\mu_{r_1+1}^1$</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>\vdots</td>
<td>0</td>
<td></td>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>0</td>
<td></td>
<td>\vdots</td>
</tr>
<tr>
<td>$\xi_1 + z^{-1}\mu_{a_2}^0$</td>
<td>0</td>
<td></td>
<td>$\mu_{r_1+1}^1$</td>
<td>0</td>
<td>$-p_1 + \zeta^{-1}\mu_r^1$</td>
<td>$\mu_{r_{n+1}}^0$</td>
<td>\vdots</td>
<td>0</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>$\mu_{r_{n+1}}^0$</td>
<td>μ_1^0</td>
<td>\vdots</td>
</tr>
<tr>
<td>$\xi_{n'} + z^{-1}\mu_{1+a_{n'}}^0$</td>
<td>$\mu_{r_{1+a_{n'}}}^1$</td>
<td>\vdots</td>
<td></td>
<td>$-p_n + \zeta^{-1}\mu_{n+1}^r$</td>
<td>$\mu_{r_{a_2}}^0$</td>
<td>μ_1^0</td>
<td>\vdots</td>
<td>$\mu_1^0+a_{n'}$</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
<td>\vdots</td>
<td>\vdots</td>
<td>$\mu_{r_{a_2}}^0$</td>
<td>μ_1^0</td>
<td>\vdots</td>
</tr>
<tr>
<td>$\xi_{n'} + z^{-1}\mu_r^0$</td>
<td>μ_r^1</td>
<td>μ_r^1</td>
<td></td>
<td>$-p_n + \zeta^{-1}\mu_r^n$</td>
<td>μ_r^0</td>
<td>$\mu_{a_2}^1$</td>
<td>μ_r^0</td>
<td>μ_r^0</td>
</tr>
<tr>
<td>∞</td>
<td>p_1</td>
<td>\cdots</td>
<td>p_n</td>
<td>∞</td>
<td>ξ_1</td>
<td>\cdots</td>
<td>$\xi_{n'}$</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>--------</td>
<td>---------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>$\xi_1 + z^{-1} \mu_1^0$</td>
<td>0</td>
<td>$-p_1 + \zeta^{-1} \mu_{r_1+1}^1$</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\cdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\xi_{n'} + z^{-1} \mu_{1+a_{n'}}^0$</td>
<td>$\mu_{r_{n+1}}^1$</td>
<td>$-p_n + \zeta^{-1} \mu_{r_{n+1}}^n$</td>
<td>$\mu_{a_2}^0$</td>
<td>μ_r^0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Transform of the Weights

<table>
<thead>
<tr>
<th></th>
<th>p_1</th>
<th>...</th>
<th>p_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td></td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>β^0_1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$\beta^0_{a_2}$</td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>$\beta^0_{1+a_{n'}}$</td>
<td>$\beta^1_{r_1+1}$</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>β^0_r</td>
<td>β^1_r</td>
<td>β^n_r</td>
<td></td>
</tr>
</tbody>
</table>

Nahm transform

Szilárd Szabó, Budapest
Transform of the weights

<table>
<thead>
<tr>
<th></th>
<th>p_1</th>
<th>\cdots</th>
<th>p_n</th>
<th>$\hat{\infty}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_0^1</td>
<td>0</td>
<td></td>
<td>$\beta_{r_1+1}^1$</td>
<td></td>
</tr>
<tr>
<td>β_{a_2}</td>
<td>:</td>
<td></td>
<td>:</td>
<td></td>
</tr>
<tr>
<td>β_0^1</td>
<td>:</td>
<td></td>
<td>0</td>
<td>β_r^1</td>
</tr>
<tr>
<td>$\beta_{r_{n+1}}^1$</td>
<td>$\beta_{r_{n+1}}^1$</td>
<td>$\beta_{r_{n+1}}^n$</td>
<td>$\beta_{r_{n+1}}^n$</td>
<td></td>
</tr>
<tr>
<td>β^0</td>
<td>β_{r}^1</td>
<td>β_r^n</td>
<td>β_r^n</td>
<td></td>
</tr>
</tbody>
</table>

