Expressibility of simple unary generalized quantifier

Shohei Okisaka

Mathematical Institute, Tohoku University

September 5, 2014
Outline

1. Introduction
 - Finite model theory
 - Ehrenfeucht-Frásse game

2. Generalized quantifier
 - Definition
 - Vectorization

3. Expressibility
 - Simple case
 - Other cases
Many theorems in model theory fail if we restrict to *finite structures*.

- **Compactness**
 Let $T = \{ \varphi_{\geq n} \mid n \geq 1 \}$ where $\varphi_{\geq n}$ means "there are at least n elements", then, any finite subset of T is satisfiable in finite structures but T is not.

- **Completeness**

Theorem (Trakhtenbrot(1950))

The halting problem can be reducible to finitely satisfiability problem. i.e for any TM M, we can construct FO-sentence φ_M which satisfying:

$M(<M>)$ halts iff φ_M is satisfiable by finite structure.
R. Fagin show the first *descriptive complexity* result.

Theorem (Fagin(1974))

Let K be a class of finite structures, then

\[K \text{ is } \Sigma_1^1 \text{ definable } \iff K \text{ is NP-computable} \]

Rmk K is NP-computable means if finite structure \mathcal{A} is given, then it is NP-computable to decide whether $\mathcal{A} \in K$.

e.g) (undirected) graph \mathcal{G} is 3-colorable iff \mathcal{G} satisfies

\[\exists C_1 \exists C_2 \exists C_3 ((\forall x (C_1(x) \lor C_2(x) \lor C_3(x))) \land \\
(\forall x \forall y (E(x,y) \rightarrow \land \neg(C_i(x) \land C_i(y)))))) \]
Other complexity classes are also characterized if we restrict to \textit{ordered structures}.

<table>
<thead>
<tr>
<th>complexity</th>
<th>logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC^0</td>
<td>$\text{FO}(\leq, +, \times)(\text{Immerman, 88})$</td>
</tr>
<tr>
<td>$\text{AC}^0(m)$</td>
<td>$\text{FO}+D_m(\leq, +, \times)$</td>
</tr>
<tr>
<td>TC^0</td>
<td>$\text{FO}+M(\leq, +, \times)$</td>
</tr>
<tr>
<td>$\text{FO}+\text{TC operator}(\leq)(\text{Immerman, 83})$</td>
<td></td>
</tr>
<tr>
<td>$\text{FO}+\text{least fixpoint operator}(\leq)$ (Immerman, Vardi 82)</td>
<td></td>
</tr>
<tr>
<td>$\text{FO}+\text{partial fixpoint operator}(\leq)$ (Vardi, 82)</td>
<td></td>
</tr>
</tbody>
</table>

\[A \models D_m x \varphi(x) :\iff \#\{ a \in A \mid A \models \varphi(a) \} \equiv 0 \ mod \ m \]

\[A \models M x \varphi(x) :\iff \#\{ a \in A \mid A \models \varphi(a) \} \geq \#A/2 \]
How can you show "class K is not definable in logic \mathcal{L}?"
How can you show "class K is not definable in logic \mathcal{L}?"

→ **Ehrenfeucht-Frásse game** is a tool to show such undefinability.
Let τ be *finite relational vocabulary*,
\mathcal{A}, \mathcal{B} be τ-str, $k, m \geq 0$, $\bar{a} \in \mathcal{A}^k$, $\bar{b} \in \mathcal{B}^k$
m-round EF-game $G_m((\mathcal{A}, \bar{a}), (\mathcal{B}, \bar{b}))$ is defined as follows.

- There are two players (I and II)
- This game consists of m-rounds
- i-th round (FO-move)
 - I choose \mathcal{A} or \mathcal{B}, (assume choose \mathcal{A},) I choose $c_i \in \mathcal{A}$
 - Then II choose $d_i \in \mathcal{B}$ (similarly when I choose \mathcal{B})
- After m-th round,
 II win iff $\bar{a}c_1 \cdots c_m \mapsto \bar{b}d_1 \cdots d_m$ is *partial isomorphism*.
Let’s play $G_2((\mathbb{N}, \leq), (\mathbb{Z}, \leq))$

