Some RF-type theorems in reverse mathematics

Shota Murakami

Tohoku University, Japan

IMS-JSPS Joint Workshop in Mathematical Logic and Foundations of Mathematics, Singapore

September 4, 2014
Introduction

Since H. Friedman started the study of Reverse Mathematics in 1970’s, the relative strength of a lot of mathematical theorems have been investigated in the context of reverse mathematics.

We found that almost all theorems are equivalent to one of the following axioms over the base system, called \(\text{RCA}_0 \):

\[\text{WKL}_0, \text{ACA}_0, \text{ATR}_0, \Pi^1_1-\text{CA}_0. \]

But recently, some theorems have been found not to be equivalent to any of the above axioms (See The Reverse Mathematics Zoo).

In this talk, we will treat some of such irregular theorems: \textbf{Ramseyan factorization theorem} \((\text{RF}^s_k)\) and its variants.
Introduction

Since H. Friedman started the study of Reverse Mathematics in 1970’s, the relative strength of a lot of mathematical theorems have been investigated in the context of reverse mathematics.

We found that almost all theorems are equivalent to one of the following axioms over the base system, called RCA$_0$:

\[\text{WKL}_0, \text{ACA}_0, \text{ATR}_0, \Pi^1_1\text{-CA}_0. \]

But recently, some theorems have been found not to be equivalent to any of the above axioms (See The Reverse Mathematics Zoo).

In this talk, we will treat some of such irregular theorems: Ramseyan factorization theorem (RF^s_k) and its variants.
Introduction

Since H. Friedman started the study of Reverse Mathematics in 1970’s, the relative strength of a lot of mathematical theorems have been investigated in the context of reverse mathematics.

We found that almost all theorems are equivalent to one of the following axioms over the base system, called RCA_0:

\[\text{WKL}_0, \, \text{ACA}_0, \, \text{ATR}_0, \, \Pi^1_1\text{-CA}_0. \]

But recently, some theorems have been found not to be equivalent to any of the above axioms (See The Reverse Mathematics Zoo).

In this talk, we will treat some of such irregular theorems: Ramseyan factorization theorem (\(RF^s_k\)) and its variants.
Since H. Friedman started the study of Reverse Mathematics in 1970’s, the relative strength of a lot of mathematical theorems have been investigated in the context of reverse mathematics.

We found that almost all theorems are equivalent to one of the following axioms over the base system, called RCA₀:

\[\text{WKL}_0, \, \text{ACA}_0, \, \text{ATR}_0, \, \Pi^1_1\text{-CA}_0. \]

But recently, some theorems have been found not to be equivalent to any of the above axioms (See The Reverse Mathematics Zoo).

In this talk, we will treat some of such irregular theorems: **Ramseyan factorization theorem** \((\mathcal{RF}_k^s)\) and its variants.
Contents

1 RF and weak RF (Joint work with T. Yamazaki and K. Yokoyama)

2 A generalization of weak RF

3 “finitary” RF
Contents

1. RF and weak RF (Joint work with T. Yamazaki and K. Yokoyama)

2. A generalization of weak RF

3. “finitary” RF
RF and weak RF

Definition of RF

Ramseyan factorization theorem (RF) is a Ramsey-type theorem which is used in automata theory.

It is concerned about
1. infinite sequences and
2. colorings on finite sequences.

Definition (Ramseyan factorization theorem \((RF^A_B)\))

For any infinite sequence \(u \in A^\mathbb{N}\) and any coloring on finite sequences \(f : A^{<\mathbb{N}} \to B\), there exists \(v \in (A^{<\mathbb{N}})^\mathbb{N}\) such that

1. \(u = v_0v_1v_2 \ldots\) and
2. \(f(v_iv_{i+1} \ldots v_j) = f(v_{i'}v_{i'+1} \ldots v_{j'})\) for any \(j \geq i > 0\) and \(j' \geq i' > 0\).

\((v_i):\) the \(i\)-th element of \(v\).

We call such \(v\) a Ramseyan factorization for \(u\) and \(f\).
RF and weak RF

Definition of RF

Ramseyan factorization theorem (RF) is a Ramsey-type theorem which is used in automata theory.

It is concerned about
1. infinite sequences and
2. colorings on finite sequences.

