Nonlinear Elliptic Equations with Fractional Laplacian

Jianfu Yang

(Dept. of Math., Jiangxi Normal University)
Lévy process and pseudo differential operators
Let (Ω, \mathcal{F}, P) be a probability space, then measurable mappings from Ω to \mathbb{R}^N are called random variables.

A stochastic process is a family of random variables $X = (X(t), t \geq 0)$ that all defined on the same probability space.

Let X be a random variable taking values in \mathbb{R}^N with law μ_X. We say X is infinitely divisible if, for all $n \in \mathbb{N}$, there exist i.i.d. random variables $Y_1^{(n)}, \ldots, Y_n^{(n)}$ such that

$$X = Y_1^{(n)} + \cdots + Y_n^{(n)}.$$
Let (Ω, \mathcal{F}, P) be a probability space, then measurable mappings from Ω to \mathbb{R}^N are called random variables.

A stochastic process is a family of random variables $X = (X(t), t \geq 0)$ that all defined on the same probability space.

Let X be a random variable taking values in \mathbb{R}^N with law μ_X. We say X is infinitely divisible if, for all $n \in \mathbb{N}$, there exist i.i.d. random variables $Y_1^{(n)}, \ldots, Y_n^{(n)}$ such that

$$X = Y_1^{(n)} + \cdots + Y_n^{(n)}.$$
Let \((\Omega, \mathcal{F}, P)\) be a probability space, then measurable mappings from \(\Omega\) to \(\mathbb{R}^N\) are called random variables.

A stochastic process is a family of random variables \(X = (X(t), t \geq 0)\) that all defined on the same probability space.

Let \(X\) be a random variable taking values in \(\mathbb{R}^N\) with law \(\mu_X\). We say \(X\) is infinitely divisible if, for all \(n \in \mathbb{N}\), there exist i.i.d. random variables \(Y_1^{(n)}, \ldots, Y_n^{(n)}\) such that

\[
X = Y_1^{(n)} + \cdots + Y_n^{(n)}.
\]
Lévy process

- Let $\Phi_X(u) = \mathbb{E}(e^{i(u,X)})$ denote the characteristic function of X, where $u \in \mathbb{R}^N$, $E(f(X)) := \int_{\Omega} f(X(\omega))P(d\omega)$ is the expectation for $f(X)$.

- Let $\mathcal{M}(\mathbb{R}^N)$ denote the set of all Borel probability measures on \mathbb{R}^N. If $\mu \in \mathcal{M}(\mathbb{R}^N)$, then

 $$\Phi_\mu(u) = \int_{\mathbb{R}^N} e^{i(u,y)}\mu(dy).$$

- Let ν be a Borel measure defined on $\mathbb{R}^N \setminus \{0\}$. ν is a Lévy measure if

 $$\int_{\mathbb{R}^N \setminus \{0\}} (|y|^2 \wedge 1)\nu(dy) < \infty.$$
Let $\Phi_X(u) = \mathbb{E}(e^{i(u,X)})$ denote the characteristic function of X, where $u \in \mathbb{R}^N$, $E(f(X)) := \int_{\Omega} f(X(\omega))P(d\omega)$ is the expectation for $f(X)$.

Let $\mathcal{M}(\mathbb{R}^N)$ denote the set of all Borel probability measures on \mathbb{R}^N. If $\mu \in \mathcal{M}(\mathbb{R}^N)$, then

$$\Phi_\mu(u) = \int_{\mathbb{R}^N} e^{i(u,y)}\mu(dy).$$

Let ν be a Borel measure defined on $\mathbb{R}^N \setminus \{0\}$. ν is a Lévy measure if

$$\int_{\mathbb{R}^N \setminus \{0\}} (|y|^2 \wedge 1)\nu(dy) < \infty.$$
Lévy process

Let $\Phi_X(u) = \mathbb{E}(e^{i(u,X)})$ denote the characteristic function of X, where $u \in \mathbb{R}^N$, $E(f(X)) := \int_\Omega f(X(\omega))P(d\omega)$ is the expectation for $f(X)$.

Let $\mathcal{M}(\mathbb{R}^N)$ denote the set of all Borel probability measures on \mathbb{R}^N. If $\mu \in \mathcal{M}(\mathbb{R}^N)$, then

$$\Phi_\mu(u) = \int_{\mathbb{R}^N} e^{i(u,y)} \mu(dy).$$

Let ν be a Borel measure defined on $\mathbb{R}^N \setminus \{0\}$. ν is a Lévy measure if

$$\int_{\mathbb{R}^N \setminus \{0\}} (|y|^2 \wedge 1) \nu(dy) < \infty.$$
Lévy-Khintchine formula $\mu \in \mathcal{M}(\mathbb{R}^N)$ is infinitely divisible if there exists a vector $b \in \mathbb{R}^N$, a positive definite symmetric $N \times N$ matrix A and a Lévy measure ν on $\mathbb{R}^N \setminus \{0\}$ such that, for all $u \in \mathbb{R}^N$,

$$
\Phi_\mu(u) = \exp\{i(b, u) - \frac{1}{2}(u, Au) + \int_{\mathbb{R}^N \setminus \{0\}} \left[e^{i(u, y)} - 1 - i(u, y)\chi_{B_1(0)}(y) \right] \nu(dy) \}.\tag{1}
$$

Conversely, any mapping of the form (1) is the characteristic function of an infinitely divisible probability measure on \mathbb{R}^N.
The members of the triple \((b, A, \nu)\) are called the characteristics of the infinitely divisible random variable \(X\).

Examples: Gaussian random variable \(X\): \(b\) is the mean, \(A\) is the covariance matrix, \(\mu = 0\):

\[
\Phi_X(u) = \exp \{i(b, u) - \frac{1}{2}(u, Au)\}.
\]

Poisson random variable \(X\): \(b = 0, A = 0, \nu = c\delta_1\):

\[
\Phi_X(u) = \exp[c(e^{iu} - 1)]
\]
The members of the triple \((b, A, \nu)\) are called the characteristics of the infinitely divisible random variable \(X\).

Examples: Gaussian random variable \(X\): \(b\) is the mean, \(A\) is the covariance matrix, \(\mu = 0\):

\[
\Phi_X(u) = \exp\{i(b, u) - \frac{1}{2}(u, Au)\}.
\]

Poisson random variable \(X\): \(b = 0, A = 0, \nu = c\delta_1\):

\[
\Phi_X(u) = \exp[c(e^{iu} - 1)]
\]
The members of the triple \((b, A, \nu)\) are called the characteristics of the infinitely divisible random variable \(X\).

Examples: Gaussian random variable \(X\): \(b\) is the mean, \(A\) is the covariance matrix, \(\mu = 0\):

\[
\Phi_X(u) = \exp\{i(b, u) - \frac{1}{2}(u, Au)\}.
\]

Poisson random variable \(X\): \(b = 0, A = 0, \nu = c\delta_1\):

\[
\Phi_X(u) = \exp[c(e^{iu} - 1)]
\]
Compound Poisson random variable X:

\[b = c \int_{B_1} \chi \mu(dy), A = 0, \nu = c \mu, c > 0, \text{ i.e.} \]

\[\Phi_X(u) = \exp\left\{ \int_{\mathbb{R}^N} (e^{i(u,y)} - 1) c \mu Z(dy) \right\}, \]

where $X = Z(1) + \cdots + Z(n)$.

We write the characteristic function

\[\Phi_{\mu}(u) = e^{\eta(u)}. \]

\[\eta : \mathbb{R}^N \to \mathbb{C} \] is called Lévy symbol, which is the symbol of a pseudo-differential operator.
Compound Poisson random variable X:

$$b = c \int_{B_1} \chi_{\mu}(dy), \quad A = 0, \quad \nu = c\mu, \quad c > 0,$$

i.e.

$$\Phi_X(u) = \exp\left\{ \int_{\mathbb{R}^N} (e^{i(u,y)} - 1)c\mu Z(dy) \right\},$$

where $X = Z(1) + \cdots + Z(n)$.

We write the characteristic function

$$\Phi_{\mu}(u) = e^{\eta(u)}.$$

$\eta : \mathbb{R}^N \to \mathbb{C}$ is called Lévy symbol, which is the symbol of a pseudo-differential operator.
Compound Poisson random variable X:

$$b = c \int_{B_1} \chi_{\mu}(dy), A = 0, \nu = c\mu, c > 0, \text{ i.e.}$$

$$\Phi_X(u) = \exp\left\{ \int_{\mathbb{R}^N} (e^{i(u,y)} - 1)c\mu Z(dy) \right\},$$

where $X = Z(1) + \cdots + Z(n)$.

We write the characteristic function

$$\Phi_\mu(u) = e^{\eta(u)}.$$

$\eta : \mathbb{R}^N \to \mathbb{C}$ is called Lévy symbol, which is the symbol of a pseudo-differential operator.
Let $X = (X(t), t \geq 0)$ be a stochastic process defined on a probability space (Ω, \mathcal{F}, P).

- We say X has **independent increments** if for each $n \in \mathbb{N}$ and each $0 \leq t_1 \leq \cdots \leq t_{n+1} < \infty$ the random variables $(X(t_{j+1}) - X(t_j), 1 \leq j \leq n)$ are independent;
- it has **stationary increments** if each

$$X(t_{j+1}) - X(t_j) = X(t_{j+1} - t_j) - X(0).$$
Lévy process

Let $X = (X(t), t \geq 0)$ be a stochastic process defined on a probability space (Ω, \mathbb{F}, P).

We say X has **independent increments** if for each $n \in \mathbb{N}$ and each $0 \leq t_1 \leq \cdots \leq t_{n+1} < \infty$ the random variables $(X(t_{j+1}) - X(t_j), 1 \leq j \leq n)$ are independent;

it has **stationary increments** if each

$$X(t_{j+1}) - X(t_j) = X(t_{j+1} - t_j) - X(0).$$
Let $X = (X(t), t \geq 0)$ be a stochastic process defined on a probability space (Ω, \mathcal{F}, P).

We say X has **independent increments** if for each $n \in \mathbb{N}$ and each $0 \leq t_1 \leq \cdots \leq t_{n+1} < \infty$ the random variables $(X(t_{j+1}) - X(t_j), 1 \leq j \leq n)$ are independent;

it has **stationary increments** if each

$$X(t_{j+1}) - X(t_j) = X(t_{j+1} - t_j) - X(0).$$
Lévy process

- \(X \) is a Lévy process if:
 - \(X(0) = 0 \) a.s;
 - \(X \) has independent and stationary increments;
 - \(X \) is stochastically continuous, i.e. for all \(a > 0 \) and all \(s \geq 0 \)
 \[
 \lim_{t \to s} P(|X(t) - X(s)| > a) = 0.
 \]
• \(X \) is a **Lévy process** if:
 • \(X(0) = 0 \) a.s;
 • \(X \) has independent and stationary increments;
 • \(X \) is **stochastically continuous**, i.e. for all \(a > 0 \) and all \(s \geq 0 \)

\[
\lim_{t \to s} P(|X(t) - X(s)| > a) = 0.
\]
A Lévy process X if:

- $X(0) = 0$ a.s;
- X has independent and stationary increments;
- X is stochastically continuous, i.e. for all $a > 0$ and all $s \geq 0$
 \[\lim_{t \to s} P(|X(t) - X(s)| > a) = 0. \]
Lévy process

- X is a **Lévy process** if:
- $X(0) = 0$ a.s;
- X has independent and stationary increments;
- X is **stochastically continuous**, i.e. for all $a > 0$ and all $s \geq 0$
 \[
 \lim_{t \to s} P(|X(t) - X(s)| > a) = 0.
 \]
Lévy process

- If X is a Lévy process, then $X(t)$ is infinitely divisible for each $t \geq 0$.
- If X is a Lévy process, then
 \[\Phi_X(t)(u) = e^{t\eta(u)} \]
 for each $u \in \mathbb{R}^N, t \geq 0$, where η is the Lévy symbol of $X(1)$.
- Let (b, A, ν) be the characteristics of $X(1)$. By Lévy-Khinchine formula
 \[
 \mathbb{E}(e^{i(u,X(t))}) = \exp\{t[i(b, u) - \frac{1}{2}(u, Au)]
 + \int_{\mathbb{R}^N \setminus \{0\}} [e^{i(u,y)} - 1 - i(u,y)\chi_{B_1(0)}(y)]\nu(dy)\}\]
 for each $t \geq 0, u \in \mathbb{R}^N$.

(2)
If X is a Lévy process, then $X(t)$ is infinitely divisible for each $t \geq 0$.

If X is a Lévy process, then

$$
\Phi_{X(t)}(u) = e^{t\eta(u)}
$$

for each $u \in \mathbb{R}^N$, $t \geq 0$, where η is the Lévy symbol of $X(1)$.

Let (b, A, ν) be the characteristics of $X(1)$. By the Lévy-Khinchine formula

$$
E(e^{i(u,X(t))}) = \exp\left\{ t[i(b, u) - \frac{1}{2}(u, Au) + \int_{\mathbb{R}^N\setminus\{0\}} \left[e^{i(u,y)} - 1 - i(u, y)\chi_{B_1(0)}(y)\right] \nu(dy) \right\}.
$$

for each $t \geq 0$, $u \in \mathbb{R}^N$.
Lévy process

- If X is a Lévy process, then $X(t)$ is infinitely divisible for each $t \geq 0$.
- If X is a Lévy process, then
 \[\Phi_{X(t)}(u) = e^{t\eta(u)} \]
 for each $u \in \mathbb{R}^N$, $t \geq 0$, where η is the Lévy symbol of $X(1)$.
- Let (b, A, ν) be the characteristics of $X(1)$. By Lévy-Khinchine formula

 \[
 \mathbb{E}(e^{i(u,X(t))}) = \exp\{ t[i(b,u) - \frac{1}{2}(u,Au) + \int_{\mathbb{R}^N \setminus \{0\}} [e^{i(u,y)} - 1 - i(u,y)\chi_{B_1(0)}(y)]\nu(dy)] \}. \tag{2}
 \]
 for each $t \geq 0, u \in \mathbb{R}^N$.