<table>
<thead>
<tr>
<th>str</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{N}</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let's play $G_2((\mathbb{N}, \leq), (\mathbb{Z}, \leq))$

<table>
<thead>
<tr>
<th>str</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{N}</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>a</td>
<td></td>
</tr>
</tbody>
</table>
Let’s play $G_2((\mathbb{N}, \leq), (\mathbb{Z}, \leq))$

<table>
<thead>
<tr>
<th>str</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{N}</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>a</td>
<td>$a - 1$</td>
</tr>
</tbody>
</table>
Let's play $G_2((\mathbb{N}, \leq), (\mathbb{Z}, \leq))$

<table>
<thead>
<tr>
<th>str</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{N}</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>a</td>
<td>$a - 1$</td>
</tr>
</tbody>
</table>
Let’s play \(G_2((\mathbb{N}, \leq), (\mathbb{Z}, \leq)) \)

<table>
<thead>
<tr>
<th>str</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mathbb{N})</td>
<td>0</td>
<td>?</td>
</tr>
<tr>
<td>(\mathbb{Z})</td>
<td>(a)</td>
<td>(a - 1)</td>
</tr>
</tbody>
</table>

For any element \(x \), \(0x \mapsto a(a - 1) \) is not partial isomorphism.
Let’s play $G_2(\langle \mathbb{N}, \leq \rangle, \langle \mathbb{Z}, \leq \rangle)$

<table>
<thead>
<tr>
<th></th>
<th>str</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{N}</td>
<td>0</td>
<td>?</td>
<td></td>
</tr>
<tr>
<td>\mathbb{Z}</td>
<td>a</td>
<td></td>
<td>$a - 1$</td>
</tr>
</tbody>
</table>

For any element x, $0x \mapsto a(a - 1)$ is not partial isomorphism. In fact, $\mathbb{N} \models \exists x \forall y (x \leq y)$ & $\mathbb{Z} \not\models \exists x \forall y (x \leq y)$
The quantifier rank \(qr(\varphi) \) of FO formula \(\varphi \) is defined as follows.

\[\varphi: \text{atomic} \Rightarrow qr(\varphi)=0, \quad qr(\neg \varphi)=qr(\varphi), \]

\[qr(\varphi \lor \psi)=\max\{qr(\varphi), qr(\psi)\}, \quad qr(\exists x \varphi)=qr(\varphi)+1 \]

Theorem

The followings are equivalent.

1. \(\text{II has winning strategy in } G_m((\mathcal{A}, \bar{a}), (\mathcal{B}, \bar{b})) \)
2. \((\mathcal{A}, \bar{a}) \equiv_m (\mathcal{B}, \bar{b}) \)

\[(\mathcal{A}, \bar{a}) \equiv_m (\mathcal{B}, \bar{b}) :\iff \forall \varphi \ (qr(\varphi) \leq m \Rightarrow \mathcal{A} \models \varphi(\bar{a}) \iff \mathcal{B} \models \varphi(\bar{b})) \]
If we want to show the statement "K is not definable in FO", it’s enough to show

$$\forall n \in \mathbb{N}, \exists A \in K \& \exists B \notin K \text{ s.t } A \equiv_n B$$

Using EF-game, we can show FO can not define the following classes.

- $\{(A, P^A) \mid \#P \equiv 0 \mod m\}$
- $\{(A, \leq) \mid \#A \text{ is even.}\}$
If we want to show the statement "\(K \) is not definable in FO", it’s enough to show

\[
\forall n \in \mathbb{N}, \exists A \in K & \exists B \notin K \text{ s.t. } A \equiv_n B
\]

Using EF-game, we can show FO can not define the following classes.

- \{ (\(A, P^A \)) | \#P \equiv 0 \mod m \}
- \{ (\(A, \leq \)) | \#A \text{ is even.} \}

The expressibility of FO is so limited. We consider to extend FO by adding new quantifier.
First-order formula cannot describe such as
 ”there are finitely many ...” or ”there are uncountably many...”
First-order formula cannot describe such as
"there are finitely many ..." or "there are uncountably many..."

Mostowski introduced *generalized quantifier* to express such sentence in 1957.
First-order formula cannot describe such as “there are finitely many ...” or “there are uncountably many...”