Nahm transform

Szilárd Szabó, Budapest
Transform of the weights

<table>
<thead>
<tr>
<th>∞</th>
<th>p_1</th>
<th>\ldots</th>
<th>p_n</th>
<th>$\hat{\infty}$</th>
<th>ξ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_0^0</td>
<td>0</td>
<td>0</td>
<td>$\beta_{r_1+1}^1$</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>0</td>
<td>\vdots</td>
<td>\vdots</td>
<td>0</td>
<td>β_1^0</td>
</tr>
<tr>
<td>$\beta_{a_2}^0$</td>
<td>\vdots</td>
<td>0</td>
<td>β_r^1</td>
<td>\vdots</td>
<td></td>
</tr>
<tr>
<td>$\beta_{1+a_n'}^0$</td>
<td>$\beta_{r_1+1}^1$</td>
<td>$\beta_{r_{n+1}}^n$</td>
<td>$\beta_{r_{n+1}}^n$</td>
<td>β_1^0</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>β_1^0</td>
<td></td>
</tr>
<tr>
<td>β_r^0</td>
<td>β_r^1</td>
<td>β_r^n</td>
<td>β_r^n</td>
<td>$\beta_{a_2}^0$</td>
<td></td>
</tr>
</tbody>
</table>
Transform of the weights

<table>
<thead>
<tr>
<th></th>
<th>p_1</th>
<th>...</th>
<th>p_n</th>
<th>$\hat{\infty}$</th>
<th>ξ_1</th>
<th>...</th>
<th>$\xi_{n'}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>∞</td>
<td></td>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β_0^1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>β_{r_1+1}</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>β_0^1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>β_0^0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>β_{r_1+1}</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>β_0^1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>β_0^0</td>
<td>β_{r_1+1}</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>β_0^1</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>β_{r_1+1}</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>β_0^1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>β_0^1</td>
<td>β_{r_1+1}</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>β_0^0</td>
<td>0</td>
<td>...</td>
<td>0</td>
<td>β_{r_1+1}</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>β_0^1</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

Nahm transform

Szilárd Szabó, Budapest
Theorem (Sz 2014)

Nahm transform is a hyper-Kähler isometry.

Strategy of proof: show

\[I \mapsto \hat{I} \]
\[J \mapsto \hat{J} \]
\[\Omega_I \mapsto \Omega_{\hat{I}} \]
The transformation of the complex structure I follows from an algebraic interpretation

$$L^2 H^1(D_\xi) \cong H^1(\mathcal{E} \xrightarrow{\theta-\xi dz} \mathcal{F})$$

as the hypercohomology of the Dolbeault complex (Aker–Sz 2014). The transformation of the complex structure J follows from identification with minimal extension followed by Fourier–Laplace transform of the underlying holonomic \mathcal{D}-module (Sz 2012). From now on we will focus on the transformation of Ω_I.
Beauville–Narasimhan–Ramanan correspondence

Set

\[L = \Omega^1_{P1}(P) = \Omega^1_{P1}(p_1 + \cdots + p_n + 2 \cdot \infty) \]

and consider the ruled surface

\[Z = P(\mathcal{O}_{P1} \oplus L) \xrightarrow{\pi} P^1 \]

with relatively ample line bundle \(\mathcal{O}(1) \) and global sections

\[x \in H^0(Z, \mathcal{O}(1) \otimes \pi^* L), \quad y \in H^0(Z, \pi^* L). \]

Consider the cokernel sheaf \(M(\mathcal{E}, \theta) \) defined by

\[0 \rightarrow \pi^* (\mathcal{E} \otimes L^\vee) \xrightarrow{\pi^* \theta \otimes y - \pi^* Id_{\mathcal{E}} \otimes x} \pi^* \mathcal{E} \otimes \mathcal{O}(1) \rightarrow M(\mathcal{E}, \theta) \rightarrow 0. \]
Beauville–Narasimhan–Ramanan Correspondence, cont’d

It is possible to recover \((\mathcal{E}, \theta)\) from \(M(\mathcal{E}, \theta)\):

\[
\mathcal{E} = \pi_* M(\mathcal{E}, \theta), \quad \theta = \pi_*(x : M \to M \otimes \pi_* L \otimes \mathcal{O}(1)).
\]

The support \(S(\mathcal{E}, \theta)\) of \(M(\mathcal{E}, \theta)\) is called spectral curve. The above associations induce an equivalence between the categories of

- Higgs bundles with integral spectral curve \(S\)

and

- torsion sheaves of pure dimension 1 and of rank 1 with irreducible support away from \((y)\)
Hilbert scheme of curves