Lévy process and pseudo differential operators
If \(X \) is a Lévy process, then \(X(t) \) is infinitely divisible for each \(t \geq 0 \).

If \(X \) is a Lévy process, then

\[
\Phi_{X(t)}(u) = e^{t \eta(u)}
\]

for each \(u \in \mathbb{R}^N, \ t \geq 0 \), where \(\eta \) is the Lévy symbol of \(X(1) \).

Let \((b, A, \nu) \) be the characteristics of \(X(1) \). By Lévy-Khinchine formula

\[
\mathbb{E}(e^{i(u,X(t))}) = \exp\{t[i(b, u) - \frac{1}{2}(u, Au)] \\
+ \int_{\mathbb{R}^N \setminus \{0\}} [e^{i(u,y)} - 1 - i(u, y)1_{B_1(0)}(y)] \nu(dy)\}.
\]

(2)

for each \(t \geq 0, \ u \in \mathbb{R}^N \).
Pseudo-differential operators
Let $X = \{X(t)\}$ be a Lévy process, then X is a Feller process.

For $t \geq 0$, q_t denotes the law of $X(t)$, $T_t, t \geq 0$ is the associated Feller semigroup. Then

$$(T_t f)(x) = \int_{\mathbb{R}^N} f(x + y) q_t(dy),$$

where q_t is the law of $X(t)$, $f \in C_b(\mathbb{R}^N), x \in \mathbb{R}^N, t \geq 0$. In other word,

$$(T_t f)(x) = E(f(X(t) + x)).$$
Let \(X = \{X(t)\} \) be a Lévy process, then \(X \) is a Feller process.

For \(t \geq 0 \), \(q_t \) denotes the law of \(X(t) \), \(T_t, t \geq 0 \) is the associated Feller semigroup. Then

\[
(T_t f)(x) = \int_{\mathbb{R}^N} f(x + y) q_t(dy),
\]

where \(q_t \) is the law of \(X(t) \), \(f \in C_b(\mathbb{R}^N), x \in \mathbb{R}^N, t \geq 0 \). In other word,

\[
(T_t f)(x) = E(f(X(t) + x)).
\]
Let $X = \{X(t)\}$ be a Lévy process, then X is a Feller process.

For $t \geq 0$, q_t denotes the law of $X(t)$, $T_t, t \geq 0$ is the associated Feller semigroup. Then

$$(T_t f)(x) = \int_{\mathbb{R}^N} f(x + y) q_t(dy),$$

where q_t is the law of $X(t)$, $f \in C_b(\mathbb{R}^N), x \in \mathbb{R}^N, t \geq 0$. In other word,

$$(T_t f)(x) = E(f(X(t) + x)).$$
Let $X = \{X(t)\}$ be a Lévy process, then X is a Feller process.

For $t \geq 0$, q_t denotes the law of $X(t)$, $T_t, t \geq 0$ is the associated Feller semigroup. Then

$$(T_t f)(x) = \int_{\mathbb{R}^N} f(x + y) q_t(dy),$$

where q_t is the law of $X(t)$, $f \in C_b(\mathbb{R}^N), x \in \mathbb{R}^N, t \geq 0$. In other word,

$$(T_t f)(x) = E(f(X(t) + x)).$$
Semigroup

- **Theorem** Let X be a Lévy process with the Lévy symbol η and characteristics (b, a, ν). Let $(T_t, t \geq 0)$ be the associated Feller semigroup and A be its infinitesimal generator.

- For each $t \geq 0$, $f \in S(\mathbb{R}^N)$, $x \in \mathbb{R}^N$,

$$T_t f(x) = (2\pi)^{-\frac{N}{2}} \int_{\mathbb{R}^N} e^{i(u, x)} e^{t \eta \hat{f}(u)} du,$$

so T_t is a pseudo-differential operator with symbol $e^{t \eta}$.

- For each $f \in S(\mathbb{R}^N)$, $x \in \mathbb{R}^N$,

$$(Af)(x) = (2\pi)^{-\frac{N}{2}} \int_{\mathbb{R}^N} e^{i(u, x)} \eta \hat{f}(u) du,$$

so A is a pseudo-differential operator with symbol η.

Pseudo-differential operators
Theorem Let X be a Lévy process with the Lévy symbol η and characteristics (b, a, ν). Let $(T_t, t \geq 0)$ be the associated Feller semigroup and A be its infinitesimal generator.

For each $t \geq 0$, $f \in S(\mathbb{R}^N)$, $x \in \mathbb{R}^N$,

$$T_t f(x) = (2\pi)^{-\frac{N}{2}} \int_{\mathbb{R}^N} e^{i(u,x)} e^{t\eta} \hat{f}(u) \, du,$$

so T_t is a pseudo-differential operator with symbol $e^{t\eta}$.

For each $f \in S(\mathbb{R}^N)$, $x \in \mathbb{R}^N$,

$$(Af)(x) = (2\pi)^{-\frac{N}{2}} \int_{\mathbb{R}^N} e^{i(u,x)} \eta \hat{f}(u) \, du,$$

so A is a pseudo-differential operator with symbol η.

Pseudo-differential operators
Theorem Let X be a Lévy process with the Lévy symbol η and characteristics (b, a, ν). Let $(T_t, t \geq 0)$ be the associated Feller semigroup and A be its infinitesimal generator.

For each $t \geq 0$, $f \in S(\mathbb{R}^N)$, $x \in \mathbb{R}^N$,

$$T_t f(x) = (2\pi)^{-\frac{N}{2}} \int_{\mathbb{R}^N} e^{i(u,x)} e^{t\eta \hat{f}(u)} du,$$

so T_t is a pseudo-differential operator with symbol $e^{t\eta}$.

For each $f \in S(\mathbb{R}^N)$, $x \in \mathbb{R}^N$,

$$(Af)(x) = (2\pi)^{-\frac{N}{2}} \int_{\mathbb{R}^N} e^{i(u,x)} \eta \hat{f}(u) du,$$

so A is a pseudo-differential operator with symbol η.

Pseudo-differential operators
For each $f \in S(\mathbb{R}^N), x \in \mathbb{R}^N,$

$$(Af)(x) = b^i \partial_i f(x) + \frac{1}{2} a^{ij} \partial_i \partial_j f(x)$$

$$+ \int_{\mathbb{R}^N \setminus \{0\}} [f(x + y) - f(x)y^i \partial_i f(x) \chi_{B_1(0)}(y)] \nu(dy)$$

Examples.

Let X be a standard Brownian motion in $\mathbb{R}^N.$ Then X has characteristics $(0, I, 0),$ so

$$A = \frac{1}{2} \Delta.$$
For each \(f \in S(\mathbb{R}^N), x \in \mathbb{R}^N, \)

\[
(Af)(x) = b^i \partial_i f(x) + \frac{1}{2} a^{ij} \partial_i \partial_j f(x) \\
+ \int_{\mathbb{R}_N \setminus \{0\}} [f(x + y) - f(x)y^i \partial_i f(x) \chi_{B_1(0)}(y)] \nu(dy)
\]

Examples.

Let \(X \) be a standard Brownian motion in \(\mathbb{R}^N \). Then \(X \) has characteristics \((0, I, 0) \), so

\[
A = \frac{1}{2} \Delta.
\]
For each $f \in S(\mathbb{R}^N), x \in \mathbb{R}^N,$

$$(Af)(x) = b^i \partial_i f(x) + \frac{1}{2} a^{ij} \partial_i \partial_j f(x)$$

$$+ \int_{\mathbb{R}^N \setminus \{0\}} \left[f(x + y) - f(x) y^i \partial_i f(x) \chi_{B_1(0)}(y) \right] \nu(dy)$$

Examples.

Let X be a standard Brownian motion in $\mathbb{R}^N.$ Then X has characteristics $(0, I, 0),$ so

$$A = \frac{1}{2} \Delta.$$
Let X be a standard Brownian motion with drift in \mathbb{R}^N. Then X has characteristics $(b, a, 0)$. So

$$A = b^i \partial_i + \frac{1}{2} a^{ij} \partial_i \partial_j.$$

Let X be a rotationally invariant stable process of index α, $0 < \alpha < 2$. Its symbol $\eta(u) = -|u|^\alpha$ for all $u \in \mathbb{R}^N$. Then

$$A = \eta(D) = -(-\Delta)^\alpha. \quad (u_j \rightarrow -i \partial_j).$$

Fix $m, c > 0$,

$$E_{m,c} = \sqrt{m^2 c^4 + c^2 |u|^2 - mc^2}$$

is a Lévy symbol. Hence,

$$A = -\left(\sqrt{m^2 c^4 - c^2 \Delta} - mc^2 \right).$$
Let X be a standard Brownian motion with drift in \mathbb{R}^N. Then X has characteristics $(b, a, 0)$. So

$$A = b^i \partial_i + \frac{1}{2} a^{ij} \partial_i \partial_j.$$

Let X be a rotationally invariant stable process of index α, $0 < \alpha < 2$. Its symbol $\eta(u) = -|u|^{\alpha}$ for all $u \in \mathbb{R}^N$. Then

$$A = \eta(D) = -(-\Delta)^\alpha. \quad (u_j \rightarrow -i\partial_j).$$

Fix $m, c > 0$,

$$E_{m,c} = \sqrt{m^2 c^4 + c^2 |u|^2 - mc^2}$$

is a Lévy symbol. Hence,

$$A = -(\sqrt{m^2 c^4 - c^2 \Delta} - mc^2).$$
Semigroup

- Let X be a standard Brownian motion with drift in \mathbb{R}^N. Then X has characteristics $(b, a, 0)$. So
 \[
 A = b^i \partial_i + \frac{1}{2} a^{ij} \partial_i \partial_j.
 \]

- Let X be a rotationally invariant stable process of index $\alpha, 0 < \alpha < 2$. Its symbol $\eta(u) = -|u|^\alpha$ for all $u \in \mathbb{R}^N$. Then
 \[
 A = \eta(D) = -(-\Delta)^\alpha. \quad (u_j \rightarrow -i \partial_j).
 \]

- Fix $m, c > 0$,
 \[
 E_{m,c} = \sqrt{m^2 c^4 + c^2 |u|^2 - mc^2}
 \]
 is a Lévy symbol. Hence,
 \[
 A = - (\sqrt{m^2 c^4 - c^2 \Delta} - mc^2).
 \]
Fractional Laplacian and its Extension
The fractional Laplacian of a function \(u : \mathbb{R}^N \to \mathbb{R} \) is expressed by the formula

\[
(\Delta)^\alpha u(x) = C_{N,\alpha} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x - y|^{N+2\alpha}} \, dy,
\]

which is a nonlocal operator.

L.A.Caffarelli and Silvestre Comm.PDE (2007) use Dirichlet to Neumann mapping to realize the fractional Laplacian \((\Delta)^\alpha\) as the boundary operator of a suitable extension.

Given \(\alpha \in (0, 1) \), consider the space \(H^1_0(\mathbb{R}_+^{N+1}, y^{1-2\alpha}) \) of measurable functions \(v \) with the norm

\[
\| v \|^2_{H^1_0(\mathbb{R}_+^{N+1}, y^{1-2\alpha})} = \int_{\mathbb{R}_+^{N+1}} y^{1-2\alpha} |\nabla v|^2 \, dx \, dy.
\]
The fractional Laplacian of a function \(u : \mathbb{R}^N \rightarrow \mathbb{R} \) is expressed by the formula

\[
(-\Delta)^\alpha u(x) = C_{N,\alpha} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x - y|^{N+2\alpha}} \, dy,
\]

which is a nonlocal operator.

L.A. Caffarelli and Silvestre Comm. PDE (2007) use Dirichlet to Neumann mapping to realize the fractional Laplacian \((-\Delta)^\alpha\) as the boundary operator of a suitable extension.

Given \(\alpha \in (0, 1) \), consider the space \(H^1_0(\mathbb{R}^{N+1}_+, y^{1-2\alpha}) \) of measurable functions \(v \) with the norm

\[
\| v \|_{H^1_0(\mathbb{R}^{N+1}_+, y^{1-2\alpha})}^2 = \int_{\mathbb{R}^{N+1}_+} y^{1-2\alpha} |\nabla v|^2 \, dx dy.
\]
The fractional Laplacian of a function $u : \mathbb{R}^N \to \mathbb{R}$ is expressed by the formula

$(-\Delta)^\alpha u(x) = C_{N,\alpha} \int_{\mathbb{R}^N} \frac{u(x) - u(y)}{|x - y|^{N+2\alpha}} dy,$

which is a nonlocal operator.

L.A. Caffarelli and Silvestre Comm. PDE (2007) use Dirichlet to Neumann mapping to realize the fractional Laplacian $(-\Delta)^\alpha$ as the boundary operator of a suitable extension.