Mostowski introduced *generalized quantifier* to express such sentence in 1957.

Lindström extended the concept in 1966, which is also called *Lindström quantifier*.
Let $\tau := \{R_1, \cdots, R_m\}$ be finite relational vocabulary and K a class of finite τ-str.

Definition

generalized quantifier Q_K given by K is defined as follows: for any finite str \mathcal{A},

$$\mathcal{A} \models Q_K \bar{x}_1, \cdots, \bar{x}_m(\varphi_1(\bar{x}_1), \cdots, \varphi_m(\bar{x}_m)) \iff (\mathcal{A}, \varphi_1^{\mathcal{A}}, \cdots, \varphi_m^{\mathcal{A}}) \in K$$

where \bar{x}_k is seq of variables which length is equal to the arity of R_k and $\varphi_k^{\mathcal{A}} := \{\bar{a} \mid \mathcal{A} \models \varphi_k(\bar{a})\}$

We denote the extension of FO equipped with generalized quantifier Q_K by $\text{FO}(Q_K)$.

Q_K is called **simple** if τ has only one relation symbol and **unary** if τ has only unary symbols.
Examples

Let \(P, Q \) be unary relation symbols.

- \(K_{\exists} = \{(A, P^A) \mid P^A \neq \emptyset\}, \quad A \models Q_{K_{\exists}} x \varphi(x) \iff \varphi^A \neq 0 \iff A \models \exists x \varphi(x). \)

- \(D_3 = \{(A, P^A) \mid \# P^A \equiv 0 \mod 3\}, \quad A \models Q_{D_3} x \varphi(x) \iff \# \varphi^A \equiv 0 \mod 3 \iff A \models D_3 x \varphi(x). \)

- \(M = \{(A, P^A) \mid \# P^A \geq \# A/2\}, \quad A \models Q_M x \varphi(x) \iff \# \varphi^A \geq \# A/2 \iff A \models M x \varphi(x). \)

- \(I = \{(A, P^A, Q^A) \mid \# P^A = \# Q^A\}, \quad A \models Q_I x, y(\varphi(x), \psi(y)) \iff \# \varphi^A = \# \psi^A. \)
Using generalized quantifiers, we can restate the characterization of some complexity classes.

<table>
<thead>
<tr>
<th>complexity class</th>
<th>logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC(^0)(m)</td>
<td>FO((Q_{Dm})(\leq, +, \times))</td>
</tr>
<tr>
<td>TC(^0)</td>
<td>FO((Q_{M})(\leq, +, \times))</td>
</tr>
</tbody>
</table>
Using generalized quantifiers, we can restate the characterization of some complexity classes.

<table>
<thead>
<tr>
<th>complexity class</th>
<th>logic</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC^0(m)</td>
<td>FO(Q_{D_m})(\leq, +, \times)</td>
</tr>
<tr>
<td>TC^0</td>
<td>FO(Q_M)(\leq, +, \times)</td>
</tr>
</tbody>
</table>

Can we also characterize other classes like P or NP in terms of generalized quantifier ??
To capture P in terms of generalized quantifier, we need more definition.

For $\tau = \{R_1, \cdots, R_m\}$, $k > 0$, let $\tau(k) = \{R_1^k, \cdots, R_m^k\}$ where if R_i is l-ary relation symbol, R_i^k is kl-ary relation symbol.

Definition

Let K be a class of τ-str. k-th vectorization of K is class of $\tau(k)$-str defined as follows:

$$K^k := \{(A, (R_1^k)^A, \cdots, (R_m^k)^A) | (A^k, (R_1^k)^A, \cdots, (R_m^k)^A) \in K\}$$

Rmk: If $(R_i^k)^A$ is kl-ary relation over A, we can see $(R_i^k)^A$ as l-ary relation over A^k.

We denote the logic $\text{FO}(\{Q_{k^l} | l > 0\})$ by FO^+K.
Examples

- \(K_\exists = \{(A, P^A) \mid P^A \neq \emptyset\} \),
 \(\mathcal{A} \models Q_{K_\exists} x_1 x_2 x_3 \varphi(x_1, x_2, x_3) \iff \mathcal{A} \models \exists x_1 \exists x_2 \exists x_3 \varphi(x_1, x_2, x_3) \).