Definition (Ramseyan factorization theorem (RF_B^A))

For any infinite sequence $u \in A^\mathbb{N}$ and any coloring on finite sequences $f : A^{<\mathbb{N}} \to B$, there exists $v \in (A^{<\mathbb{N}})^\mathbb{N}$ such that
1. $u = v_0 v_1 v_2 \ldots$ and
2. $f(v_i v_{i+1} \ldots v_j) = f(v_{i'} v_{i'+1} \ldots v_{j'})$ for any $j \geq i > 0$ and $j' \geq i' > 0$.

(v_i: the i-th element of v.)

We call such v a Ramseyan factorization for u and f.
Definition of RF

Ramseyan factorization theorem (RF) is a Ramsey-type theorem which is used in automata theory.

It is concerned about
1. infinite sequences and
2. colorings on finite sequences.

Definition (Ramseyan factorization theorem (RF))

For any infinite sequence $u \in A^\mathbb{N}$ and any coloring on finite sequences $f : A^{<\mathbb{N}} \to B$, there exists $v \in (A^{<\mathbb{N}})^\mathbb{N}$ such that

1. $u = v_0 v_1 v_2 \ldots$ and
2. $f(v_i v_{i+1} \ldots v_j) = f(v_{i'} v_{i'+1} \ldots v_{j'})$ for any $j \geq i > 0$ and $j' \geq i' > 0$.

(v_i: the i-th element of v.)

We call such v a **Ramseyan factorization** for u and f.
Example

Let \(u = 00012112111211112 \ldots \) and
\[
f : \{0, 1, 2\}^{\mathbb{N}} \to \{0, 1, 2\} \text{ be } f(\sigma) = \text{(the first number of } \sigma)\text{.}
\]
Then \(v = \langle 000, 12, 112, 1112, 11112, \ldots \rangle \) is a R.F. for \(u \) and \(f \).
RF and weak RF

Definition of weak RF

The weak RF (WRF) is the following statement:

Definition \((WRF_{A}^{B})\)

For any infinite sequence \(u \in A^{\mathbb{N}}\) and any coloring on finite sequences \(f : A^{<\mathbb{N}} \to B\), there exists \(v \in (A^{<\mathbb{N}})^{\mathbb{N}}\) such that

1. \(u = v_0 v_1 \ldots \) and
2. \(f(v_i) = f(v_{i'})\) for any \(i, i' > 0\).

We call such \(v\) a **weak Ramseyan factorization** for \(u\) and \(f\).

(Fact: Ramseyan factorization \(\Rightarrow\) weak Ramseyan factorization.)
RF and weak RF

Definition of weak RF

The weak RF (WRF) is the following statement:

Definition (WRF)*

For any infinite sequence $u \in A^\mathbb{N}$ and any coloring on finite sequences $f : A^{< \mathbb{N}} \to B$, there exists $v \in (A^{< \mathbb{N}})^\mathbb{N}$ such that

1. $u = v_0 v_1 \ldots$ and
2. $f(v_i) = f(v_{i'})$ for any $i, i' > 0$.

We call such v a **weak Ramseyan factorization** for u and f.

(Fact): Ramseyan factorization \Rightarrow weak Ramseyan factorization.)
RF and weak RF

Relative strength

In a joint work with T. Yamazaki and K. Yokoyama, we showed the following theorems:

Theorem (M./Yamazaki/Yokoyama, 2014)

The following are equivalent over RCA_0:

1. RT_2^2.
2. RF_k^N $(k \geq 2, \ k \in \omega)$.
3. RF_k^n $(n, k \geq 2, \ n, k \in \omega)$.

Theorem (M./Yamazaki/Yokoyama, 2014)

$\text{CAC} \Rightarrow \text{WRF}_2^N \Rightarrow \text{ADS}$.
RF and weak RF

Relative strength

In a joint work with T. Yamazaki and K. Yokoyama, we showed the following theorems:

Theorem (M./Yamazaki/Yokoyama, 2014)

The following are equivalent over RCA₀:

1. RT_2^2.
2. $\text{RF}_k^\mathbb{N}$ $(k \geq 2, \ k \in \omega)$.
3. RF_k^n $(n, k \geq 2, \ n, k \in \omega)$.

Theorem (M./Yamazaki/Yokoyama, 2014)

CAC \Rightarrow WRF$^\mathbb{N}_2$ \Rightarrow ADS.
RF and weak RF

Diagram

RT22

CAC RFN2 RF22

WRFN2

ADS WRF22
RF and weak RF

Ramsey-type theorem equivalent to WRF_k^N

We also showed the equivalence between WRF_k^N and a weak version of Ramsey’s theorem:

Theorem (M./Yamazaki/Yokoyama, 2014)

The following are equivalent over RCA_0:

1. psRT_k^2.
2. WRF_k^N.

where,

Definition (psRT_k^n)

For any coloring $P : [\mathbb{N}]^n \to k$, there exists an infinite set $H = \{a_0 < a_1 < \cdots \}$ such that for any $i, j \in \mathbb{N}$, $P(a_i, a_{i+1}, \ldots, a_{i+n-1}) = P(a_j, a_{j+1}, \ldots, a_{j+n-1})$.