Given $\alpha \in (0, 1)$, consider the space $H_0^1(\mathbb{R}_+^{N+1}, y^{1-2\alpha})$ of measurable functions v with the norm

$$\|v\|_{H_0^1(\mathbb{R}_+^{N+1}, y^{1-2\alpha})}^2 = \int_{\mathbb{R}_+^{N+1}} y^{1-2\alpha} |\nabla v|^2 \, dx \, dy.$$
For \(u \in H^{\alpha}(\mathbb{R}^N) \), the extension \(E_\alpha(u) \) of \(u \) related to the operator \((-\Delta)^\alpha\) is defined as the minimizer of the problem

\[
\min \left\{ \int_{\mathbb{R}_+^{N+1}} y^{1-2\alpha} |\nabla v|^2 \, dx \, dy \mid v \in H^1_0(\mathbb{R}_+^{N+1}, y^{1-2\alpha}), \quad tr_{\mathbb{R}^N} v = u \right\}.
\]
The function v satisfies

$$\text{div}(y^{1-2\alpha} \nabla v) = 0 \quad \text{in} \quad \mathbb{R}^{N+1}, \quad v = u \quad \text{on} \quad \partial \mathbb{R}^{N+1}.$$

The fundamental solution of the operator is

$$P_{\alpha}(x, y) = C_{N, \alpha} \frac{y^{2\alpha}}{(|x|^2 + y^2)^{\frac{N+2\alpha}{2}}} , \quad y > 0.$$

L.A. Caffarelli and Silvestre showed that

$$\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial v}{\partial \nu} = (-\Delta)^\alpha u.$$
The function v satisfies

$$\text{div}(y^{1-2\alpha}\nabla v) = 0 \quad \text{in} \quad \mathbb{R}^{N+1}, \quad v = u \quad \text{on} \quad \partial\mathbb{R}^{N+1}.$$

The fundamental solution of the operator is

$$P_{\alpha}(x,y) = C_{N,\alpha} \frac{y^{2\alpha}}{(|x|^2 + y^2)^{\frac{N+2\alpha}{2}}}, \quad y > 0.$$

L.A. Caffarelli and Silvestre showed that

$$\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial v}{\partial \nu} = (-\Delta)^{\alpha} u.$$
The function ν satisfies
\[
div(y^{1-2\alpha}\nabla \nu) = 0 \quad \text{in} \quad \mathbb{R}^{N+1}, \quad \nu = u \quad \text{on} \quad \partial \mathbb{R}^{N+1}.
\]

The fundamental solution of the operator is
\[
P_{\alpha}(x, y) = C_{N,\alpha} \frac{y^{2\alpha}}{(|x|^2 + y^2)^{\frac{N+2\alpha}{2}}}, \quad y > 0.
\]

L.A. Caffarelli and Silvestre showed that
\[
\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial \nu}{\partial y} = (-\Delta)^\alpha u.
\]
This was proved by the Poisson formula or by using Fourier transform.
The relation was found by M. Stein.\((−\Delta)^\alpha\) is a pseudo-differential operator with the symbol \(|\xi|^\alpha\).
This was proved by the Poisson formula or by using Fourier transform.

The relation was found by M. Stein.

\((-\Delta)^{\alpha}\) is a pseudo-differential operator with the symbol \(|\xi|^{\alpha}\).
This was proved by the Poisson formula or by using Fourier transform.
The relation was found by M. Stein.
\((-\Delta)^\alpha\) is a pseudo-differential operator with the symbol \(|\xi|^\alpha\).
Therefore, we may transform the problem

\[(-\Delta)^\alpha u = f(u) \quad \text{in} \quad \mathbb{R}^N \]

into the problem

\[\text{div}(y^{1-2\alpha} \nabla v) = 0 \quad \text{in} \quad \mathbb{R}^{N+1}, \]

\[\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial v}{\partial \nu} = f(v(x, \cdot)) \quad \text{on} \quad \partial \mathbb{R}^{N+1}. \]
Therefore, we may transform the problem

\[(-\Delta)^\alpha u = f(u) \quad \text{in} \quad \mathbb{R}^N \]

in to the problem

\[
div (y^{1-2\alpha} \nabla v) = 0 \quad \text{in} \quad \mathbb{R}^{N+1},
\]

\[
\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial v}{\partial \nu} = f(v(x, \cdot)) \quad \text{on} \quad \partial \mathbb{R}^{N+1}.
\]
Let $\Omega \subset \mathbb{N}$ be a bounded domain.

- The problem

$$(-\Delta)^{\alpha} u = f(u) \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial \Omega$$

is not well defined.

- The correct problem is proposed as

$$(-\Delta)^{\alpha} u = f(u) \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{in} \quad \mathbb{R}^N \setminus \Omega.$$
Let $\Omega \subset \mathbb{N}$ be a bounded domain.

- The problem

\[
(-\Delta)^\alpha u = f(u) \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial \Omega
\]

is not well defined.

- The correct problem is proposed as

\[
(-\Delta)^\alpha u = f(u) \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{in} \quad \mathbb{R}^N \setminus \Omega.
\]
We may define by the spectrum of $-\Delta$ a fractional operator A^α.

Let $\{\varphi_k\}_{k=1}^\infty$ denote an orthonormal basis of $L^2(\Omega)$ consisting of eigenfunctions of $-\Delta$ in Ω with homogeneous Dirichlet boundary conditions, associated to the eigenvalues $\{\lambda_k\}_{k=1}^\infty$.

The operator A^α is defined for any $u \in C^\infty_c(\Omega)$ by

$$A^\alpha u = \sum_{k=1}^\infty \lambda_k^\alpha u_k \varphi_k,$$

where

$$u = \sum_{k=1}^\infty u_k \varphi_k, \quad u_k = \int_\Omega u \varphi_k \, dx.$$
We may define by the spectrum of $-\Delta$ a fractional operator A^α. Let $\{\varphi_k\}_{k=1}^\infty$ denote an orthonormal basis of $L^2(\Omega)$ consisting of eigenfunctions of $-\Delta$ in Ω with homogeneous Dirichlet boundary conditions, associated to the eigenvalues $\{\lambda_k\}_{k=1}^\infty$. The operator A^α is defined for any $u \in C_\infty^\infty(\Omega)$ by

$$A^\alpha u = \sum_{k=1}^\infty \lambda_k^\alpha u_k \varphi_k,$$

where

$$u = \sum_{k=1}^\infty u_k \varphi_k, \quad u_k = \int_\Omega u \varphi_k \, dx.$$
We may define by the spectrum of $-\Delta$ a fractional operator A^α.

Let $\{\varphi_k\}_{k=1}^\infty$ denote an orthonormal basis of $L^2(\Omega)$ consisting of eigenfunctions of $-\Delta$ in Ω with homogeneous Dirichlet boundary conditions, associated to the eigenvalues $\{\lambda_k\}_{k=1}^\infty$.

The operator A^α is defined for any $u \in C_\infty^\infty(\Omega)$ by

$$A^\alpha u = \sum_{k=1}^\infty \lambda_k^\alpha u_k \varphi_k,$$

where

$$u = \sum_{k=1}^\infty u_k \varphi_k, \quad u_k = \int_{\Omega} u \varphi_k \, dx.$$
We may define by the spectrum of $-\Delta$ a fractional operator A^α.

Let $\{\varphi_k\}_{k=1}^\infty$ denote an orthonormal basis of $L^2(\Omega)$ consisting of eigenfunctions of $-\Delta$ in Ω with homogeneous Dirichlet boundary conditions, associated to the eigenvalues $\{\lambda_k\}_{k=1}^\infty$.

The operator A^α is defined for any $u \in C_c^\infty(\Omega)$ by

$$A^\alpha u = \sum_{k=1}^\infty \lambda_k^\alpha u_k \varphi_k,$$

where

$$u = \sum_{k=1}^\infty u_k \varphi_k, \quad u_k = \int_{\Omega} u \varphi_k \, dx.$$
Elliptic Problems with Fractional Laplacian in Bounded Domains

- The operators \((-\Delta)^{\alpha}\) and \(A^{\alpha}\) are not the same, since they have different eigenvalues and eigenfunctions.
- The first eigenvalues of \((-\Delta)^{\alpha}\) is strictly less than the one of \(A^{\alpha}\).
- The problem
 \[
 A^{\alpha} u = f(u) \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial\Omega
 \]
 is proper.
- In the following, we denote \(A^{\alpha}\) by \((-\Delta)^{\alpha}\) in a bounded domain. We consider the problem
 \[
 (-\Delta)^{\alpha} u = f(u), \quad \text{in} \quad \Omega, \quad u = 0, \quad \text{on} \quad \partial\Omega. \tag{3}
 \]
The operators \((-\Delta)^\alpha\) and \(A^\alpha\) are not the same, since they have different eigenvalues and eigenfunctions.

The first eigenvalues of \((-\Delta)^\alpha\) is strictly less than the one of \(A^\alpha\).

The problem

\[A^\alpha u = f(u) \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial\Omega \]

is proper.

In the following, we denote \(A^\alpha\) by \((-\Delta)^\alpha\) in a bounded domain. We consider the problem

\[(-\Delta)^\alpha u = f(u), \quad \text{in} \quad \Omega, \quad u = 0, \quad \text{on} \quad \partial\Omega. \quad (3) \]
The operators \((-\Delta)^\alpha\) and \(A^\alpha\) are not the same, since they have different eigenvalues and eigenfunctions.

the first eigenvalues of \((-\Delta)^\alpha\) is strictly less than the one of \(A^\alpha\).

The problem

\[
A^\alpha u = f(u) \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial\Omega
\]

is proper.

In the following, we denote \(A^\alpha\) by \((-\Delta)^\alpha\) in a bounded domain. We consider the problem

\[
(-\Delta)^\alpha u = f(u), \quad \text{in} \quad \Omega, \quad u = 0, \quad \text{on} \quad \partial\Omega. \tag{3}
\]
The operators \((-\Delta)^\alpha\) and \(A^\alpha\) are not the same, since they have different eigenvalues and eigenfunctions.

The first eigenvalues of \((-\Delta)^\alpha\) is strictly less than the one of \(A^\alpha\).

The problem

\[
A^\alpha u = f(u) \quad \text{in} \quad \Omega, \quad u = 0 \quad \text{on} \quad \partial\Omega
\]

is proper.

In the following, we denote \(A^\alpha\) by \((-\Delta)^\alpha\) in a bounded domain. We consider the problem

\[
(-\Delta)^\alpha u = f(u), \quad \text{in} \quad \Omega, \quad u = 0, \quad \text{on} \quad \partial\Omega. \quad (3)
\]
The operator \((-\Delta)^\alpha\) can be extended by density for \(u\) in the Hilbert space

\[
H = \{ u \in L^2(\Omega) : \|u\|_H^2 = \sum_{k=1}^{\infty} \lambda_k^\alpha |u_k|^2 < +\infty \}.
\]

We have

\[
H = H_\alpha^\alpha(\Omega) \quad \text{if} \quad \alpha \in (0, \frac{1}{2}); \quad H = H_{00}^{\frac{1}{2}}(\Omega) \quad \text{if} \quad \alpha = \frac{1}{2};
\]

\[
H = H_0^\alpha(\Omega) \quad \text{if} \quad \alpha \in (\frac{1}{2}, 1).
\]
Elliptic Problems with Fractional Laplacian in Bounded Domains

The operator $(-\Delta)^\alpha$ can be extended by density for u in the Hilbert space

$$H = \{ u \in L^2(\Omega) : \| u \|_H^2 = \sum_{k=1}^{\infty} \lambda_k^\alpha |u_k|^2 < +\infty \}.$$

We have

$$H = H^\alpha(\Omega) \text{ if } \alpha \in (0, \frac{1}{2}); \quad H = H^\frac{1}{2}_{00}(\Omega) \text{ if } \alpha = \frac{1}{2}; \quad H = H^\alpha_0(\Omega) \text{ if } \alpha \in (\frac{1}{2}, 1).$$
We will consider the extension problem of (4).

Let \(\Omega \subset \mathbb{N} \) be a bounded domain and \(\mathcal{C} = \Omega \times (0, \infty) \) be a cylinder. Define

\[
H_{0,L}^1(\mathcal{C}) = \{ v \in L^2(\mathcal{C}) \| v \|_{H_{0,L}^1(\mathcal{C})} < \infty \},
\]

where

\[
\| v \|_{H_{0,L}^1(\mathcal{C})} = (K_\alpha \int_{\mathcal{C}} y^{1-2\alpha} |\nabla v|^2 \, dx \, dy)^{\frac{1}{2}}.
\]
We will consider the extension problem of (4).

