Zero-sum Revision Games

Fabien Gensbittel1, Stefano Lovo2, Jerome Renault1 and Tristan Tomala2

1TSE
2HEC, Paris

Tutorial and Workshop on Stochastic Games (NUS), Singapore December 2015
Players have to prepare their actions in a pre-play phase preceding the payoff-relevant play in a one shot game.

During the pre-play phase:
- Prepared actions are commonly observed.
- Prepared actions can be change only at the bell of a Poisson clock.

Only the last prepared action profile matters for the payoff.

Some examples
- Preopening in the stock market (Nasdaq, Euronext, Toronto SE, daily from 7a.m. to 9 a.m.)
- Interaction through internet servers (e-bay auctions).
- Preparatory meetings to negotiate the terms of a treaty.
- Armies deploying their troops on the ground
- ...
Component game: Zero-sum game

- 2 players.
- \(X_i \): player \(i \)'s finite set of actions.
- \(U : X_1 \times X_2 \rightarrow \mathbb{R} \): player 1’s payoff matrix (generic).

\[
BR^U_1(x) := \arg \max_{y_1} U(y_1, x_2) \ ; \ BR^U_2(x) := \arg \min_{y_2} U(x_1, y_2)
\]

- Stackelberg payoff where 1 plays first:

\[
S_1 = \max_{x_1 \in X_1} \min_{x_2 \in X_2} U(x_1, x_2)
\]

- Stackelberg payoff where 2 plays first

\[
S_2 = \min_{x_2 \in X_2} \max_{x_1 \in X_1} U(x_1, x_2)
\]

- Value of the game: \(V \)

\[
S_1 \leq V \leq S_2
\]

with equality if pure Nash.
At $t = 0$, starting prepared action $x(0) \in X$ exogenous.

Between time 0 and T, Poisson arrivals of revision times independent for each player (Asynchronous moves).

Each player can change his prepared actions only at his revision times.

At T players get their only payoff and this results from players playing, in the component game, their last prepared actions.
Finite time horizon $[0, T]$.

Game $\Gamma_{[\tau, T]}(x)$ with $\tau < T$ and $x \in X$.

Time η is drawn from an exponential distribution with parameter λ.

If $\eta + \tau > T$, then the game is over and players’ payoff is $\{U(x), -U(x)\}$

if $\eta + \tau < T$, then
- With Pr $q \in (0, 1)$ player 1 chooses an action $y_1 \in X_1$ and the game $\Gamma_{[\tau+\eta, T]}(y_1, x_2)$ starts.
- With Pr $1 - q$ player 2 chooses an action $y_2 \in X_2$ and the game $\Gamma_{[\tau+\eta, T]}(x_1, y_2)$ starts.

Initial game: $\Gamma_{[0, T]}(x(0))$

Calcagno, Kamada, Lovo and Sugaya (2014): In 2×2 conflicting interest games (generic Battle of the sexes),
- the revision game equilibrium is unique;
- the slow players has an advantage over the fast players;
- revision game equilibrium payoff = component game Nash equilibrium payoff;
- All action occurs at the beginning of the revision game.

Cheap talk games: Farrell (1987), Rabin (1994), Aumann and Hart (2003), ...

Switching cost games: Lipman and Wang (2000) and Caruana and Einav (2008), ...
Research question

What are we after?

- Under what conditions does a player prefer to play the revision game rather than the straight zero-sum game?
- Characterization of equilibrium payoff.
- Characterization of equilibrium behavior.
1 Preliminaries
2 General results
3 2×2 equilibrium characterization
Preliminaries
Notation, histories and strategies

- Set of states: player who can revise and the resulting new profile of action
 \[K = \{1, 2\} \times X \]
- History of past revision time and chosen actions
 \[h_n = \{x, \tau_1, k_1, \ldots, \tau_n, k_n\} \in X \times ([0, T] \times K)^n \]
- Strategy: mapping histories and revision times into a (mixed) action
 \[\sigma_i : \bigcup_{n \geq 0} (H_n \times [0, T]) \to \Delta X_i \]
- A Markov strategy is a measurable mapping
 \[\sigma_i : X \times [0, T] \to \Delta X_i \]
- Expected payoff given \(\sigma \):
 \[u_\sigma(T, x) := \mathbb{E}_\sigma[U(x(T)) | x(0) = x] \]
 where \(x(T) \) is the last prepared action profile at time \(T \).
Preliminaries
Existence

Theorem

(Lovo and Tomala (2015)) The revision game has a Markov perfect equilibrium. With

- t is the remaining time.
- $u(x, t)$: equilibrium payoff of the game of length t with starting action profile x.
- $u(t) := \{u(t, x)\}_{x \in X}$
- $\sigma_i(t, x) \in BR_i^{u(t)}(x_{-i})$
Remark that $u(t, x)$ is Lipschitz.