We call such an infinite set H pseudo homogeneous.
RF and weak RF

Ramsey-type theorem equivalent to WRF$_k^\mathbb{N}$

We also showed the equivalence between WRF$_k^\mathbb{N}$ and a weak version of Ramsey’s theorem:

Theorem (M./Yamazaki/Yokoyama, 2014)

The following are equivalent over RCA$_0$:

1. psRT$_k^2$.
2. WRF$_k^\mathbb{N}$.

where,

Definition (psRT$_k^n$)

For any coloring $P : [\mathbb{N}]^n \to k$, there exists an infinite set $H = \{a_0 < a_1 < \cdots\}$ such that for any $i, j \in \mathbb{N}$,

$$P(a_i, a_{i+1}, \ldots, a_{i+n-1}) = P(a_j, a_{j+1}, \ldots, a_{j+n-1}).$$

We call such an infinite set H **pseudo homogeneous**.
RF and weak RF

Open problems

Question 1. We don’t know whether the implications

$$\text{CAC} \Rightarrow \text{WRF}_2^\mathbb{N} \Rightarrow \text{ADS}.$$

are strict or not.
(Lerman/Solomon/Towsner recently proved that CAC and ADS are separated.)

Question 2. Is WRF_2^2 strictly weaker than $\text{WRF}_2^\mathbb{N}$?
(In normal case, RF_2^k and $\text{RF}_2^{\mathbb{N}}$ are both equivalent to RT_2^2 for any $k \geq 2$.)

Question 3. Does WRF_k^n imply WRF_{k+1}^n?
(It is easy to show that $\text{RF}_k^n \Rightarrow \text{RF}_{k+1}^n$ for any $k \geq 2$.)
RF and weak RF

Open problems

Question 1. We don’t know whether the implications

\[\text{CAC} \Rightarrow \text{WRF}_2^N \Rightarrow \text{ADS}. \]

are strict or not.
(Lerman/Solomon/Towsner recently proved that CAC and ADS are separated.)

Question 2. Is \(\text{WRF}_2^N \) strictly weaker than \(\text{WRF}_2^N \)?
(In normal case, \(\text{RF}_k^2 \) and \(\text{RF}_k^N \) are both equivalent to \(\text{RT}_2^2 \) for any \(k \geq 2 \).)

Question 3. Does \(\text{WRF}_k^n \) imply \(\text{WRF}_{k+1}^n \)?
(It is easy to show that \(\text{RF}_k^n \Rightarrow \text{RF}_{k+1}^n \) for any \(k \geq 2 \).)
Question 1. We don’t know whether the implications

\[\text{CAC} \Rightarrow \text{WRF}_2^N \Rightarrow \text{ADS}. \]

are strict or not.
(Lerman/Solomon/Towsner recently proved that CAC and ADS are separated.)

Question 2. Is \(\text{WRF}_2^2 \) strictly weaker than \(\text{WRF}_2^N \)?
(In normal case, \(\text{RF}_k^2 \) and \(\text{RF}_k^N \) are both equivalent to \(\text{RT}_2^2 \) for any \(k \geq 2 \).)

Question 3. Does \(\text{WRF}_k^n \) imply \(\text{WRF}_{k+1}^n \)?
(It is easy to show that \(\text{RF}_k^n \Rightarrow \text{RF}_{k+1}^n \) for any \(k \geq 2 \).)
RF and weak RF

Open problems

Question 1. We don’t know whether the implications

\[CAC \Rightarrow \text{WRF}_2^N \Rightarrow \text{ADS}. \]

are strict or not.
(Lerman/Solomon/Towsner recently proved that CAC and ADS are separated.)

Question 2. Is \(\text{WRF}_2 \) strictly weaker than \(\text{WRF}_2^N \)?
(In normal case, \(\text{RF}_k^2 \) and \(\text{RF}_k^N \) are both equivalent to \(\text{RT}_2^2 \) for any \(k \geq 2 \).)