Let $\Omega \subset \mathbb{N}$ be a bounded domain and $\mathcal{C} = \Omega \times (0, \infty)$ be a cylinder. Define

$$H^1_{0,L}(\mathcal{C}) = \{ v \in L^2(\mathcal{C}) \| v \|_{H^1_{0,L}(\mathcal{C})} < \infty \},$$

where

$$\| v \|_{H^1_{0,L}(\mathcal{C})} = (K_\alpha \int_{\mathcal{C}} y^{1-2\alpha} |\nabla v|^2 \, dx \, dy)^{\frac{1}{2}}.$$
For a function $u \in H$, we define the extension $w = E_\alpha(u)$ to the cylinder C as the solution to the problem

$$\text{div}(y^{1-2\alpha}\nabla w) = 0 \quad \text{in} \quad C, \quad w = 0 \quad \text{on} \quad \partial_L C,$$

$$w = u \quad \text{on} \quad \Omega \times \{y = 0\}.$$

The extension operator is an isometry between H and $H_{0,L}^1(C)$. That is

$$\|E_\alpha(u)\|_{H_{0,L}^1(C)} = \|u\|_H, \quad \forall u \in H.$$

We may verify that for $\nu = E_\alpha(u)$,

$$\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial \nu}{\partial y} = (-\Delta)^\alpha u.$$
For a function $u \in H$, we define the extension $w = E_\alpha(u)$ to the cylinder C as the solution to the problem

$$\text{div}(y^{1-2\alpha}\nabla w) = 0 \quad \text{in} \quad C, \quad w = 0 \quad \text{on} \quad \partial_L C,$$

$$w = u \quad \text{on} \quad \Omega \times \{y = 0\}.$$

The extension operator is an isometry between H and $H^1_{0,L}(C)$. That is

$$\|E_\alpha(u)\|_{H^1_{0,L}(C)} = \|u\|_H, \quad \forall u \in H.$$

We may verify that for $v = E_\alpha(u)$,

$$\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial v}{\partial \nu} = (-\Delta)^\alpha u.$$
For a function $u \in H$, we define the extension $w = E_\alpha(u)$ to the cylinder C as the solution to the problem

$$\text{div}(y^{1-2\alpha}\nabla w) = 0 \quad \text{in} \quad C, \quad w = 0 \quad \text{on} \quad \partial_L C, \quad w = u \quad \text{on} \quad \Omega \times \{y = 0\}.$$

The extension operator is an isometry between H and $H^1_{0,L}(C)$. That is

$$\|E_\alpha(u)\|_{H^1_{0,L}(C)} = \|u\|_H, \quad \forall u \in H.$$

We may verify that for $v = E_\alpha(u)$,

$$\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial v}{\partial y} = (-\Delta)^\alpha u.$$
The problem

\[
(-\Delta)_{\alpha} u = f(u), \quad \text{in} \quad \Omega, \quad u = 0, \quad \text{on} \quad \partial \Omega
\]

(4)

can be transformed into the problem

\[
\text{div}(y^{1-2\alpha} \nabla w) = 0 \quad \text{in} \quad \mathcal{C}, \quad w = 0 \quad \text{on} \quad \partial_{L} \mathcal{C},
\]

\[
\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial w}{\partial \nu} = f(w(x, \cdot)) \quad \text{on} \quad \Omega \times \{y = 0\}.
\]

(5)
The problem

\[(-\Delta)^\alpha u = f(u), \quad \text{in} \quad \Omega, \quad u = 0, \quad \text{on} \quad \partial \Omega \] \hspace{1cm} (4)

can be transformed into the problem

\[\text{div}(y^{1-2\alpha}\nabla w) = 0 \quad \text{in} \quad \mathcal{C}, \quad w = 0 \quad \text{on} \quad \partial_L \mathcal{C}, \]

\[\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial w}{\partial \nu} = f(w(x, \cdot)) \quad \text{on} \quad \Omega \times \{y = 0\}. \] \hspace{1cm} (5)
Critical problem of fractional Laplacian
Critical problem of fractional Laplacian

We consider the critical problem

\[(-\Delta)^\alpha u = u^{\frac{N+2\alpha}{N-2\alpha}} + \lambda u, \quad \text{in} \quad \Omega, \quad u = 0, \quad \text{on} \quad \partial\Omega, \quad (6) \]

where \(2^* = \frac{2N}{N-2\alpha} \) is the critical exponent of the inclusion \(H^\alpha_0(\Omega) \hookrightarrow L^p(\Omega) \).

The extension problem of (6) is

\[\text{div}(y^{1-2\alpha}\nabla v) = 0 \quad \text{in} \quad \mathcal{C}, \quad v = 0 \quad \text{on} \quad \partial_L\mathcal{C}, \]

\[\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial v}{\partial y} = v^{\frac{N+2\alpha}{N-2\alpha}} + \lambda v \quad \text{on} \quad \Omega \times \{ y = 0 \}. \quad (7) \]
We consider the critical problem

\[(-\Delta)^\alpha u = u^{\frac{N+2\alpha}{N-2\alpha}} + \lambda u, \quad \text{in} \quad \Omega, \quad u = 0, \quad \text{on} \quad \partial\Omega, \quad (6) \]

where \(2^*_\alpha = \frac{2N}{N-2\alpha}\) is the critical exponent of the inclusion \(H^\alpha_0(\Omega) \hookrightarrow L^p(\Omega)\).

The extension problem of (6) is

\[\text{div}(y^{1-2\alpha}\nabla v) = 0 \quad \text{in} \quad \mathcal{C}, \quad v = 0 \quad \text{on} \quad \partial_L\mathcal{C}, \]

\[\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial v}{\partial y} = v^{\frac{N+2\alpha}{N-2\alpha}} + \lambda v \quad \text{on} \quad \Omega \times \{y = 0\}. \quad (7) \]
The functional of problem (7)

\[I(v) = \frac{1}{2} \int_{C_\Omega} y^{1-2\alpha} |\nabla v|^2 \, dx \, dy - \int_{\Omega \times \{0\}} \left\{ \frac{1}{2\alpha^*} |v|^{2*\alpha} - \frac{\lambda}{2} |v|^2 \right\} \, dx \]

does not satisfy (PS) condition.

| \(I \) satisfies (PS)\(_c\) condition for \(c \in (0, \frac{\alpha}{N} S^\frac{N}{2\alpha}) \), where |
The functional of problem (7)

\[I(v) = \frac{1}{2} \int_{C_{\Omega}} y^{1-2\alpha} |\nabla v|^2 \, dx \, dy - \int_{\Omega \times \{0\}} \left\{ \frac{1}{2^*} |v|^{2^*_\alpha} - \frac{\lambda}{2} |v|^2 \right\} \, dx \]

does not satisfy (PS) condition.

I satisfies (PS)_c condition for \(c \in (0, \frac{\alpha}{N} S^{\frac{N}{2\alpha}}) \), where
For $w \in H^1_0(\mathbb{R}^{N+1})$, S is achieved by $w_\varepsilon = E_\alpha(u_\varepsilon)$, where
\[
 u_\varepsilon(x) = \frac{\varepsilon^{N-2\alpha}}{(|x|^2 + \varepsilon^2)^{\frac{N-2\alpha}{2}}}.
\]
S is the best constant of the inequality

$$
\int_{\mathbb{R}^{N+1}} y^{1-2\alpha} |\nabla w(x, y)|^2 \, dx \, dy \\
\geq S \left(\int_{\mathbb{R}^N} |w(x, 0)|^{2^{*\alpha}} \, dx \right)^\frac{N-2\alpha}{N}
$$

for $w \in H^1_0(\mathbb{R}^{N+1})$.

S is achieved by $w_\varepsilon = E_\alpha(u_\varepsilon)$, where

$$
u_\varepsilon(x) = \frac{\varepsilon^{\frac{N-2\alpha}{2}}}{(\varepsilon^2 + |x|^2)^{\frac{N-2\alpha}{2}}}.
$$

Suppose $0 < \lambda < \lambda_1^\alpha$. For $\alpha = \frac{1}{2}$, Tan showed problem (7) has at least a positive solution, general case was considered by de Pablo et al.
Critical problem of fractional Laplacian

- S is the best constant of the inequality

$$
\int_{\mathbb{R}_+^{N+1}} y^{1-2\alpha} |\nabla w(x, y)|^2 \, dx \, dy
\geq S\left(\int_{\mathbb{R}^N} |w(x, 0)|^{2^*} \, dx \right)^{N-2\alpha} \frac{N}{N-2\alpha}
$$

for $w \in H_0^1(\mathbb{R}_+^{N+1})$.

- S is achieved by $w_\varepsilon = E_\alpha(u_\varepsilon)$, where

$$
u_\varepsilon(x) = \varepsilon^{\frac{N-2\alpha}{2}} \frac{\varepsilon^{\frac{N-2\alpha}{2}}}{(|x|^2 + \varepsilon^2)^{\frac{N-2\alpha}{2}}}.
$$

- Suppose $0 < \lambda < \lambda_1^{\alpha}$. For $\alpha = \frac{1}{2}$, Tan showed problem (7) has at least a positive solution, general case was considered by de Pablo et al.
To verify the mountain pass level \(c \in (0, \frac{\alpha}{N} S(\alpha, N)^{\frac{N}{2\alpha}}) \), we need to use the function \(w_\varepsilon = E_\alpha(u_\varepsilon) \).

However, \(w_\varepsilon \) has no explicitly formula.

But we have the following estimates:

\[
w_\varepsilon(x, y) = \varepsilon^{\frac{2\alpha-N}{2}} w_1\left(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}\right), \quad |\nabla w_1(x, y)| \leq \frac{C}{y} w_1(x, y)
\]

for \(\alpha > 0, (x, y) \in \mathbb{R}_{+}^{N+1} \) which enable us to verify the mountain pass level \(c \in (0, \frac{\alpha}{N} S(\alpha, N)^{\frac{N}{2\alpha}}) \).
To verify the mountain pass level $c \in (0, \frac{\alpha}{N} S(\alpha, N)^{\frac{N}{2\alpha}})$, we need to use the function $w_\varepsilon = E_\alpha(u_\varepsilon)$.

However, w_ε has no explicitly formula.

But we have the following estimates:

$$w_\varepsilon(x, y) = \varepsilon^{\frac{2\alpha-N}{2}} w_1(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}), \quad |\nabla w_1(x, y)| \leq \frac{C}{y} w_1(x, y)$$

for $\alpha > 0, (x, y) \in \mathbb{R}_{+}^{N+1}$ which enable us to verify the mountain pass level $c \in (0, \frac{\alpha}{N} S(\alpha, N)^{\frac{N}{2\alpha}})$.
To verify the mountain pass level $c \in (0, \frac{\alpha}{N} S(\alpha, N) \frac{N}{2\alpha})$, we need to use the function $w_\varepsilon = E_\alpha(u_\varepsilon)$.

However, w_ε has no explicitly formula.

But we have the following estimates:

$$w_\varepsilon(x, y) = \varepsilon^{\frac{2\alpha-N}{2}} w_1(\frac{x}{\varepsilon}, \frac{y}{\varepsilon}), \quad |\nabla w_1(x, y)| \leq \frac{C}{y} w_1(x, y)$$

for $\alpha > 0, (x, y) \in \mathbb{R}^{N+1}_+$ which enable us to verify the mountain pass level $c \in (0, \frac{\alpha}{N} S(\alpha, N) \frac{N}{2\alpha})$.
We consider the existence of infinitely many solutions of the problem

\[
\begin{cases}
(−\Delta)^\alpha u = |u|^{2^*-2}u + \lambda u & \text{in } \Omega, \\
u = 0, & \text{on } \partial\Omega,
\end{cases}
\]

or equivalently, of the problem

\[
div(y^{1-2\alpha}\nabla v) = 0 \quad \text{in } C, \quad v = 0 \quad \text{on } \partial_L C,
\]

\[
\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial v}{\partial y} = |v|^{\frac{4\alpha}{N-2\alpha}} v + \lambda v \quad \text{on } \Omega \times \{y = 0\}.
\]
We consider the existence of infinitely many solutions of the problem

\[
\begin{aligned}
(-\Delta)^\alpha u &= |u|^{2^*-2}u + \lambda u \quad \text{in } \Omega, \\
u &= 0, \quad \text{on } \partial \Omega,
\end{aligned}
\] (9)

or equivalently, of the problem

\[
div(y^{1-2\alpha} \nabla v) = 0 \quad \text{in } \mathcal{C}, \quad v = 0 \quad \text{on } \partial_L \mathcal{C},
\]

\[
\lim_{y \to 0^+} y^{1-2\alpha} \frac{\partial v}{\partial y} = |v|^\frac{4\alpha}{N-2\alpha} v + \lambda v \quad \text{on } \Omega \times \{y = 0\}.
\] (10)
Theorem (1 YanYangYu)

If $N > 6\alpha$, then (9) has infinitely many solutions.
The subcritical problem

\[
\begin{align*}
\text{div}(y^{1-2\alpha} \nabla v) &= 0, \quad \text{in } C\Omega, \\
\nu &= 0, \quad \text{on } \partial_L C\Omega, \\
y^{1-2\alpha} \frac{\partial v}{\partial y} &= -|v(x, 0)|^{p_n-1}v(x, 0) - \lambda v(x, 0), \quad \text{on } \Omega \times \{0\}.
\end{align*}
\]

where \(p_n = 2^*_\alpha - \varepsilon_n\) with \(\varepsilon_n \to 0\) possesses infinitely many solutions \(\{v_n^j\}_{j=1}^\infty\). For a fixed \(j\), \(v_n = v_n^j\) is a \((PS)_c\) sequence of the functional \(I\).

- It is not clear if \(\{v_n\}\) has a convergent subsequence.
- Corresponding critical values \(c_n^j\) is increasing in \(j\) and \(c_n^j \to \infty\) as \(j \to \infty\).
The subcritical problem

\[
\begin{cases}
\text{div}(y^{1-2\alpha} \nabla v) = 0, & \text{in } C_\Omega, \\
v = 0, & \text{on } \partial_L C_\Omega, \\
y^{1-2\alpha} \frac{\partial v}{\partial y} = -|v(x, 0)|^{p_n-1} v(x, 0) - \lambda v(x, 0), & \text{on } \Omega \times \{0\}.
\end{cases}
\]

(11)

where \(p_n = 2^*_\alpha - \varepsilon_n\) with \(\varepsilon_n \to 0\) possesses infinitely many solutions \(\{v^j_n\}_{j=1}^\infty\). For a fixed \(j\), \(v_n = v^j_n\) is a \((PS)_c\) sequence of the functional \(I\).

It is not clear if \(\{v_n\}\) has a convergent subsequence.

Corresponding critical values \(c^j_n\) is increasing in \(j\) and \(c^j_n \to \infty\) as \(j \to \infty\).
Critical problem of fractional Laplacian

- The subcritical problem

\[
\begin{aligned}
\begin{cases}
\text{div}(y^{1-2\alpha} \nabla v) = 0, & \text{in } \mathcal{C}_\Omega, \\
v = 0, & \text{on } \partial_L \mathcal{C}_\Omega, \\
y^{1-2\alpha} \frac{\partial v}{\partial y} = -|v(x, 0)|^{p_n-1}v(x, 0) - \lambda v(x, 0), & \text{on } \Omega \times \{0\}.
\end{cases}
\end{aligned}
\]

(11)

where \(p_n = 2^*_{\alpha} - \varepsilon_n \) with \(\varepsilon_n \to 0 \) possesses infinitely many solutions \(\{v_n^j\}_{j=1}^\infty \). For a fixed \(j \), \(v_n = v_n^j \) is a \((PS)_c\) sequence of the functional \(I \).