- \(D_3 = \{(A, P^A) \mid \#P^A \equiv 0 \mod 3\} \),
 \(\mathcal{A} \models Q_{D_3^2} x y \varphi(x, y) \iff \#\{(a, b) \in A^2 \mid \mathcal{A} \models \varphi(a, b)\} \equiv 0 \mod 3. \)

- \(M = \{(A, P^A) \mid \#P^A \geq \#A/2\} \),
 \(\mathcal{A} \models Q_{M^2} x y \varphi(x, y) \iff \#\{(a, b) \in A^2 \mid \mathcal{A} \models \varphi(a, b)\} \geq \#A^2/2. \)
We can define a class of finite structures which captures P, i.e.

Fact

There is a class of finite structures L_P s.t. for any class of finite ordered structures K, K is P-computable iff K is definable in $FO+L_P$. The same statement holds for L, NL, NP, $PSPACE$.

Note

- It is shown that P can’t be captured by the logic $FO(Q_K)$ for any K (Hella, 1992).
- Some classes like D_m collapse *vectorization hierarchy*. i.e. $FO+D_m$ is equivalent to $FO(Q_{D_m})$.
We investigate expressibility of the most simplest case. Let $\tau = \{P\}$ (P: unary), for $S \subseteq \mathbb{N}$, we define a class of τ-str K_S by

$$K_S := \{(A, P^A) \mid \#P^A \in S\}$$

Then, the semantics of the generalized quantifier is given by

$$\mathcal{A} \models Q_{K_S} \varphi(x) \iff \#\varphi^A \in S$$
We investigate expressibility of the most simplest case. Let \(\tau = \{ P \} \) (\(P \): unary), for \(S \subseteq \mathbb{N} \), we define a class of \(\tau \)-str \(K_S \) by

\[
K_S := \{(A, P^A) \mid \#P^A \in S\}
\]

Then, the semantics of the generalized quantifier is given by

\[
\mathcal{A} \models Q_{K_S}x\varphi(x) \iff \#\varphi^\mathcal{A} \in S
\]

Question.

Given two subset \(S, T \subseteq \mathbb{N} \), when is \(\text{FO} + K_T \) (or \(\text{FO}(Q_{K_T}) \)) more expressive than \(\text{FO} + K_S \) (\(\text{FO}(Q_{K_S}) \))??
Definition

For any logic $\mathcal{L}, \mathcal{L}'$, we say \mathcal{L}' is more expressive than \mathcal{L} ($\mathcal{L} \leq \mathcal{L}'$) if for any τ and any τ-formula φ in \mathcal{L}, there exists τ-formula ψ in \mathcal{L}' which is equivalent to φ.

Lemma

For two classes K, L,

1. $FO(\text{Q}_K) \leq FO(\text{Q}_L)$ iff K is definable in $FO(\text{Q}_L)$
2. $FO+K \leq FO+L$ iff K is definable in $FO+L$
From now on, $\tau = \{P\}$ (P: unary), and \mathcal{A} is τ-str.
Given $S \subseteq \mathbb{N}$, let $S + m := \{n + m \mid n \in S\}$, then for example

$$\mathcal{A} \in K_{S+1} \iff \mathcal{A} \models \exists y (P(y) \land Q_{K_S} x (x \neq y \land P(x)))$$

So, $\text{FO}(Q_{K_{S+1}}) \leq \text{FO}(Q_{K_S})$.

Theorem (Corredor(1986))

For $S, T \subseteq \mathbb{N}$,

$$\text{FO}(Q_{K_S}) \leq \text{FO}(Q_{K_T}) \text{ iff } \exists T' \in \mathcal{B}(\{T + m \mid m \geq 0\}) \text{ s.t. } \#(S \Delta T') < \infty$$

Corollary

For $m, m' > 0$,

$$\text{FO}(Q_{D_m}) \leq \text{FO}(Q_{D_{m'}}) \text{ iff } m \mid m'$$
(Sketch of proof.) It’s enough to show left to right.
At first, note that quantifier rank of \(\varphi \in \text{FO}+K_T \) is defined similarly.
Furthermore, EF-game for FO+K_T is also defined as FO case but add \(Q_{K_T} \)-move:

- I choose \(A \) or \(B \) (assume choose \(A \)), I choose \(X \subseteq A \) which is closed under automorphism which fixes chosen elements ,
- II choose \(Y \subseteq B \) which satisfies \(\#X \in T \iff \#Y \in T \)
- I choose \(b \in Y \), then II choose \(a \in X \).