Question 3. Does \(\text{WRF}_k^n \) imply \(\text{WRF}_{k+1}^n \)?
(It is easy to show that \(\text{RF}_k^n \Rightarrow \text{RF}_{k+1}^n \) for any \(k \geq 2 \).)
Contents

1 RF and weak RF (Joint work with T. Yamazaki and K. Yokoyama)

2 A generalization of weak RF

3 “finitary” RF
A generalization of weak RF

Definition of \(\leq/-RF \)

Recall Question 2: Is \(\text{WRF}_2^2 \) strictly weaker than \(\text{WRF}_2^N \)?

⇒ A Partial Answer: If \(\text{WRF}_2^2 \) is equivalent to the seemingly little stronger theorem \(\leq 2\text{-RF}_3^2 \), the answer is NO.

Definition (\(\leq/-\text{RF}_B^A \))

For any infinite sequence \(u \in A^N \) and any coloring on finite sequences \(f : A^{<N} \to B \), there exists \(v \in (A^{<N})^N \) such that
1. \(u = v_0v_1 \ldots \) and
2. \(f(v_i; v_{i+1} \ldots v_{i+m-1}) = f(v_j; v_{j+1} \ldots v_{j+n-1}) \) for \(i, j > 0 \) and \(m, n \leq l \).

Remark: \(\text{WRF}_B^A \iff \leq 1\text{-RF}_B^A \).
A generalization of weak RF

Definition of $\leq I\text{-}RF$

Recall **Question 2**: Is WRF^2_2 strictly weaker than WRF^N_2?

\Rightarrow **A Partial Answer**: If WRF^2_2 is equivalent to the seemingly little stronger theorem $\leq 2\text{-}RF^2_3$, the answer is NO.

Definition ($\leq I\text{-}RF^A_B$)

For any infinite sequence $u \in A^N$ and any coloring on finite sequences $f : A^{<N} \to B$, there exists $v \in (A^{<N})^N$ such that

1. $u = v_0v_1\ldots$ and
2. $f(v_i; v_{i+1} \ldots v_{i+m-1}) = f(v_j; v_{j+1} \ldots v_{j+n-1})$ for $i, j > 0$ and $m, n \leq l$.

Remark: $WRF^A_B \iff \leq 1\text{-}RF^A_B$.
A generalization of weak RF

Definition of $\leq l$-RF

Recall **Question 2**: Is WRF^2_2 strictly weaker than WRF^N_2?

⇒ **A Partial Answer**: If WRF^2_2 is equivalent to the seemingly little stronger theorem ≤ 2-RF^2_3, the answer is NO.

Definition ($\leq l$-RF^A_B)

For any infinite sequence $u \in A^N$ and any coloring on finite sequences
$f : A^{<N} \rightarrow B$, there exists $v \in (A^{<N})^N$ such that
1. $u = v_0 v_1 \ldots$ and
2. $f(v_i; v_{i+1} \ldots v_{i+m-1}) = f(v_j; v_{j+1} \ldots v_{j+n-1})$ for $i, j > 0$ and $m, n \leq l$.

Remark: $WRF^A_B \iff \leq 1$-RF^A_B.
A generalization of weak RF

Relative strength

Theorem (RCA_0)

$\leq 2\text{-}\text{RF}_3^2 \Rightarrow \text{WRF}_2^N$.
A generalization of weak RF

Diagram 2

(Here, $w_{2\text{RF}23}$ denotes $\leq 2-\text{RF}^2_3$, etc.)
A generalization of weak T_k

Ramsey-type theorem equivalent to $\leq \text{RF}_k\mathcal{N}$

We can also get a Ramsey-type theorem equivalent to $\leq \text{RF}_k\mathcal{N}$.

Definition (space function)

For any $X \subseteq \mathbb{N}$, we define a function $\text{space}_X : [\mathbb{N}]^{<\mathbb{N}} \to \mathbb{N}$ as follows:

$$\text{space}_X(\sigma) := |\{x \in X \mid \min \sigma \leq x \leq \max \sigma\}| - \text{lh}(\sigma).$$

Definition ($<\text{RT}_k^n$)

For any coloring $P : [\mathbb{N}]^n \to k$, there exists an infinite set H such that for any $\sigma, \tau \in [H]^n$ satisfying $\text{space}_H(\sigma), \text{space}_H(\tau) < l$, $f(\sigma) = f(\tau)$.