Let

$$u^+(t, x) := \max_{y_1 \in X_1} u(t, y_1, x_2) \quad ; \quad u^-(t, x) := \min_{y_2 \in X_2} u(t, x_1, y_2);$$

$$\lambda_1 := \lambda q \quad ; \quad \lambda_2 := \lambda (1 - q)$$

Then

$$u(t, x) = U(x) e^{-\lambda t} + \int_{s=0}^{t} e^{-\lambda (t-s)} \left(\lambda_1 u^+(s, x) + \lambda_2 u^-(s, x) \right) ds,$$

$$\frac{\partial u(t, x)}{\partial t} = \lambda_1 (u^+(t, x) - u(t, x)) + \lambda_2 (u^-(t, x) - u(t, x)),$$

$$u(0, x) = U(x).$$
Proposition

1. The revision game has a Markov perfect equilibrium in pure strategy.
2. The equilibrium payoff $u(t, x)$ is Lipschitz in t, U and is continuous in $(q, \lambda) \in (0, 1) \times (0, \infty)$.
3. The equilibrium payoff $u(t, x)$ is non-decreasing in q.
General results
Pure strategies: sketch of the proof

Take a MPE and suppose that for some time t, $\sigma_i(t, x)$ is not pure. For this t replace $\sigma_i(t, x)$ by a pure action in $\sigma'_i(t, x) \in BR^u_i(x)$. Observe that u^+ and u^- do not change with σ or σ'. Hence

$$u(t, x) = u(x)e^{-\lambda t} + \int_{s=0}^{t} e^{-\lambda(t-s)} \left(\lambda_1 u^+(s, x) + \lambda_2 u^-(s, x) \right) ds$$

is the same under σ and σ'. Zero sum structure is crucial.
General results
Continuity of $u(t, x)$: sketch of the proof

- 1-Lipschitz in t:

 $$|u(t, x) - u(t + \varepsilon, x)| \leq \|u(t)\|(1 - e^{-\lambda\varepsilon})$$

- 1-Lipschitz in U: Take $U' \neq U$, then

 $$|u(t, x) - u'(t, x)| \leq \max_{y \in X} |U(y) - U'(y)|$$

- Continuous in λ, take $\lambda' \neq \lambda$, then

 $$u(t, x)|_{\lambda} = u\left(\frac{\lambda'}{\lambda} t', x\right)|_{\lambda'}$$

- Continuous in q: Payoff continuously depends on the distribution of revision time that is continuous in q.

Gensbittel, Lovo, Renault, Tomala
General results
Monotonicity of $u(t, x)$ in q: sketch of the proof

Let $q' < q$.

$$\frac{\partial u(t, x)}{\partial t} = \lambda (qu^+(t, x) + (1 - q)u^-(t, x) - u(t, x))$$

If for some t, $u(t, x)|_{q'} = u(t, x)|_{q}$, then

$$\left. \frac{\partial u(t, x)}{\partial t} \right|_{q'} \leq \left. \frac{\partial u(t, x)}{\partial t} \right|_{q}$$

implying $u(\tau, x)|_{q} \leq u(\tau, x)|_{q'}$, for some $\varepsilon > 0$, and all $\tau \in (t, t + \varepsilon)$.

but

$$u(0, x)|_{q'} = u(0, x)|_{q} = U(x)$$

so it can never be that

$$u(\tau, x)|_{q'} > u(\tau, x)|_{q}$$
Consider a revision game where the starting action profile is x and let

$$\underline{R}(x) := \liminf_{t \to \infty} u(t, x) \quad \text{and} \quad \overline{R}(x) := \limsup_{t \to \infty} u(t, x)$$

If $\underline{R}(x) = \overline{R}(x) = R(x)$ then we say that the revision game value is $R(x)$.
Proposition

1. Irrelevance of revision when V is achieved with pure strategies:

$$ S_1 \leq R(x) \leq \overline{R}(x) \leq S_2 $$

2. Ergodicity:

$$ R(x) = \overline{R}(x) = R, \forall x \in X $$

for some constant C

3. R is 1-Lipschitz in U, and continuous in $(q, \lambda) \in (0, 1) \times (0, \infty)$.

4. $\lim_{q \to 0} = S_1$ and $\lim_{q \to 1} = S_2$
Let $X_1 = X_2 = \{\alpha, \beta\}$.

\[
\begin{array}{cc}
\alpha & \beta \\
\hline
\alpha & U(\alpha, \alpha) & U(\alpha, \beta) \\
\beta & U(\beta, \alpha) & U(\beta, \beta)
\end{array}
\]