We assume that \(\forall T' \in \mathcal{B} \{ T + m \mid m \geq 0 \} \) \(\#(S \Delta T') = \infty \), and show for any \(n \in \mathbb{N} \), there exists \(A \in K_S, B \not\in K_S \) s.t
\(\forall \varphi \in \text{FO}+K_T \) \(\text{qr}(\varphi) \leq n \Rightarrow A \models \varphi \iff B \not\models \varphi \)
we fix $n \in \mathbb{N}$,

Lemma

there exists $u \in S \& v \notin S$ s.t

- $u, v > n$
- for any $m < n$, $u \in T + m$ iff $v \in T + m$

Let $\mathcal{A} = (A, A)$, $\mathcal{B} = (B, B)$ where $\#A = u$, $\#B = v$. Then $\mathcal{A} \in K_S \& \mathcal{B} \notin K_S$.

Shohei Okisaka
Expressibility of simple unary generalized quantifier
we fix $n \in \mathbb{N}$,

Lemma

there exists $u \in S \& v \notin S \text{ s.t.}$

- $u, v > n$
- for any $m < n$, $u \in T + m$ iff $v \in T + m$

Let $\mathcal{A} = (A, A)$, $\mathcal{B} = (B, B)$ where $\#A = u$, $\#B = v$.

Then $\mathcal{A} \in K_S \& \mathcal{B} \notin K_S$.

We need to check II win in EF-game for FO+K_T between \mathcal{A} and \mathcal{B}.
In i-th move,

- If I choose FO-move and $a \in A$, II can choose $b \in B$ since $u, v > n$.
- If I choose Q_{K_T}-move and $X \subseteq A$,
 - if X does not contain unchosen element, II choose Y as set of correspondings (in this case $\#X = \#Y$).
 - if X contains unchosen element, then X contain all of such elements. II choose Y as set of unchosen elements and correspondings in X.
 In this case, $\#X = u - m \& \#Y = v - m$ ($m < n$),

So any case, $\#X \in T$ iff $\#Y \in T$
How about ordered case? For example,

$$\mathcal{A} \in D_4 \iff \mathcal{A} \models Q_{D_2} x P(x) \land Q_{D_2} x (P(x) \land Q_{D_2} y (P(y) \land y \leq x))$$

So, $\text{FO}(Q_{D_4}) \leq \text{FO}(Q_{D_2})$ on ordered.

Theorem (Nurmonen(2000))

For $m, k > 0$, $\text{FO}(Q_{D_{mk}}) \leq \text{FO}(Q_{D_m})$ on ordered.

Corollary

*For $m, m' > 0$,
$\text{FO}(Q_{D_m}) \leq \text{FO}(Q_{D_{m'}})$ on ordered iff $\forall p: \text{prime}, p | m \Rightarrow p | m'$*
How about vectorized case?

\[A \in K_S \iff A \models \exists z_1 \exists z_2 ((z_1 \neq z_2) \land Q_{K_{2S}}^z xy ((x = z_1 \lor x = z_2) \land P(y))) \]

\[A \in K_S \iff A \models Q_{K_{S^2}}^z xy (P(x) \land P(y)) \]

where \(2S := \{2n \mid n \in S\} \), \(S^2 := \{n^2 \mid n \in S\} \).

So, \(\text{FO} + K_S \leq \text{FO} + K_{2S}, \text{FO} + K_{S^2} \)

Theorem

*For \(S, T \subseteq \mathbb{N} \),

\(\text{FO} + K_S \leq \text{FO} + K_T \)

iff \(\exists T' \in \mathcal{B} (\{f^{-1}(T) \mid f \in \mathbb{Z}[x]^+\}) \) s.t \(\# (S \Delta T') < \infty \)

\[f \in \mathbb{Z}[x]^+ \iff f = \sum_{k=0}^{n} a_k x^k \text{ where } a_k \in \mathbb{Z} \& a_n > 0 \]