Remark: $\text{psRT}_k^n \iff <1\text{-RT}_k^n$.
A generalization of weak \(RF \)
Ramsey-type theorem equivalent to \(\leq l-\text{RF}_k^\mathbb{N} \)

Theorem

The following are equivalent over \(\text{RCA}_0 \):

1. \(< l-\text{RT}_k^2 \).
2. \(\leq l-\text{RF}_k^\mathbb{N} \).

Recall:

Theorem (M./Yamazaki/Yokoyama, 2014)

The following are equivalent over \(\text{RCA}_0 \):

1. \(\text{psRT}_k^2 \).
2. \(\text{WRF}_k^\mathbb{N} \).
A generalization of weak RF
Ramsey-type theorem equivalent to \leq/l-RF_k^N

Theorem

The following are equivalent over RCA_0:

1. $< l$-RT_k^2.
2. \leq/l-RF_k^N.

Recall:

Theorem (M./Yamazaki/Yokoyama, 2014)

The following are equivalent over $\text{RCA}_0:

1. psRT_k^2.
2. WRF_k^N.
Contents

1 RF and weak RF (Joint work with T. Yamazaki and K. Yokoyama)

2 A generalization of weak RF

3 “finitary” RF
In 2007, T. Tao discussed, on his blog, the relation between “finitary” statements and “infinitary” statements. In his article, he introduced three kinds of “finitary” pigeonhole principles and proved the equivalences between the infinite pigeonhole principle and each of them.

In 2009, J. Gasper and U. Kohlenbach studied the equivalences in the context of reverse mathematics and proved the following theorem:

Theorem (Gasper/Kohlenbach, 2009)

1. $\text{RCA}_0 \vdash \text{FIPP}_2 \rightarrow \text{IPP}$, $\text{RCA}_0 \vdash \text{FIPP}_3 \rightarrow \text{IPP}$.
2. $\text{WKL}_0 \vdash \text{IPP} \rightarrow \text{FIPP}_2$.
3. $\text{ACA}_0 \vdash \text{IPP} \rightarrow \text{FIPP}_3$.
In 2007, T. Tao discussed, on his blog, the relation between “finitary” statements and “infinitary” statements. In his article, he introduced three kinds of “finitary” pigeonhole principles and proved the equivalences between the infinite pigeonhole principle and each of them.

In 2009, J. Gasper and U. Kohlenbach studied the equivalences in the context of reverse mathematics and proved the following theorem:

Theorem (Gasper/Kohlenbach, 2009)

1. $\text{RCA}_0 \vdash \text{FIPP}_2 \rightarrow \text{IPP}$, $\text{RCA}_0 \vdash \text{FIPP}_3 \rightarrow \text{IPP}$.
2. $\text{WKL}_0 \vdash \text{IPP} \rightarrow \text{FIPP}_2$.
3. $\text{ACA}_0 \vdash \text{IPP} \rightarrow \text{FIPP}_3$.
Historical background

1. In 2007, T. Tao discussed, on his blog, the relation between “finitary” statements and “infinitary” statements. In his article, he introduced three kinds of “finitary” pigeonhole principles and proved the equivalences between the infinite pigeonhole principle and each of them.

2. In 2009, J. Gasper and U. Kohlenbach studied the equivalences in the context of reverse mathematics and proved the following theorem:

Theorem (Gasper/Kohlenbach, 2009)

1. $\text{RCA}_0 \vdash \text{FIPP}_2 \rightarrow \text{IPP}$, $\text{RCA}_0 \vdash \text{FIPP}_3 \rightarrow \text{IPP}$.

2. $\text{WKL}_0 \vdash \text{IPP} \rightarrow \text{FIPP}_2$.

3. $\text{ACA}_0 \vdash \text{IPP} \rightarrow \text{FIPP}_3$.
In 2007, T. Tao discussed, on his blog, the relation between “finitary” statements and “infinitary” statements. In his article, he introduced three kinds of “finitary” pigeonhole principles and proved the equivalences between the infinite pigeonhole principle and each of them.