- It is not clear if \(\{v_n\} \) has a convergent subsequence.

- Corresponding critical values \(c_n^j \) is increasing in \(j \) and \(c_n^j \to \infty \) as \(j \to \infty \).
We have the following global compactness result:

Proposition 1 Let \(\{v_n\} \subset H^1_{0,L}(C_\Omega) \) be a solution of (11) satisfying

\[
\|v_n\|_{H^1_{0,L}(C_\Omega)} \leq C.
\]

Then, there exist a solution \(v_0 \in H^1_{0,L}(C_\Omega) \) of (10), a finite sequence \(\{W^j\}_{j=1}^k \subset H^1_{0,L}(\mathbb{R}^N) \) solutions of

\[
\begin{aligned}
\text{div}(y^{1-2\alpha}\nabla v) &= 0, & \text{in } \mathbb{R}^{N+1}_+, \\
y^{1-2\alpha}\frac{\partial v}{\partial y} &= -\beta_j |v(x,0)|^{2\alpha^*-2}v(x,0), & \text{in } \mathbb{R}^N,
\end{aligned}
\] (12)
where $\beta_j \in (0, 1]$ is some constant, and sequences $\{x_j^j\}_{j=1}^k$, $\{\sigma^j_n\}_{j=1}^k$ satisfying $\sigma^j_n > 0$, $x_n^j \in \Omega$ and as $n \to +\infty$,

$$\sigma^j_n \text{dist}(x_n^j, \partial \Omega) \to \infty, \quad \frac{\sigma^j_n}{\sigma^i_n} + \frac{\sigma^i_n}{\sigma^j_n} + \sigma^i_n \sigma^j_n |x_n^i - x_n^j|^2 \to +\infty, \quad i \neq j,$$

(13)

$$\|v_n - v_0 - \sum_{j=1}^k \rho_{x_n^j, \sigma^j_n}(W^j)\|_{H^1_{0,L}(\mathbb{R}^N)} \to 0.$$ \hspace{1cm} (14)

where

$$\rho_{x, \sigma}(W) = \sigma \frac{N-2\alpha}{2} W(\sigma(\cdot - (x, 0))).$$
Theorem (2)

Suppose \(N > 6 \alpha \), then for any \(v_n \), which is a solution of (11) satisfying \(\|v_n\|_{H^1_{0,L}(C_\Omega)} \leq C \) for some constant independent of \(n \), \(v_n \) converges strongly in \(H^1_{0,L}(C_\Omega) \) as \(n \to +\infty \).
Proof of Theorem 2

We will show that there are no bubbles $\rho_{x_n, \sigma_n}(W^j)$ in Proposition 1 appeared.

We argue by contradiction. Suppose the assertion is not true. So there are bubbles $\rho_{x_n, \sigma_n}(W^j)$. Denote by $B_r(z)$ the ball in \mathbb{R}^{N+1}, centered at $z \in \mathbb{R}^{N+1}$ with radius r,

$$\sigma_n = \min_{1 \leq j \leq k} \sigma^j_n$$

and

$$B_n = B_{t_n \sigma_n^{-\frac{1}{2}}((x_n, 0)) \cap C_\Omega}, \quad \partial_i B_n = \partial B_n \cap C_\Omega.$$
Critical problem of fractional Laplacian

- **Proof of Theorem 2**

We will show that there are no bubbles \(\rho_{x_n, \sigma_n}(W^j) \) in Proposition 1 appeared.

We argue by contradiction. Suppose the assertion is not true. So there are bubbles \(\rho_{x_n, \sigma_n}(W^j) \). Denote by \(B_r(z) \) the ball in \(\mathbb{R}^{N+1} \), centered at \(z \in \mathbb{R}^{N+1} \) with radius \(r \),

\[
\sigma_n = \min_{1 \leq j \leq k} \sigma_n^j
\]

and

\[
B_n = B_{t_n \sigma_n^{-\frac{1}{2}}}((x_n, 0)) \cap C_\Omega, \quad \partial_i B_n = \partial B_n \cap C_\Omega.
\]
Proof of Theorem 2

We will show that there are no bubbles $\rho_{x_j,\sigma_n}(W^j)$ in Proposition 1 appeared.

We argue by contradiction. Suppose the assertion is not true. So there are bubbles $\rho_{x_j,\sigma_n}(W^j)$. Denote by $B_r(z)$ the ball in \mathbb{R}^{N+1}, centered at $z \in \mathbb{R}^{N+1}$ with radius r,

$$\sigma_n = \min_{1 \leq j \leq k} \sigma^j_n$$

and

$$\mathcal{B}_n = B_{t_n^{\sigma_n^{-2}}((x_n, 0)) \cap C_\Omega}, \quad \partial_i \mathcal{B}_n = \partial \mathcal{B}_n \cap C_\Omega.$$
Critical problem of fractional Laplacian

By the Pohozaev identity,

\[
\left(\frac{N}{2} - \frac{N - 2\alpha}{2} \right) \lambda \int_{B_n \cap \{y=0\}} v_n^2 \, dx \\
\leq \int_{(\partial_i B_n) \cap \{y=0\}} \left(\frac{1}{p_n} |v_n|^{p_n} + \frac{1}{2} \lambda v_n^2 \right) \langle x - x_0, \nu_x \rangle \, dS \\
+ \frac{N - 2\alpha}{2} \int_{\partial_i B_n} y^{1-2\alpha} v_n \frac{\partial v_n}{\partial \nu} \, dS \\
- \frac{1}{2} \int_{\partial_i B_n} y^{1-2\alpha} |\nabla v_n|^2 (X - z_0, \nu) \, dS \\
+ \int_{\partial_i B_n} y^{1-2\alpha} (\nabla v_n, X - z_0) \frac{\partial v_n}{\partial \nu} \, dS.
\]
We may deduce that

\[
\text{RHS of (15) } \leq C \sigma_n^{-\frac{1}{2}} \int_{(\partial_i B_n) \cap \{y=0\}} (|v_n|^{p_n} + v_n^2) \, dS \\
+ C \left(\int_{\partial_i B_n} y^{1-2\alpha} |\nabla v_n|^2 \, dS \right)^{\frac{1}{2}} \left(\int_{\partial_i B_n} y^{1-2\alpha} v_n^2 \, dS \right)^{\frac{1}{2}} \\
+ C \sigma_n^{-\frac{1}{2}} \int_{\partial_i B_n} y^{1-2\alpha} |\nabla v_n|^2 \, dS.
\]

(16)
We will show that

$$\text{RHS of (15)} \leq C \sigma_n^{-\frac{N-2\alpha}{2}}.$$

and

$$\int_{\mathcal{B}_n \cap \{y=0\}} v_n^2 \, dx \geq \frac{1}{2} \sigma_n^{-2\alpha},$$

which yields

$$\sigma_n^{-2\alpha} \leq C \sigma_n^{-\frac{N-2\alpha}{2}}$$

a contradiction if $N > 6\alpha$.
Critical problem of fractional Laplacian

Let $q_1, q_2 \in (2, \infty)$ be such that $q_2 < 2^*_\alpha < q_1$, $\beta > 0$ and $\sigma > 0$. We consider the following inequalities

$$
\begin{align*}
\|u_1\|_{q_1} &\leq \beta, \\
\|u_2\|_{q_2} &\leq \beta \sigma \frac{N}{2^*_\alpha} - \frac{N}{q_2}
\end{align*}
$$

and define the norm

$$
\|u\|_{q_1, q_2, \sigma} = \inf\{\beta > 0 : \text{there exist } u_1, u_2 \text{ such that (17) holds and } |u| \leq u_1 + u_2\}.
$$

Proposition 2 Let v_n be a solution of (11). For any $q_1, q_2 \in \left(\frac{N}{N-2\alpha}, +\infty\right)$, $q_2 < 2^*_\alpha < q_1$, there is a constant $C > 0$, depending only on q_1 and q_2, such that

$$
\|v_n\|_{q_1, q_2, \sigma_n} \leq C.
$$
Critical problem of fractional Laplacian

- Let $q_1, q_2 \in (2, \infty)$ be such that $q_2 < 2^*_\alpha < q_1$, $\beta > 0$ and $\sigma > 0$. We consider the following inequalities

\[
\begin{cases}
\|u_1\|_{q_1} \leq \beta, \\
\|u_2\|_{q_2} \leq \beta \sigma^{\frac{N}{2^*_\alpha} - \frac{N}{q_2}}
\end{cases}
\]

and define the norm

\[\|u\|_{q_1, q_2, \sigma} = \inf\{\beta > 0 : \text{there exist } u_1, u_2 \text{ such that (17) holds and } |u| \leq u_1 + u_2\} \tag{18}\]

- **Proposition 2** Let v_n be a solution of (11). For any $q_1, q_2 \in \left(\frac{N}{N-2\alpha}, +\infty\right)$, $q_2 < 2^*_\alpha < q_1$, there is a constant $C > 0$, depending only on q_1 and q_2, such that

\[\|v_n\|_{q_1, q_2, \sigma_n} \leq C. \tag{19}\]
Let $w_n > 0$ be the solution of

$$\begin{cases}
\text{div}(y^{1-2\alpha} \nabla w) = 0, & \text{in } C_D, \\
w = 0, & \text{on } \partial_L C_D, \\
y^{1-2\alpha} \frac{\partial w}{\partial \nu} = 2|v_n(x,0)|^{2* - 1} + A, & \text{on } D \times \{0\},
\end{cases} \tag{20}$$

By comparison, $|v_n| \leq w_n$ in C_{Ω}.

It is then sufficient to show

$$\|w_n\|_{q_1,q_2,\sigma_n} \leq C.$$
Critical problem of fractional Laplacian

Let $w_n > 0$ be the solution of

$$\begin{cases}
\text{div}(y^{1-2\alpha} \nabla w) = 0, & \text{in } C_D, \\
w = 0, & \text{on } \partial L C_D, \\
y^{1-2\alpha} \frac{\partial w}{\partial \nu} = 2|v_n(x, 0)|^{2\alpha - 1} + A, & \text{on } D \times \{0\},
\end{cases}$$

(20)

By comparison, $|v_n| \leq w_n$ in C_Ω.

It is then sufficient to show

$$\|w_n\|_{q_1,q_2,\sigma_n} \leq C.$$
Lemma 2.2 Let w_n be a solution of (20). There are constants $C > 0$, $q_1, q_2 \in \left(\frac{N}{N-2\alpha}, +\infty\right)$, $q_2 < 2^*_\alpha < q_1$, such that

$$\|w_n\|_{q_1, q_2, \sigma_n} \leq C. \quad (21)$$

Let

$$A^i_n = \{X : X \in \left(\mathcal{B}_{(\tilde{c}+6-i)\sigma_n^{-\frac{1}{2}}(x_n, 0)} \setminus \mathcal{B}_{(\tilde{c}+i-1)\sigma_n^{-\frac{1}{2}}(x_n, 0)}\right) \cap \mathcal{C}_\Omega\},$$

where $i = 1, 2, 3$.
Lemma 2.2 Let w_n be a solution of (20). There are constants $C > 0$, $q_1, q_2 \in \left(\frac{N}{N-2\alpha}, +\infty\right)$, $q_2 < 2^{*}_\alpha < q_1$, such that

$$\|w_n\|_{q_1, q_2, \sigma_n} \leq C.$$ \hfill (21)

Let

$$A^i_n = \{ X : X \in \left(B_{(\bar{C}+6-i)\sigma_n^{-\frac{1}{2}}(x_n, 0)} \setminus B_{(\bar{C}+i-1)\sigma_n^{-\frac{1}{2}}(x_n, 0)} \right) \cap C_\Omega \},$$

where $i = 1, 2, 3$.
To estimate LHS of (16), we note that we may choose $t_n \in [\bar{C} + 2, \bar{C} + 3]$ so that

\[
\begin{align*}
\int_{\partial B_{t_n\sigma_n^{-1/2}}((x_n,0)) \cap C_\Omega} y^{1-2\alpha} \left(\sigma_n^{-1/2} |\nabla v_n|^2 + \sigma_n^{1/2} v_n^2 \right) dS \\
+ \sigma_n^{\alpha - 1/2} \int_{\partial B_{t_n\sigma_n^{-1/2}}((x_n,0)) \cap (\Omega \times \{0\})} (|v_n|^{2^*_\alpha} + v_n^2) dS
\end{align*}
\]

\[
\leq \int_{A_n^3} y^{1-2\alpha} (|\nabla v_n|^2 + \sigma_n v_n^2) \, dx \, dy \\
+ \sigma_n^\alpha \int_{A_n^3 \cap \{y=0\}} (|v_n|^{2^*_\alpha} + v_n^2) \, dx,
\]
Proposition 3 There is a constant $C > 0$, independent of n, such that

$$\left(\int_{A_n^2} y^{1-2\alpha} |v_n|^p \, dx \, dy \right)^{\frac{1}{p}} \leq C \sigma_n^{- \frac{N+2-2\alpha}{2p}}$$

(23)

and

$$\int_{A_n^2 \cap \{y=0\}} |v_n|^p \leq C \sigma_n^{- \frac{N}{2}}$$

(24)

for any $p \geq 1$.