Notice: Z is a holomorphic Poisson surface with Liouville symplectic form ω degenerating along

$$D_\infty = \pi^{-1} P + 2 \cdot (y).$$

Given r consider the Hilbert scheme

$$\text{Hilb}(r)$$

of curves $S \subset Z$ having the same Hilbert polynomial as a generic r to 1 cover of \mathbb{P}^1 in Z,

$$\text{Hilb}^0(r) \subset \text{Hilb}(r)$$

the connected component of a given S_0, and

$$B \subset \text{Hilb}^0(r)$$

the Zariski open subset parameterising smooth irreducible curves S not contained in D_∞.

Moduli spaces of sheaves on Poisson surfaces

Consider moreover the relative Picard bundle

$$\text{Pic}^d(Z) \to B$$

whose fiber over $b \in B$ is the set of isomorphism classes of degree d line bundles over S_b.

Theorem (Donagi, Markman 1996)

B is smooth and $\text{Pic}^d(Z)$ has a canonical Poisson structure whose symplectic leaves are obtained by prescribing the intersection of the curves S with D_∞.

Wild non-abelian Hodge theory on curves

Nahm transform

Hyper-Kähler isometry
Deformation theory of sheaves

The deformation theory of Pic$^d(Z)$ at a given sheaf M is given by the global Ext-groups

$$\text{Ext}^*_\mathcal{O}_Z (M, M)$$

and the restriction of the Poisson structure Ω_{Mukai} to the symplectic leaves is induced by the Yoneda product

$$\cup : \text{Ext}^1_{\mathcal{O}_Z} (M, M) \times \text{Ext}^1_{\mathcal{O}_Z} (M, M) \rightarrow \text{Ext}^2_{\mathcal{O}_Z} (M, M)$$

followed by Serre duality.
Matching the symplectic structures

Consider two 1-parameter families

\[(\mathcal{E}(t), \Phi(t)), \quad (\mathcal{E}(x), \Phi(x))\]

of elements of \(\mathcal{M}\) for \(t, x \in \mathbb{C}\) both specialising to \((\mathcal{E}, \Phi) \in \mathcal{M}\) at \(t = 0\) and \(x = 0\) respectively. They give rise to

\[T, X \in T_{(\mathcal{E}, \Phi)}\mathcal{M}.\]

The associated families of spectral sheaves

\[\mathcal{M}_{(\mathcal{E}(t), \Phi(t))}, \quad \mathcal{M}_{(\mathcal{E}(x), \Phi(x))}\]

in \(\text{Pic}^d(Z)\) then give rise to tangent vectors

\[\tilde{T}, \tilde{X} \in T_{\mathcal{M}_{(\mathcal{E}, \Phi)}} \text{Pic}^d(Z).\]
Then we have the

Key Formula

\[\Omega_I(T, X) = \Omega_{\text{Mukai}}(\tilde{T}, \tilde{X}). \]

Proven in particular cases by Hurtubise (1996) and Hurtubise–Harnad (2008).
END OF THE PROOF USING KEY FORMULA

Known:

\[(\mathcal{E}, \theta) \quad (\hat{\mathcal{E}}, \hat{\theta})\]

have isomorphic spectral sheaves

\[M(\mathcal{E}(t), \Phi(t)) \cong M(\hat{\mathcal{E}}(t), \hat{\Phi}(t))\]

on the open surface

\[T^*(\mathbf{C} \setminus P).\]

Therefore, the Key Formula applied to the vectors

\[\hat{T} = T_{(\mathcal{E}, \Phi)} \mathcal{N}(T), \quad \hat{X} = T_{(\mathcal{E}, \Phi)} \mathcal{N}(X)\]

shows that

\[\Omega_{\hat{\imath}}(\hat{T}, \hat{X}) = \Omega_{\text{Mukai}}(\tilde{T}, \tilde{X})\]

too.
Computing global Ext groups

By definition, the Ext-groups $\text{Ext}^*_\mathcal{O}_Z(M, M)$ are computed by the hypercohomology of the following complex of coherent sheaves on Z:

$$\mathcal{H}om_{\mathcal{O}_Z}(\pi^*\mathcal{E} \otimes \mathcal{O}(1), M(\mathcal{E}, \Phi)) \longrightarrow \mathcal{H}om_{\mathcal{O}_Z}(\pi^*(\mathcal{E} \otimes_{\mathcal{O}_C} L^\vee), M(\mathcal{E}, \Phi))$$

in degrees 0, 1 where the arrow is given by

$$\mathcal{H}om(\pi^*\Phi \otimes y - \pi^*\text{Id}_\mathcal{E} \otimes x, \text{Id}_M).$$