In 2009, J. Gasper and U. Kohlenbach studied the equivalences in the context of reverse mathematics and proved the following theorem:

<table>
<thead>
<tr>
<th>Theorem (Gasper/Kohlenbach, 2009)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. $\text{RCA}_0 \vdash \text{FIPP}_2 \rightarrow \text{IPP}$, $\text{RCA}_0 \vdash \text{FIPP}_3 \rightarrow \text{IPP}$.</td>
</tr>
<tr>
<td>2. $\text{WKL}_0 \vdash \text{IPP} \rightarrow \text{FIPP}_2$.</td>
</tr>
<tr>
<td>3. $\text{ACA}_0 \vdash \text{IPP} \rightarrow \text{FIPP}_3$.</td>
</tr>
</tbody>
</table>
Recently, F. Pelupessy studied its Ramsey version and proved the following theorem:

Theorem (Pelupessy, 2014)

1. $\text{RCA}_0 \vdash \text{FRT}^n_k \rightarrow \text{RT}^n_k$.
2. $\text{WKL}_0 \vdash \text{RT}^n_k \rightarrow \text{FRT}^n_k$.
“finitary” RF
“Finitary” Ramsey’s theorem

Let \(\text{FIN} := \{ \text{the codes of} \} \) all finite subsets of \(\mathbb{N} \).

Definition (RCA\(_0\))

\[F : \text{FIN} \to \mathbb{N} \text{ is asymptotically stable (near infinite sets)} \text{ if for any infinite sequence } X_0 \subseteq X_1 \subseteq \cdots \text{ of finite sets with } X = \bigcup X_i, \exists i \forall j \geq i \ F(X_i) = F(X_j). \]

Definition (“finitary” infinite Ramsey’s theorem, FRT\(_n^k\))

\[\forall F : \text{FIN} \to \mathbb{N}: \text{asymptotically stable} \ \exists R \forall C : [0, R]^d \to k \ \exists H \subseteq [0, R]: C\text{-homogeneous set such that } |H| \geq F(H). \]

Remark: \(F(X) := \min X \) is asymptotically stable. Therefore \(\text{PH}_k^n \) is an instance of \(\text{FRT}_k^n \).
Let $\text{FIN} := \{(\text{the codes of}) \text{ all finite subsets of } \mathbb{N}\}$.

Definition (RCA$_0$)

$F : \text{FIN} \to \mathbb{N}$ is **asymptotically stable** (near infinite sets) if for any infinite sequence $X_0 \subseteq X_1 \subseteq \cdots$ of finite sets with $X = \bigcup X_i$, $\exists i \forall j \geq i \ F(X_i) = F(X_j)$.

Definition ("finitary" infinite Ramsey's theorem, FRTn_k)

$\forall F : \text{FIN} \to \mathbb{N}$: asymptotically stable $\exists R \forall C : [0, R]^d \to k \ \exists H \subseteq [0, R]$: C-homogeneous set such that $|H| \geq F(H)$.

Remark: $F(X) := \min X$ is asymptotically stable. Therefore PH^n_k is an instance of FRTn_k.
“finitary” RF

“Finitary” Ramsey’s theorem

Let $\text{FIN} := \{(\text{the codes of}) \text{ all finite subsets of } \mathbb{N}\}$.

Definition (RCA$_0$)

$F : \text{FIN} \rightarrow \mathbb{N}$ is asymptotically stable (near infinite sets) if for any infinite sequence $X_0 \subseteq X_1 \subseteq \cdots$ of finite sets with $X = \bigcup X_i$, $\exists i \forall j \geq i \; F(X_i) = F(X_j)$.

Definition (“finitary” infinite Ramsey’s theorem, FRT$_k^n$)

$\forall F : \text{FIN} \rightarrow \mathbb{N} : \text{asymptotically stable } \exists R \forall C : [0, R]^d \rightarrow k \; \exists H \subseteq [0, R] : C$-homogeneous set such that $|H| \geq F(H)$.

Remark: $F(X) := \min X$ is asymptotically stable. Therefore PH_k^n is an instance of FRT_k^n.
We have several ways to define “finitary” RF.
The point is “How to define the largeness condition F for the Ramseyan factorization $\nu \in (A^{\mathbb{N}})^{\mathbb{N}}$?”

Case A: Set $F : (A^{\mathbb{N}})^{\mathbb{N}} \to \mathbb{N}$ and measure $F(\nu)$.

Case B: Set $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ and measure $F(lh(\nu_0), \ldots, lh(\nu_{lh(\nu)-1}))$.

Case C: Set $F : A^{\mathbb{N}} \to \mathbb{N}$ and measure $F(\nu_0 \bowtie \cdots \bowtie \nu_{lh(\nu)-1})$.

Shota Murakami

Some RF-type theorems in reverse mathematics

22 / 28
We have several ways to define “finitary” RF. The point is “How to define the largeness condition F for the Ramseyan factorization $v \in (A^{\mathbb{N}})^{\mathbb{N}}$?”

Case A: Set $F : (A^{\mathbb{N}})^{\mathbb{N}} \to \mathbb{N}$ and measure $F(v)$.