Lemma 3.1 Let w_n be a solution of (20). There is a constant, independent of n, such that

$$\frac{1}{r^{N+1-2\alpha}} \int_{\partial B_r^+(z) \cap \{y>0\}} y^{1-2\alpha} w_n \, dS \leq C$$

for all $r \geq \bar{C} \sigma_n^{-1/2}$ and $z = (z', 0) \in \Omega$.
Proposition 3 There is a constant $C > 0$, independent of n, such that

$$
\left(\int_{A_n^2} y^{1-2\alpha} |v_n|^p \, dx \, dy \right)^{\frac{1}{p}} \leq C \sigma_n^{-\frac{N+2-2\alpha}{2p}}
$$

(23)

and

$$
\int_{A_n^2 \cap \{y=0\}} |v_n|^p \leq C \sigma_n^{-\frac{N}{2}}
$$

(24)

for any $p \geq 1$.

Lemma 3.1 Let w_n be a solution of (20). There is a constant, independent of n, such that

$$
\frac{1}{r^{N+1-2\alpha}} \int_{\partial B_r^+(z) \cap \{y>0\}} y^{1-2\alpha} w_n \, dS \leq C
$$

for all $r \geq \bar{C} \sigma_n^{-1/2}$ and $z = (z', 0) \in \Omega$.

Let us recall Muckenhoupt class A_p for $p > 1$:

$$A_p = \{ w : \sup_{B} \left(\frac{1}{|B|} \int_{B} |w| \right) \left(\frac{1}{|B|} \int_{B} |w|^{-\frac{1}{p-1}} \right)^{p-1} \leq C, \right.$$

for all ball B in $\mathbb{R}^{N+1} \}.$

It is easy to check that $y^{1-2\alpha} \in A_2$.

Denote $\| u \|_{L^p(E, y^{1-2\alpha})} = \left(\int_{E} y^{1-2\alpha} |u|^p \ dx \right)^{\frac{1}{p}}$. We have the following result, which can be found in E. B. Fabes, C. E. Kenig, R. P. Serapioni, *The local regularity of solutions of degenerate elliptic equations*, Comm. Partial Differential Equations 7(1)(1982), 77–116.
Let us recall Muckenhoupt class A_p for $p > 1$:

$$A_p = \{ w : \sup_{B} \left(\frac{1}{|B|} \int_{B} |w| \right) \left(\frac{1}{|B|} \int_{B} |w|^{-\frac{1}{p-1}} \right)^{p-1} \leq C, \text{ for all ball } B \text{ in } \mathbb{R}^{N+1} \}.$$

It is easy to check that $y^{1-2\alpha} \in A_2$.

Denote $\| u \|_{L^p(E,y^{1-2\alpha})} = \left(\int_{E} y^{1-2\alpha} |u|^p \, dx \right)^{\frac{1}{p}}$. We have the following result, which can be found in E. B. Fabes, C. E. Kenig, R. P. Serapioni, *The local regularity of solutions of degenerate elliptic equations*, Comm. Partial Differential Equations 7(1)(1982), 77–116.
Lemma 3.2 Let \mathcal{D} be an open bounded set in \mathbb{R}^{N+1}. There exist constants $\delta > 0$ and $C > 0$ depending only on N and \mathcal{D}, such that for all $u \in C_0^{\infty}(\mathcal{D})$ and all k satisfying $1 \leq k \leq \frac{N}{N-1} + \delta$,

$$\|u\|_{L^2(\mathcal{D}, y^{1-2\alpha})} \leq C \|\nabla u\|_{L^2(\mathcal{D}, y^{1-2\alpha})}.$$ \hspace{1cm} (25)

Let D^* be an open set in \mathbb{R}^N. Consider the following problem:

$$\begin{cases}
\text{div}(y^{1-2\alpha} \nabla w) = 0, & (x, y) \in C_{D^*}; \\
y^{1-2\alpha} \frac{\partial w}{\partial y} = a(x) w, & x \in D^*, \ y = 0,
\end{cases} \hspace{1cm} (26)$$

where $a(x) \geq 0$ and $a \in L^\infty_{loc}(\mathbb{R}^N)$.
Lemma 3.2 Let \mathcal{D} be an open bounded set in \mathbb{R}^{N+1}. There exist constants $\delta > 0$ and $C > 0$ depending only on N and \mathcal{D}, such that for all $u \in C_0^\infty(\mathcal{D})$ and all k satisfying $1 \leq k \leq \frac{N}{N-1} + \delta$,

$$
\|u\|_{L^2_\rho(\mathcal{D}, y^{1-2\alpha})} \leq C \|\nabla u\|_{L^2(\mathcal{D}, y^{1-2\alpha})}.
$$

(25)

Let D^* be an open set in \mathbb{R}^N. Consider the following problem:

$$
\begin{cases}
\text{div}(y^{1-2\alpha}\nabla w) = 0, & (x, y) \in \mathcal{C}_{D^*}; \\
y^{1-2\alpha} \frac{\partial w}{\partial y} = a(x)w, & x \in D^*, \ y = 0,
\end{cases}
$$

(26)

where $a(x) \geq 0$ and $a \in L^\infty_{loc}(\mathbb{R}^N)$.

Critical problem of fractional Laplacian

We have the following estimate:

Lemma 3.3 Suppose that w is a solution of (26). If there is a small constant $\delta > 0$ such that

$$\int_{B_1(z) \cap \{y=0\}} |a|^\frac{N}{2\alpha} \, dx \leq \delta,$$

for any $B_1(z) \cap \{y = 0\} \subset D^*$, $z = (x, 0)$, then for any $p \geq 1$, there is a constant $C = C(p) > 0$ such that

$$\|w\|_{L^p(B^{+}_{1/2}(z), y^{1-2\alpha})} \leq C \|w\|_{L^1(B^{+}_{1}(z), y^{1-2\alpha})}, \quad (27)$$

and

$$\left(\int_{B^+_r(z) \cap \{y=0\}} w^p \, dx\right)^{\frac{1}{p}} \leq \frac{C}{(R - r)^{\frac{\sigma}{\kappa}}} \|w\|_{L^1(B^+_R(z), y^{1-2\alpha})}, \quad (28)$$

for $p \geq 1$, $0 < \sigma \leq 1$.
Proposition 3 can be proved by Lemmas 3.1 and 3.3. We also have

Proposition 4

\[\int_{A_n^3} y^{1-2\alpha} |\nabla v_n|^2 \, dx \, dy \leq C \sigma_n^{-\frac{N-2\alpha}{2}}. \quad (29) \]

Hence, we may deduce (16).

We also have

\[\int_{B_n \cap \{y=0\}} v_n^2 \, dx \geq \frac{1}{2} \sigma_n^{-2\alpha} \int_{B_1(0) \cap \{y=0\}} W_1^2 + o(\sigma_n^{-2\alpha}). \]
Critical problem of fractional Laplacian

- Proposition 3 can be proved by Lemmas 3.1 and 3.3. We also have

- **Proposition 4**

\[
\int_{A_n^3} y^{1-2\alpha} |\nabla v_n|^2 \, dx \, dy \leq C \sigma_n^{-\frac{N-2\alpha}{2}}. \tag{29}
\]

Hence, we may deduce (16).

- We also have

\[
\int_{B_n \cap \{y=0\}} v_n^2 \, dx \geq \frac{1}{2} \sigma_n^{-2\alpha} \int_{B_1(0) \cap \{y=0\}} W_1^2 + o(\sigma_n^{-2\alpha}).
\]
Proposition 3 can be proved by Lemmas 3.1 and 3.3. We also have

Proposition 4

\[
\int_{A_n^3} y^{1-2\alpha} |\nabla v_n|^2 \, dx \, dy \leq C \sigma_n^{-\frac{N-2\alpha}{2}}. \tag{29}
\]

Hence, we may deduce (16).

We also have

\[
\int_{B_n \cap \{y=0\}} v_n^2 \, dx \geq \frac{1}{2} \sigma_n^{-2\alpha} \int_{B_1(0) \cap \{y=0\}} W_1^2 + o(\sigma_n^{-2\alpha}).
\]
Fractional Schrödinger Equations in the whole space
The existence of ground state and bound states were considered by Berestycki and P.L. Lions for nonlinear scalar field equations

$$-\Delta u + u = f(u) \quad \text{in } \mathbb{R}^n, \quad u \in H^1(\mathbb{R}^n).$$

(30)

It was shown that there exist a ground state solution and infinitely many bound state solutions of (33) in subcritical superlinear case.

The loss of compactness in \mathbb{R}^N was retained by working in radially symmetric Sobolev spaces.
The existence of ground state and bound states were considered by Berestycki and P.L. Lions for nonlinear scalar field equations

$$- \Delta u + u = f(u) \quad \text{in} \quad \mathbb{R}^n, \quad u \in H^1(\mathbb{R}^n). \quad (30)$$

It was shown that there exist a ground state solution and infinitely many bound state solutions of (33) in subcritical superlinear case.

The loss of compactness in \mathbb{R}^N was retained by working in radially symmetric Sobolev spaces.
The existence of ground state and bound states were considered by Berestycki and P.L.Lions for nonlinear scalar field equations

\[- \Delta u + u = f(u) \quad \text{in } \mathbb{R}^n, \quad u \in H^1(\mathbb{R}^n).\]

It was shown that there exist a ground state solution and infinitely many bound state solutions of (33) in subcritical superlinear case.

The loss of compactness in \(\mathbb{R}^N \) was retained by working in radially symmetric Sobolev spaces.
We consider the existence of ground state and bound state solutions of the equation

$$(−Δ + id)^{1/2} u = f(u) \quad \text{in } \mathbb{R}^n, \quad u \in H^{1/2}(\mathbb{R}^n)$$

(31)

and properties of solutions.
The dynamical behavior of bosons spin-0 particles in relativistic fields can be described by the Schrödinger-Klein-Gordon equation

$$i \frac{\partial \psi}{\partial t} = (-\Delta + id)^{\frac{1}{2}} \psi - \psi + f(x, \psi) \quad \text{in } \mathbb{R}^n. \quad (32)$$

Problem (31) arises in finding the standing wave $e^{it} u(x)$ of the pseudo-relativistic wave equation (32).
The dynamical behavior of bosons spin-0 particles in relativistic fields can be described by the Schrödinger-Klein-Gordon equation

$$i \frac{\partial \psi}{\partial t} = (-\Delta + id)^{\frac{1}{2}} \psi - \psi + f(x, \psi) \quad \text{in } \mathbb{R}^n. \quad (32)$$

Problem (31) arises in finding the standing wave $e^{it} u(x)$ of the pseudo-relativistic wave equation (32).
Suppose a particle with the mass m moves fast, and the velocity is v.

So the energy E and momentum p are given by

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{Ev}{c^2}$$

respectively.

Its Hamiltonian is

$$H = E = \sqrt{m^2 c^4 + p^2 c^2}.$$

Using the momentum operator $p \rightarrow \hbar \nabla$, we obtain

$$\hat{H} = \sqrt{m^2 c^4 - \Delta c^2}.$$

Hence, $\sqrt{-\Delta + id}$ is relativistic, while $\sqrt{-\Delta}$ is non-relativistic.
Suppose a particle with the mass m moves fast, and the velocity is v.

So the energy E and momentum p are given by

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{Ev}{c^2}$$

respectively.

Its Hamiltonian is

$$H = E = \sqrt{m^2c^4 + p^2c^2}.$$

Using the momentum operator $p \rightarrow \frac{\hbar}{i}\nabla$, we obtain

$$\hat{H} = \sqrt{m^2c^4 - \Delta c^2}.$$

Hence, $\sqrt{-\Delta + id}$ is relativistic, while $\sqrt{-\Delta}$ is non-relativistic.
Suppose a particle with the mass m moves fast, and the velocity is v.

So the energy E and momentum p are given by

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{Ev}{c^2}$$

respectively.

Its Hamiltonian is

$$H = E = \sqrt{m^2 c^4 + p^2 c^2}.$$

Using the momentum operator $p \rightarrow \frac{\hbar}{i} \nabla$, we obtain

$$\hat{H} = \sqrt{m^2 c^4 - \Delta c^2}.$$

Hence, $\sqrt{-\Delta + id}$ is relativistic, while $\sqrt{-\Delta}$ is non-relativistic.
Suppose a particle with the mass m moves fast, and the velocity is v.

So the energy E and momentum p are given by

$$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{Ev}{c^2}$$

respectively.

Its Hamiltonian is

$$H = E = \sqrt{m^2 c^4 + p^2 c^2}.$$

Using the momentum operator $p \rightarrow \frac{\hbar}{i} \nabla$, we obtain

$$\hat{H} = \sqrt{m^2 c^4 - \Delta} c^2.$$

Hence, $\sqrt{-\Delta + id}$ is relativistic, while $\sqrt{-\Delta}$ is non-relativistic.
Fractional Schrödinger Equations in the whole space

- Suppose a particle with the mass m moves fast, and the velocity is v.
- So the energy E and momentum p are given by

 $$E = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}}, \quad p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{Ev}{c^2}$$

 respectively.
- Its Hamiltonian is

 $$H = E = \sqrt{m^2 c^4 + p^2 c^2}.$$

- Using the momentum operator $p \rightarrow \frac{\hbar}{i} \nabla$, we obtain

 $$\hat{H} = \sqrt{m^2 c^4 - \Delta c^2}.$$

- Hence, $\sqrt{-\Delta + i\hbar}$ is relativistic, while $\sqrt{-\Delta}$ is non-relativistic.
Main results

- **Theorem 1** (TanYangWang) Let $f = |u|^{p-1}u$, where $1 < p < 2^{\#} - 1 = \frac{n+1}{n-1}$, $n \geq 2$. Then, there exists at least one C^2 positive ground state solution to problem (31) such that for $\theta \in (0, 1)$,

$$
\lim_{|x| \to \infty} u(x)e^{-\theta|x|} = 0.
$$

If $p \geq 2^{\#} - 1$, there is no bounded solution of (31).