The sheaves of this complex are supported on $S(\mathcal{E}, \Phi)$ and its push-forward by π is

$$\mathcal{E}nd_{\mathcal{O}_{\mathbb{P}^1}}(\mathcal{E}) \xrightarrow{\text{ad}_\Phi} \mathcal{E}nd_{\mathcal{O}_{\mathbb{P}^1}}(\mathcal{E}) \otimes_{\mathcal{O}_{\mathbb{P}^1}} L.$$
Let Δ be a small analytic disc in $\mathbb{P}^1 \setminus P_{\text{red}}$ such that

$$S \cap \pi^{-1}(\Delta) = S_1 \cup \cdots \cup S_r$$

with

$$\pi_j = \pi|_{S_j} : S_j \to \Delta$$

bianalytic. Let furthermore $z \in \Delta$ be a local holomorphic coordinate and

$$x_1(z), \ldots, x_r(z)$$

the eigenvalues of θ over Δ so that

$$S_j = \text{Im}(x_j).$$

Then

$$M|_{S_j}$$

is a holomorphic line bundle over S_j with some holomorphic trivialisation m_j.
Diagonalisation

Set

\[\mathbf{e}_j = \pi_\ast \mathbf{m}_j; \]

with respect to the frame \(\mathbf{e}_1, \ldots, \mathbf{e}_r \) one has

\[\theta(z) = \text{diag}(x_1(z), \ldots, x_r(z)) \]

and

\[\mathbf{m}_j = [\mathbf{e}_j] \in \text{coker}(\theta - x_j) \]

on \(S_j \). A frame for

\[\mathcal{H}om_{\mathcal{O}_Z}(\pi^* \mathcal{E} \otimes \mathcal{O}(1), M(\mathcal{E}, \Phi))|_{S_j} \]

is then given by

\[\pi^* \mathbf{e}_1^\vee \otimes \mathbf{m}_j, \ldots, \pi^* \mathbf{e}_r^\vee \otimes \mathbf{m}_j. \]
Let

\[w_j = \pi_j^{-1}(z) \]

be the local holomorphic coordinate on \(S_j \), then a frame for

\[\mathcal{H}om_{\mathcal{O}_Z}(\pi^*(\mathcal{E} \otimes_{\mathcal{O}_{P^1}} L^\vee), M(\mathcal{E}, \Phi))|_{S_j} \]

is given by

\[\pi^*e_1^\vee \otimes m_j dw_j, \ldots, \pi^*e_r^\vee \otimes m_j dw_j. \]
Dolbeault representatives of tangent vectors

Let

\[T = [(\dot{A}, \dot{\Phi})], \quad X = [(\dot{B}, \dot{\Psi})] \in T_{(\mathcal{E}, \theta)}\mathcal{M} \cong H^1(X, \text{ad}_\theta) \]

with

\[\dot{A} = a d\bar{z}, \quad \dot{\Phi} = \phi dz \]
\[\dot{B} = b d\bar{z}, \quad \dot{\Psi} = \psi dz \]

where

\[a = (a_{ij}), \ b, \ \phi, \ \psi : \Delta \to \mathfrak{gl}_r(\mathbb{C}) \]

are \(L^2 \) matrices of endomorphisms of \(E \) with respect to the framing \(e_1, \ldots, e_r \) satisfying

\[\bar{\partial}(\phi dz) + [ad\bar{z}, \theta] = 0, \quad \bar{\partial}(\psi dz) + [bd\bar{z}, \theta] = 0. \]
LIFTING TANGENT VECTORS