Case B: Set $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ and measure $F(\text{lh}(v_0), \ldots, \text{lh}(v_{\text{lh}(v)-1}))$.

Case C: Set $F : A^{\mathbb{N}} \to \mathbb{N}$ and measure $F(\overline{v_0} \cdots \overline{v_{\text{lh}(v)-1}})$.
“finitary” RF

Definition of “finitary” RF

We have several ways to define “finitary” RF. The point is “How to define the largeness condition F for the Ramseyan factorization $\nu \in (A^{<\mathbb{N}})^{<\mathbb{N}}$?”

Case A: Set $F : (A^{<\mathbb{N}})^{<\mathbb{N}} \to \mathbb{N}$ and measure $F(\nu)$.

Case B: Set $F : \mathbb{N}^{<\mathbb{N}} \to \mathbb{N}$ and measure $F(lh(\nu_0), \ldots, lh(\nu_{lh(\nu)-1}))$.

Case C: Set $F : A^{<\mathbb{N}} \to \mathbb{N}$ and measure $F(\nu_0 \dashv \cdots \dashv \nu_{lh(\nu)-1})$.
We have several ways to define “finitary” RF. The point is “How to define the largeness condition F for the Ramseyan factorization $\nu \in (A^{\mathbb{N}})^{\mathbb{N}}$?”

Case A: Set $F : (A^{\mathbb{N}})^{\mathbb{N}} \to \mathbb{N}$ and measure $F(\nu)$.

Case B: Set $F : \mathbb{N}^{\mathbb{N}} \to \mathbb{N}$ and measure $F(lh(\nu_0), \ldots, lh(\nu_{lh(\nu)-1}))$.

Case C: Set $F : A^{\mathbb{N}} \to \mathbb{N}$ and measure $F(\nu_0 \cdots \nu_{lh(\nu)-1})$.

Shota Murakami

Some RF-type theorems in reverse mathematics 22 / 28
We have several ways to define “finitary” RF. The point is “How to define the largeness condition F for the Ramseyan factorization $\nu \in (A^{<\mathbb{N}})^{<\mathbb{N}}$?”

Case A: Set $F : (A^{<\mathbb{N}})^{<\mathbb{N}} \rightarrow \mathbb{N}$ and measure $F(\nu)$.

Case B: Set $F : \mathbb{N}^{<\mathbb{N}} \rightarrow \mathbb{N}$ and measure $F(lh(\nu_0), \ldots, lh(\nu_{lh(\nu)-1}))$.

Case C: Set $F : A^{<\mathbb{N}} \rightarrow \mathbb{N}$ and measure $F(\nu_0 \cdots \nu_{lh(\nu)-1})$.
We have several ways to define “finitary” RF. The point is “How to define the largeness condition F for the Ramseyan factorization $\nu \in (A^\mathbb{N})^\mathbb{N}$?”

Case A: Set $F : (A^\mathbb{N})^\mathbb{N} \rightarrow \mathbb{N}$ and measure $F(\nu)$.

Case B: Set $F : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}$ and measure $F(lh(\nu_0), \ldots, lh(\nu_{lh(\nu)-1}))$.

Case C: Set $F : A^\mathbb{N} \rightarrow \mathbb{N}$ and measure $F(\nu_0 \cdot \cdot \cdot \cdot \nu_{lh(\nu)-1})$.

Shota Murakami

Some RF-type theorems in reverse mathematics

22 / 28
Definition of “finitary RF”

Definition

\[F : X^{\leq N} \to \mathbb{N} \text{ is asymptotically stable if for every infinite sequence} \]
\[\sigma_0 \subseteq \sigma_1 \subseteq \cdots \text{ of } X^{\leq N}, \exists i \forall j \geq i \ F(\sigma_i) = F(\sigma_j). \]

Definition (aFR\(_F^A\))

\[\forall F : (A^{\leq N})^{\leq N} \to \mathbb{N} : \text{a.s. } \exists l \forall f : A^{\leq N} \to B \ \forall u \in A^l \ \exists v \in (A^{\leq N})^{\leq N} \text{ such that } v \text{ is a R.F. for } f \text{ and } u, \text{ and } F(v) \leq \text{lh}(v). \]
Definition of “finitary RF”

Definition

\[F : X^{<\mathbb{N}} \to \mathbb{N} \] is asymptotically stable if for every infinite sequence \(\sigma_0 \subseteq \sigma_1 \subseteq \cdots \) of \(X^{<\mathbb{N}} \), \(\exists i \forall j \geq i \) \(F(\sigma_i) = F(\sigma_j) \).