- **Theorem 2** Let $f(u) = |u|^{p-1}u$, and $1 < p < 2^{\#} - 1 = \frac{n+1}{n-1}$, $n \geq 2$. Then, there exist infinitely many distinct solutions to problem (31).
Main results

- **Theorem 1** (TanYangWang) Let $f = |u|^{p-1}u$, where $1 < p < 2\# - 1 = \frac{n+1}{n-1}$, $n \geq 2$. Then, there exists at least one C^2 positive ground state solution to problem (31) such that for $\theta \in (0, 1)$,
 \[
 \lim_{|x| \to \infty} u(x)e^{-\theta|x|} = 0.
 \]
 If $p \geq 2\# - 1$, there is no bounded solution of (31).

- **Theorem 2** Let $f(u) = |u|^{p-1}u$, and $1 < p < 2\# - 1 = \frac{n+1}{n-1}$, $n \geq 2$. Then, there exist infinitely many distinct solutions to problem (31).
Existence of ground state solutions
- The extension problem related to the operator \((-\Delta + id)^{\frac{1}{2}}\).

For \(u \in H^\frac{1}{2}(\mathbb{R}^n)\), we define the extension of \(u\) related to the operator \((-\Delta + id)^{\frac{1}{2}}\) as the least energy solution \(v \in H^{1,2}(\mathbb{R}_+^{n+1})\) among all finite energy solutions of the problem

\[
\begin{aligned}
-\Delta v(x, y) + v(x, y) &= 0 \quad \text{for} \quad x \in \mathbb{R}^n, \ y > 0, \\
v(x, 0) &= u(x) \quad \text{for} \quad x \in \mathbb{R}^n.
\end{aligned}
\]
The extension problem related to the operator \((-\Delta + id)^{1/2}\).

For \(u \in H^{1/2}(\mathbb{R}^n)\), we define the extension of \(u\) related to the operator \((-\Delta + id)^{1/2}\) as the least energy solution \(v \in H^{1,2}(\mathbb{R}^{n+1}_+)\) among all finite energy solutions of the problem

\[
\begin{align*}
-\Delta v(x, y) + v(x, y) &= 0 \quad \text{for} \quad x \in \mathbb{R}^n, \ y > 0, \\
v(x, 0) &= u(x) \quad \text{for} \quad x \in \mathbb{R}^n.
\end{align*}
\]
Lemma 1 Let $u \in H^\frac{1}{2}(\mathbb{R}^n)$. There exists an extension v of u. Moreover, $-\partial_y v(x, 0) = (-\Delta + id)^\frac{1}{2} u(x)$.

Hence, problem (31)

$(-\Delta + id)^\frac{1}{2} u = f(u)$ in \mathbb{R}^n, $u \in H^\frac{1}{2}(\mathbb{R}^n)$

can be transformed into the problem

$$
\begin{cases}
-\Delta v(x, y) + v(x, y) = 0, & \text{in } \mathbb{R}^{n+1}_+,
\partial v \over \partial y = f(v(x, 0)), & \text{on } \mathbb{R}^n,
\end{cases}
$$

(34)
Lemma 1 Let \(u \in H^{\frac{1}{2}}(\mathbb{R}^n) \). There exists an extension \(v \) of \(u \). Moreover, \(-\partial_y v(x, 0) = (-\Delta + id)^{\frac{1}{2}} u(x)\).

Hence, problem (31)

\[
(-\Delta + id)^{\frac{1}{2}} u = f(u) \quad \text{in} \quad \mathbb{R}^n, \quad u \in H^{\frac{1}{2}}(\mathbb{R}^n)
\]

can be transformed into the problem

\[
\begin{aligned}
-\Delta v(x, y) + v(x, y) &= 0, & \text{in} \quad \mathbb{R}^{n+1}, \\
\frac{\partial v}{\partial \nu} &= f(v(x, 0)), & \text{on} \quad \mathbb{R}^n,
\end{aligned}
\] (34)
Proof of Theorem 1 Let us consider the minimizing problem

$$M_p = \inf \left\{ \int_{\mathbb{R}^{n+1}_+} (|\nabla v(x, y)|^2 + |v(x, y)|^2) \, dx dy \mid \int_{\mathbb{R}^n} |v(x, 0)|^{p+1} \, dx = 1 \right\}$$

defined on $H^1(\mathbb{R}^{n+1}_+)$. By the Sobolev trace embedding $H^1(\mathbb{R}^{n+1}_+) \hookrightarrow L^p(\mathbb{R}^n)$ for $n > 2$, we see that the problem M_p is well defined.
Proposition 1 The minimizing problem M_p is achieved by a function $v \in H^1(\mathbb{R}^{n+1}_+)$, which in turn is a solution of problem (33) up to a translation.
The proof of Proposition 1 is based on the following lemma.

Lemma 2 Let $r > 0$ and $2 \leq q < 2^\# := \frac{2n}{n-1}$. Suppose that \(\{v_m(x, y)\} \) is a bounded sequence in \(H^1(\mathbb{R}^{n+1}_+) \) and that

\[
\sup_{z \in \mathbb{R}^n} \int_{B_r(z)} |v_m(x, 0)|^q \, dx \to 0 \quad (36)
\]

as \(m \to \infty \). Then,

\[
\int_{\mathbb{R}^n} |v_m(x, 0)|^p \, dx \to 0 \quad (37)
\]

as \(m \to \infty \) for \(2 < p < 2^\# \).
Existence of infinitely many solutions

- By Brezis-Lieb Lemma and Lemma 2, we may show that a minimizing sequence has a convergent subsequence up to translation. Hence, M_p is achieved.

- **Infinitely many solutions.** Let $E = H^1(\mathbb{R}^{n+1}_+)$ and $E_r = \{ v \in H^1(\mathbb{R}^{n+1}_+); v(x, y) = v(|x|, y) \}$.

- Denote by $\mathcal{M} = \{ v \in E_r; \|v\|_{E_r} = 1 \}$ the unit ball in E_r. Define the functional

 $$ J(v) = \int_{\mathbb{R}^n} |v(x, 0)|^p \, dx $$

 on E_r.

Existence of ground state solutions
Existence of infinitely many solutions

By Brezis-Lieb Lemma and Lemma 2, we may show that a minimizing sequence has a convergent subsequence up to translation. Hence, M_p is achieved.

Infinitely many solutions. Let $E = H^1(\mathbb{R}_+^{n+1})$ and $E_r = \{ v \in H^1(\mathbb{R}_+^{n+1}); v(x, y) = v(|x|, y) \}$. Denote by $\mathcal{M} = \{ v \in E_r; \|v\|_{E_r} = 1 \}$ the unit ball in E_r. Define the functional

$$J(v) = \int_{\mathbb{R}^n} |v(x, 0)|^p dx$$

on E_r.

Existence of ground state solutions
Existence of infinitely many solutions

By Brezis-Lieb Lemma and Lemma 2, we may show that a minimizing sequence has a convergent subsequence up to translation. Hence, M_p is achieved.

Infinitely many solutions. Let $E = H^1(\mathbb{R}^{n+1}_+)$ and $E_r = \{ v \in H^1(\mathbb{R}^{n+1}_+); v(x, y) = v(|x|, y) \}$.

Denote by $\mathcal{M} = \{ v \in E_r; \| v \|_{E_r} = 1 \}$ the unit ball in E_r. Define the functional

$$J(v) = \int_{\mathbb{R}^n} |v(x, 0)|^p \, dx$$

on E_r.

Existence of ground state solutions
We show that J has infinitely many critical points on \mathcal{M}.

$J|_{\mathcal{M}}$ satisfies $(PS)_+$ condition in E_r, which is proved by

Lemma 5 Let $2 < q < 2^\# := \frac{2n}{n-1}$ for $n \geq 2$. Then E_r is compactly embedded in $L^q(\mathbb{R}^n)$, where $E_r = \{ v \in H^1(\mathbb{R}_+^{n+1}); v(x, y) = v(|x|, y) \}$.
Existence of infinitely many solutions

- We show that J has infinitely many critical points on \mathcal{M}.
- $J|_\mathcal{M}$ satisfies $(PS)_+$ condition in E_r, which is proved by

Lemma 5 Let $2 < q < 2^\# := \frac{2n}{n-1}$ for $n \geq 2$. Then E_r is compactly embedded in $L^q(\mathbb{R}^n)$, where $E_r = \{ v \in H^1(\mathbb{R}^n_+); v(x, y) = v(|x|, y) \}$.
We show that J has infinitely many critical points on \mathcal{M}.

$J|_{\mathcal{M}}$ satisfies $(PS)_+$ condition in E_r, which is proved by

Lemma 5 Let $2 < q < 2\# := \frac{2n}{n-1}$ for $n \geq 2$. Then E_r is compactly embedded in $L^q(\mathbb{R}^n)$, where
$E_r = \{ v \in H^1(\mathbb{R}^{n+1}_+); v(x, y) = v(|x|, y) \}$.
Existence of infinitely many solutions

For $k \geq 1$, let $\Gamma_k = \{ A \in \Sigma(\mathcal{M}) : \gamma(A) \geq k \}$, where $\gamma(A)$ is the genus of the set A.

Let

$$b_k = \sup_{A \in \Gamma_k} \inf_{w \in A} J(w).$$

Suppose $n \geq 3$, there holds $b_k > 0$ for each $k \geq 1$.

The result follows by critical point theory.
For $k \geq 1$, let $\Gamma_k = \{ A \in \Sigma(M) : \gamma(A) \geq k \}$, where $\gamma(A)$ is the genus of the set A.

Let

$$b_k = \sup_{A \in \Gamma_k} \inf_{w \in A} J(w).$$

Suppose $n \geq 3$, there holds $b_k > 0$ for each $k \geq 1$.

The result follows by critical point theory.
Existence of infinitely many solutions

For $k \geq 1$, let $\Gamma_k = \{ A \in \Sigma(M) : \gamma(A) \geq k \}$, where $\gamma(A)$ is the genus of the set A.

Let

$$b_k = \sup_{A \in \Gamma_k} \inf_{w \in A} J(w).$$

Suppose $n \geq 3$, there holds $b_k > 0$ for each $k \geq 1$.

The result follows by critical point theory.
For $k \geq 1$, let $\Gamma_k = \{ A \in \Sigma(M) : \gamma(A) \geq k \}$, where $\gamma(A)$ is the genus of the set A.

Let

$$b_k = \sup_{A \in \Gamma_k} \inf_{w \in A} J(w).$$

Suppose $n \geq 3$, there holds $b_k > 0$ for each $k \geq 1$.

The result follows by critical point theory.
Exponential Decay

Exponential Decay. First, we have

Proposition 2 Suppose that f satisfies

$$|f(x, s)| \leq C(1 + |s|^p) \quad \text{for all } (x, s) \in \mathbb{R}^n \times \mathbb{R}$$

and $v \in H^1(\mathbb{R}^n)$ is a weak solution of (34). Then $v \in L^q_{loc}(\mathbb{R}_n^{n+1})$ for all $q \in [2, \infty)$. Moreover, $v \in C^{2,\alpha}(\mathbb{R}_n^{n+1})$ and $\lim_{|x| \to \infty} |v(x)| = 0$.

Local C^α estimate:

$$\|v(\cdot, 0)\|_{C^\alpha(B_\rho(x))} \leq C(q, \rho)\|v(\cdot, 0)\|_{L^2(B_{2\rho}(x))}$$

which implies $\lim_{|x| \to \infty} |v(x)| = 0$.

Existence of ground state solutions
Exponential Decay.

First, we have

Proposition 2 Suppose that f satisfies

$$|f(x, s)| \leq C(1 + |s|^p) \quad \text{for all } (x, s) \in \mathbb{R}^n \times \mathbb{R}$$

and $v \in H^1(\mathbb{R}^n)$ is a weak solution of (34). Then

$v \in L^q_{loc}(\mathbb{R}^{n+1}_+)$ for all $q \in [2, \infty)$. Moreover, $v \in C^{2,\alpha}(\mathbb{R}^{n+1}_+)$ and

$$\lim_{|x| \to \infty} |v(x)| = 0.$$

Local C^α estimate:

$$\|v(\cdot, 0)\|_{C^\alpha(B_\rho(x))} \leq C(q, \rho)\|v(\cdot, 0)\|_{L^2(B_{2\rho}(x))},$$

which implies

$$\lim_{|x| \to \infty} |v(x)| = 0.$$
Lemma 3 Suppose that there exists $R > 0$ and $w \in H^1(\mathbb{R}^{n+1}_+)$ is a classical solution of

\[
\begin{cases}
-\Delta w + w \geq 0 & \text{in } \mathbb{R}^{n+1}_+, \\
\frac{\partial w}{\partial \nu} \geq \alpha w & \text{in } \mathbb{R}^n \setminus B_R(0), \\
\frac{\partial w}{\partial \nu} \geq 0 & \text{in } B_R(0),
\end{cases}
\]

where $\alpha \in (0, \frac{1}{2})$. Then $w(x, 0) \geq 0$ for $x \in \mathbb{R}^n$.