Define now

\[(\tilde{A}, \tilde{\Phi}), \quad (\tilde{B}, \tilde{\Psi})\]
on \(S_j\) as \((\tilde{a}_j d \tilde{w}_j, \tilde{\phi}_j d w_j)\) and \((\tilde{b}_j d \tilde{w}_j, \tilde{\psi}_j d w_j)\) respectively, where

\[
\tilde{a}_j(w_j) : \pi^*_j e_i \mapsto a_{ij}(\pi(w_j)) m_j
\]
\[
\tilde{\phi}_j(w_j) : \pi^*_j e_i \mapsto \phi_{jj}(\pi(w_j)) m_j
\]

and

\[
\tilde{b}_j(w_j) : \pi^*_j e_i \mapsto b_{ij}(\pi(w_j)) m_j
\]
\[
\tilde{\psi}_j(w_j) : \pi^*_j e_i \mapsto \psi_{ij}(\pi(w_j)) m_j.
\]
The above local definitions then match up to define global L^2 sections

$$(\tilde{A}, \tilde{\Phi}), \quad (\tilde{B}, \tilde{\Psi})$$

away from $\pi^{-1}(P_{\text{red}} \cup R)$ where R is the branch locus of $\pi : S \to C$.

The push-forwards of these sections by π are equal to $(\dot{A}, \dot{\Phi})$ and $(\dot{B}, \dot{\Psi})$, respectively.

Finally, they are 1-cocycles in the Dolbeault resolution of

$$\mathcal{H}om_{\mathcal{O}_Z}(\pi^* \mathcal{E} \otimes \mathcal{O}(1), M(\mathcal{E}, \Phi)) \longrightarrow \mathcal{H}om_{\mathcal{O}_Z}(\pi^*(\mathcal{E} \otimes_{\mathcal{O}_C} L^\vee), M(\mathcal{E}, \Phi)).$$

In particular, they define elements

$$\tilde{T}, \tilde{X} \in \text{Ext}^1_{\mathcal{O}_Z}(M(\mathcal{E}, \theta), M(\mathcal{E}, \theta)).$$
Identifying Ext^2

A standard spectral sequence argument yields

$$\text{Ext}^2_{\mathcal{O}_Z}(M(\mathcal{E},\Phi), M(\mathcal{E},\Phi)) \cong H^1(Z, \text{Ext}^1_{\mathcal{O}_Z}(M(\mathcal{E},\Phi), M(\mathcal{E},\Phi))).$$

The Poisson bivector induces an isomorphism

$$\text{Ext}^1_{\mathcal{O}_Z}(M(\mathcal{E},\Phi), M(\mathcal{E},\Phi)) \cong K_S(-(S \cap \pi^{-1}(P))).$$

where S stands for $S_{(\mathcal{E},\Phi)}$. We infer

$$\text{Ext}^2_{\mathcal{O}_Z}(M(\mathcal{E},\Phi), M(\mathcal{E},\Phi)) \cong H^1(S, K_S(-(S \cap \pi^{-1}(P))))$$

$$\cong H^0(S, \mathcal{O}_S(S \cap \pi^{-1}(P)))^\vee$$

$$\cong H^0(S, \mathcal{O}_S)^\vee \bigoplus_{i=1}^n \bigoplus_{k=1}^r \mathbb{C}^{m_k+1}_{(z_k,x_i)}.$$
Yoneda product

The Yoneda product $\tilde{T} \cup \tilde{X}$ of the lifted tangent vectors is given by composition of homomorphisms coupled with wedge product of differential forms. Therefore in local coordinates on the sheet S_i it can be represented by

$$\sum_j (a_{ij} \psi_{ji} - b_{ij} \phi_{ji}) dw_i \wedge d\bar{w}_i \in \Omega^2(S_i).$$

The evaluation of this Yoneda product on the generator of $H^0(S, \mathcal{O}_S)$ is

$$\sum_{i=1}^{r} \int_{S_i} (a_{ij} \psi_{ji} - b_{ij} \phi_{ji}) dw_i \wedge d\bar{w}_i.$$
Mukai form

The changes of variables $w_i \simar z$ transform the above sum of integrals into

$$\int_{\Delta} \text{tr}(\dot{\Psi} \wedge \dot{A} - \dot{\Phi} \wedge \dot{B})$$

which is the expression computing Ω_I on Δ.

The Mukai form evaluated on \tilde{T}, \tilde{X} can then be obtained by globalising the above analysis, using a partition of unity argument.

To make sure the formulae converge at P_{red} one uses the estimate

$$|a_{ij} \psi_{ji}| \leq Cr^{-2+2\delta}$$

of Biquard and Boalch for some $\delta > 0$ as $r = |z - p_k| \to 0$.