Definition \((a\text{FRF}_B^A) \)

\[\forall F : (A^{<\mathbb{N}})^{<\mathbb{N}} \to \mathbb{N} : \text{a.s. } \exists l \forall f : A^{<\mathbb{N}} \to B \ \forall u \in A^l \ \exists v \in (A^{<\mathbb{N}})^{<\mathbb{N}} \text{ such that } v \text{ is a R.F. for } f \text{ and } u, \text{ and } F(v) \leq \text{lh}(v) \.]
Definition (bFRFA_B)

\[\forall F : \mathbb{N}^{< \mathbb{N}} \to \mathbb{N}: \text{a.s. } \exists \forall f : A^{< \mathbb{N}} \to B \ \forall u \in A^I \ \exists v \in (A^{< \mathbb{N}})^{< \mathbb{N}} \text{ such that } v \text{ is a R.F. for } f \text{ and } u, \text{ and } F(\text{lh}(v_0), \ldots, \text{lh}(v_{\text{lh}(v)-1})) \leq \text{lh}(v). \]

Definition (cFRFA_B)

\[\forall F : A^{< \mathbb{N}} \to \mathbb{N}: \text{a.s. } \exists ! \ \forall f : A^{< \mathbb{N}} \to B \ \forall u \in A^I \ \exists v \in (A^{< \mathbb{N}})^{< \mathbb{N}} \text{ such that } v \text{ is a R.F. for } f \text{ and } u, \text{ and } F(v^*) \leq \text{lh}(v^*). \]

(v^* denotes $v_0 \overline{\cdots} v_{\text{lh}(v)-1}$.)
“finitary” RF

Relative strength

Then we can show the following theorems:

Theorem

1. \(\text{RCA}_0 \vdash a\text{FRF}^A_B \rightarrow b\text{FRF}^A_B \land c\text{FRF}^A_B \).
2. \(\text{RCA}_0 \vdash b\text{FRF}_2^2 \rightarrow \text{RF}_2^2 \).
3. \(\text{RCA}_0 \vdash c\text{FRF}_2^2 \rightarrow \text{WKL} \).
4. \(\text{WKL}_0 + \text{RF}_2^2 \vdash a\text{FRF}_2^2 \).

Corollary (RCA\(_0\))

The following are equivalent:

1. \(\text{WKL} + \text{RT}_2^2 \).
2. \(a\text{FRF}_2^2 \).
3. \(b\text{FRF}_2^2 + c\text{FRF}_2^2 \).
“finitary” RF

Relative strength

Then we can show the following theorems:

Theorem

1. \(\text{RCA}_0 \vdash \text{aFRF}^A_B \rightarrow \text{bFRF}^A_B \land \text{cFRF}^A_B \).
2. \(\text{RCA}_0 \vdash \text{bFRF}_2^2 \rightarrow \text{RF}_2^2 \).
3. \(\text{RCA}_0 \vdash \text{cFRF}_2^2 \rightarrow \text{WKL} \).
4. \(\text{WKL}_0 + \text{RF}_2^2 \vdash \text{aFRF}_2^2 \).

Corollary (RCA\(_0\))

The following are equivalent:

1. \(\text{WKL} + \text{RT}_2^2 \).
2. \(\text{aFRF}_2^2 \).
3. \(\text{bFRF}_2^2 + \text{cFRF}_2^2 \).
“finitary” RF

Diagram 3

RT22 + WKL

\[\begin{align*}
\text{cFRF22} & \quad \text{bFRF22} & \quad \text{aFRF22} & \quad \text{bFRF22 + cFRF22} \\
& \quad & \quad & \\
\downarrow & \quad & \quad & \\
\text{WKL} & \quad & \text{RT22} & \\
\end{align*} \]
References

Jaime Gaspar and Ulrich Kohlenbach.
On Tao’s ”finitary” infinite pigeonhole principle.

Manuel Lerman, Reed Solomon, and Henry Towsner.
Separating principles below Ramsey’s theorem for pairs.

Shota Murakami, Takeshi Yamazaki, and Keita Yokoyama.
On the Ramseyan factorization theorem.
In Arnold Beckmann, Erzsbet Csuhaj-Varj, and Klaus Meer, editors,

Florian Pelupessy.
On ”finitary” infinite Ramsey principles.
draft.
Thank you.

Thank you for your attention.