Existence of ground state solutions
Lemma 4 There exist $\theta \in (0, 1)$ and $C > 0$ such that

$$u(x) \leq Ce^{-\theta|x|}.$$
Regularity and symmetry

We consider the regularity and symmetry of solutions of the following problem

\[
(-\Delta + id)^{\frac{\alpha}{2}} u = \frac{v^q}{|y|^{2\beta}}, \quad (-\Delta + id)^{\frac{\alpha}{2}} v = \frac{u^p}{|y|^{2\beta}}, \quad \text{in } \mathbb{R}^n, \tag{39}
\]

where \(0 \leq \beta < \alpha < n\), \(1 < p, q < \frac{n-\beta}{\beta}\) and

\[
\frac{1}{p+1} + \frac{1}{q+1} > \frac{n - \alpha + \beta}{n}. \tag{40}
\]

Problem

\[
(-\Delta)^{\frac{\alpha}{2}} u = v^q, \quad (-\Delta)^{\frac{\alpha}{2}} v = u^p, \quad \text{in } \mathbb{R}^n. \tag{41}
\]
Regularity and symmetry

We consider the regularity and symmetry of solutions of the following problem

\((-\Delta + id)^{\frac{\alpha}{2}} u = \frac{v^q}{|y|^\beta}, \quad (-\Delta + id)^{\frac{\alpha}{2}} v = \frac{u^p}{|y|^\beta}, \text{ in } \mathbb{R}^n, \) (39)

where \(0 \leq \beta < \alpha < n, \quad 1 < p, q < \frac{n-\beta}{\beta} \) and

\[
\frac{1}{p+1} + \frac{1}{q+1} > \frac{n - \alpha + \beta}{n}. \quad (40)
\]

Problem

\((-\Delta)^{\frac{\alpha}{2}} u = v^q, \quad (-\Delta)^{\frac{\alpha}{2}} v = u^p, \text{ in } \mathbb{R}^n. \) (41)
We consider the the regularity and symmetry of solutions of the following problem

\[(-\Delta + id)^{\frac{\alpha}{2}} u = \frac{v^q}{|y|^{\beta}}, \quad (-\Delta + id)^{\frac{\alpha}{2}} v = \frac{u^p}{|y|^{\beta}}, \text{ in } \mathbb{R}^n, \quad (39) \]

where \(0 \leq \beta < \alpha < n\), \(1 < p, q < \frac{n-\beta}{\beta}\) and

\[\frac{1}{p+1} + \frac{1}{q+1} > \frac{n - \alpha + \beta}{n}. \quad (40) \]

Problem

\[(-\Delta)^{\frac{\alpha}{2}} u = v^q, \quad (-\Delta)^{\frac{\alpha}{2}} v = u^p, \text{ in } \mathbb{R}^n. \quad (41) \]
Regularity and symmetry

is equivalent to the integral system

\[
 u(x) = \int_{\mathbb{R}^n} \frac{v(y)^q}{|x - y|^{n-\alpha}} \, dy, \quad v(x) = \int_{\mathbb{R}^n} \frac{u(y)^p}{|x - y|^{n-\alpha}} \, dy, \quad \text{in } \mathbb{R}^n.
\]

(42)

The solutions \((u, v)\) of (42) are critical points of the functional associated with the well-known Hardy-Littlewood-Sobolev inequality, which is precisely stated as follows.

Proposition 3 Let \(0 < \lambda < n\) and let \(1 < p, q < \infty\) such that \(\frac{1}{p} + \frac{1}{q} + \frac{\lambda}{n} = 2\). Then there holds

\[
\left| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{f(x)g(y)}{|x - y|^\lambda} \, dx\, dy \right| \leq C_{q, \lambda, n} \|f\|_p \|g\|_q,
\]

for \(f \in L^p(\mathbb{R}^n)\) and \(g \in L^q(\mathbb{R}^n)\).
Regularity and symmetry

is equivalent to the integral system

\[u(x) = \int_{\mathbb{R}^n} \frac{v(y)^q}{|x-y|^{n-\alpha}} \, dy, \quad v(x) = \int_{\mathbb{R}^n} \frac{u(y)^p}{|x-y|^{n-\alpha}} \, dy, \text{ in } \mathbb{R}^n. \]

(42)

The solutions \((u, v)\) of (42) are critical points of the functional associated with the well-known Hardy-Littlewood-Sobolev inequality, which is precisely stated as follows.

Proposition 3 Let \(0 < \lambda < n\) and let \(1 < p, q < \infty\) such that \(\frac{1}{p} + \frac{1}{q} + \frac{\lambda}{n} = 2\). Then there holds

\[\left| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{f(x)g(y)}{|x-y|^{\lambda}} \, dxdy \right| \leq C_{q,\lambda,n} \|f\|_p \|g\|_q, \]

for \(f \in L^p(\mathbb{R}^n)\) and \(g \in L^q(\mathbb{R}^n)\).
Regularity and symmetry

- Problem (42) is related to the Riesz potentials $I_\alpha(f) = (-\Delta)^{-\frac{\alpha}{2}}$, $0 < \alpha < n$, which is defined by

$$I_\alpha(f)(x) = \frac{1}{C(\alpha)} \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n-\alpha}} dy$$

for some $C(\alpha) > 0$. It is known that

$$\|I_\alpha f\|_q \leq C\|f\|_p,$$

where $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$.

- While problem (39) is connected with the Bessel potentials $J_\alpha = (-\Delta + id)^{-\frac{\alpha}{2}}$. The Bessel kernel G_α is given by

$$G_\alpha(x) = \frac{(\sqrt{2\pi})^{-n}}{\Gamma\left(\frac{n}{2}\right)} \int_0^\infty e^{-s} e^{-\frac{|x|^2}{4s}} s^{\frac{\alpha-n}{2}} \frac{ds}{s}. \quad (43)$$
Problem (42) is related to the Riesz potentials $\mathcal{I}_\alpha(f) = (-\Delta)^{-\frac{\alpha}{2}}$, $0 < \alpha < n$, which is defined by

$$\mathcal{I}_\alpha(f)(x) = \frac{1}{C(\alpha)} \int_{\mathbb{R}^n} \frac{f(y)}{|x - y|^{n-\alpha}} \, dy$$

for some $C(\alpha) > 0$. It is known that

$$\|\mathcal{I}_\alpha f\|_q \leq C\|f\|_p,$$

where $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{n}$.

While problem (39) is connected with the Bessel potentials $\mathcal{J}_\alpha = (-\Delta + id)^{-\frac{\alpha}{2}}$. The Bessel kernel G_α is given by

$$G_\alpha(x) = \left(\frac{\sqrt{2\pi}}{\Gamma(n/2)}\right)^{-n} \int_0^\infty e^{-s} e^{-\frac{|x|^2}{4s}} s^{\frac{\alpha-n}{2}} ds. \quad (43)$$
Regularity and symmetry

The Hardy-Littlewood-Sobolev inequality for the Bessel potentials with double weights is stated as follows.

Theorem 3 Let $0 < \alpha < n$, $1 < p, q < \frac{n}{\alpha}$, $\tau, \beta \geq 0$. In addition $n(1 - \frac{1}{p} - \frac{1}{q} + \frac{\alpha}{n}) > \beta + \tau > n(1 - \frac{1}{p} - \frac{1}{q})$. Then, there exists a positive constant C independent of $f \in L^p(\mathbb{R}^n)$ and $g \in L^q(\mathbb{R}^n)$ such that the following inequality holds

$$
\left| \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} f(x) G_\alpha(x - y) h(y) \frac{dxdy}{|x|^{\tau} |y|^{\beta}} \right| \leq C \|f\|_p \|h\|_q. \quad (44)
$$

Furthermore, let

$$Th(x) = \int_{\mathbb{R}^n} \frac{G_\alpha(x - y) h(y)}{|x|^{\tau} |y|^{\beta}} dy,$$

then

$$\|Th\|_{p'} = \sup_{\|f\|_p = 1} |\langle Th, f \rangle| \leq C \|h\|_q. \quad (45)$$

where $\frac{1}{p} + \frac{1}{p'} = 1$, $1 + \frac{1}{p'} \geq \frac{1}{q} + \frac{n-\alpha+\beta+\tau}{n}$ and $h \in L^q(\mathbb{R}^n)$.

Existence of ground state solutions
Regularity and symmetry

Theorem 4 If \((u, v) \in L^{p+1}(\mathbb{R}^n) \times L^{q+1}(\mathbb{R}^n)\) is a solution pair of (31), then \((u, v) \in L^\infty(\mathbb{R}^n) \times L^\infty(\mathbb{R}^n)\).

Results in Theorem 4 holds also for sign-changing solutions of (39).

In the proof of Theorem 4, we first lift the integrability of a suitable cut-off function of the solution by the regularity lifting method to some \(L^{q_0}\), and then we show that they are actually in \(L^\infty\).
Theorem 4 If \((u,v) \in L^{p+1}(\mathbb{R}^n) \times L^{q+1}(\mathbb{R}^n)\) is a solution pair of (31), then \((u,v) \in L^{\infty}(\mathbb{R}^n) \times L^{\infty}(\mathbb{R}^n)\).

Results in Theorem 4 holds also for sign-changing solutions of (39).

In the proof of Theorem 4, we first lift the integrability of a suitable cut-off function of the solution by the regularity lifting method to some \(L^{q_0}\), and then we show that they are actually in \(L^{\infty}\).
Theorem 4 If \((u, v) \in L^{p+1}(\mathbb{R}^n) \times L^{q+1}(\mathbb{R}^n)\) is a solution pair of (31), then \((u, v) \in L^\infty(\mathbb{R}^n) \times L^\infty(\mathbb{R}^n)\).

Results in Theorem 4 holds also for sign-changing solutions of (39).

In the proof of Theorem 4, we first lift the integrability of a suitable cut-off function of the solution by the regularity lifting method to some \(L^{q_0}\), and then we show that they are actually in \(L^\infty\).
Let Z be a given vector space, $\| \cdot \|_X$ and $\| \cdot \|_Y$ be two norms on Z. Define a new norm $\| \cdot \|_Z$ by

$$\| \cdot \|_Z = \sqrt[p]{\| \cdot \|_X^p + \| \cdot \|_Y^p}.$$

Suppose that Z is complete with respect to the norm $\| \cdot \|_Z$. Let X and Y be the completion under $\| \cdot \|_X$ and $\| \cdot \|_Y$, respectively.

The following regularity lifting theorem was obtained by W. Chen and C. Li.

Lemma (Regularity Lifting I) Let T be a contracting map from X into itself and from Y into itself. Assume that $f \in X$ and that there exists a function $g \in Z$ such that $f = Tf + g$, then f also belongs to Z.

Existence of ground state solutions
Let \(Z \) be a given vector space, \(\| \cdot \|_X \) and \(\| \cdot \|_Y \) be two norms on \(Z \). Define a new norm \(\| \cdot \|_Z \) by

\[
\| \cdot \|_Z = \sqrt[p]{\| \cdot \|_X^p + \| \cdot \|_Y^p}.
\]

Suppose that \(Z \) is complete with respect to the norm \(\| \cdot \|_Z \). Let \(X \) and \(Y \) be the completion under \(\| \cdot \|_X \) and \(\| \cdot \|_Y \), respectively.

The following regularity lifting theorem was obtained by W. Chen and C. Li.

Lemma (Regularity Lifting I) Let \(T \) be a contracting map from \(X \) into itself and from \(Y \) into itself. Assume that \(f \in X \) and that there exists a function \(g \in Z \) such that \(f = Tf + g \), then \(f \) also belongs to \(Z \).
Theorem 5 \(u, v \in C^{0,\gamma}_\text{loc}(\mathbb{R}^n \setminus \{0\}) \), where \(\gamma = 1 - \frac{\beta}{n} \).

Let \(V \) be a Hausdorff topological vector space. Suppose there are two extended norms defined on \(V \),

\[
\| \cdot \|_X, \| \cdot \|_Y : V \to [0, \infty].
\]

Let

\[
X := \{ v \in V : \| v \|_X < \infty \}, \quad Y := \{ v \in V : \| v \|_Y < \infty \}.
\]

The pair of spaces \((X, Y) \) described as above is called an \(XY - \text{pair} \), if whenever the sequence \(\{ u_n \} \subset X \) with \(u_n \to u \) in \(X \) and \(\| u_n \|_Y \leq C \) will imply \(u \in Y \).
Theorem 5 \(u, v \in C^{0, \gamma}_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) \), where \(\gamma = 1 - \frac{\beta}{n} \).

Let \(V \) be a Hausdorff topological vector space. Suppose there are two extended norms defined on \(V \),

\[
\| \cdot \|_X, \| \cdot \|_Y : V \to [0, \infty].
\]

Let

\[
X := \{ v \in V : \| v \|_X < \infty \}, \quad Y := \{ v \in V : \| v \|_Y < \infty \}.
\]

The pair of spaces \((X, Y)\) described as above is called an \(XY \) – pair, if whenever the sequence \(\{u_n\} \subset X \) with \(u_n \to u \) in \(X \) and \(\| u_n \|_Y \leq C \) will imply \(u \in Y \).
Lemma (Regularity Lifting II) Suppose that Banach spaces X, Y are an XY – pair, both contained in some larger topological space V satisfying properties described above. Let \mathcal{X} and \mathcal{Y} be closed subsets of X and Y respectively. Suppose that $T : \mathcal{X} \to X$ is a contraction:

$$\| Tf - Tg \|_X \leq \eta \| f - g \|_X, \forall f, g \in \mathcal{X} \text{ and for some } 0 < \eta < 1;$$

and $T : \mathcal{Y} \to Y$ is shrinking:

$$\| Tg \|_Y \leq \theta \| g \|_Y, \forall g \in \mathcal{Y} \text{ and for some } 0 < \theta < 1;$$

Define

$$Sf = Tf + F \text{ for some } F \in \mathcal{X} \cap \mathcal{Y}.$$
Moreover, assume that

\[S : \mathcal{X} \cap \mathcal{Y} \to \mathcal{X} \cap \mathcal{Y}. \]

Then there exists a unique solution \(u \) of equation

\[u = Tf + F \text{ in } \mathcal{X}, \]

and more importantly,

\[u \in Y. \]
Theorem 6 Both u and v are radially symmetric and strictly decreasing about the origin.
Thank you!