Then the component game where U is generic, implying $x \neq x' \Rightarrow U(x) \neq U(x')$.
2 × 2 games
Possible scenarios for $u(t)$

- **Scenario DD**: Each player has a dominant action. For example:

 \[
 \begin{array}{cc}
 0 & 2 \\
 -1 & 1 \\
 \end{array}
 \]

- **Scenario DN**: One player has a dominant action whereas the other player does not. For example:

 \[
 \begin{array}{cc}
 0 & 2 \\
 -1 & -5 \\
 \end{array}
 \]

- **Scenario NN**: No pure Nash Eq. For example:

 \[
 \begin{array}{cc}
 0 & 2 \\
 3 & -5 \\
 \end{array}
 \]
Proposition

Suppose U is in scenario DD, and let \hat{x}_i be player i's dominant action in the component game. Then for all t,

1. $u(t)$ is in scenario DD
2. $\sigma_i(t, x) = \hat{x}_i, \forall x \in X$
3. $R = V$
Intuition:
- By continuity with respect to t each player prepares his dominant action when t is close to 0.
- If for all $\tau > t$ the other player uses a fixed action no matter what you do, then you strictly prefer preparing your dominant action at t.

Algebraic:
Solve the ODE and verify that $BR_i^{u(t)}(x)$ does not depend on t.
Proposition

Suppose U is in scenario DN, and \hat{x}_1 is player 1's dominant action in the component game. Then there is t^* finite such that

1. For $t < t^*$:
 - $u(t)$ is in scenario DN
 - $\sigma_1(t, x) = \hat{x}_1, \forall x$
 - $\sigma_2(t, x) = BR^U_2(x_1)$

2. For $t \geq t^*$:
 - $u(t)$ is in scenario DD
 - $\sigma_1(t, x) = \hat{x}_1, \forall x$
 - $\sigma_2(t, x) = BR^U_2(\hat{x}_1), \forall x$

3. $R = V$
2×2 games
Scenario DN

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>β</td>
<td>-1</td>
<td>-5</td>
</tr>
</tbody>
</table>

1. $t > t^*$: At the beginning of the revision phase players prepare the action forming the component game pure Nash equilibrium.
2. $t < t^*$: Once reached these actions they do not move.

\[u(t) \text{ is in scenario DD} \]

\[u(t) \text{ is in scenario DN} \]

\[t^* \quad t = 0 \]
Proposition

If U is in NN scenario, then there are $0 < t^{**} < t^*$, i^* and x_{i^*} such that:

1. For $t < t^{**}$:
 - $u(t)$ is in scenario NN
 - $\sigma_i(t, x) = BR_i^U(x_{-i})$

2. For $t^{**} < t < t^*$:
 - $u(t)$ is in scenario DN

3. For $t \geq t^*$:
 - $u(t)$ is in scenario DD

4. Generically

\[R = u(t^{**}, x^*) \neq V \]
surplice and wrestle

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3</td>
<td>−0.5</td>
<td></td>
</tr>
</tbody>
</table>

1. $t > t^*$: At the beginning of the revision phase players prepare a “surplace” action, that they keep until t^*
2. $t < t^*$: starting to t^* players actions cycle

$u(t)$ is in scenario DD $u(t)$ is in scenario DN $u(t)$ is in scenario NN

t^* t^* $t = 0$
If U is in NN scenario, then without loss of generality we have

$$\begin{array}{c|cc}
\alpha & \alpha & \beta \\
\hline
\alpha & 0 & b \\
\beta & c & b + c - 1 \\
\end{array}$$

with

$$0 < b, c, < 1$$
2 × 2 games
Scenario NN: Sur-place action

Let \(\sigma := |\lambda_1^2 - 6\lambda_1\lambda_2 + \lambda_2^2|^{\frac{1}{2}} \) and let \(\hat{t}(A, B, \lambda_1, \lambda_2) \) be the smallest positive \(t \) such that

\[
e^{-\frac{\lambda_1+\lambda_2}{2}t} + A \cos \left(\frac{\sigma t}{2} \right) + \frac{(\lambda_2 - \lambda_1)A + 2\lambda_2 B}{\sigma} \sin \left(\frac{\sigma t}{2} \right) = 0 \quad (1)
\]

Set \(\hat{t}(A, B, \lambda_1, \lambda_2) \) to infinity. Let

\[
\begin{align*}
t_{\alpha,\alpha} &= \hat{t}(2c - 1, 2b - 1, \lambda_1, \lambda_1) \\
t_{\alpha,\beta} &= \hat{t}(2b - 1, 1 - 2c, \lambda_2, \lambda_1) \\
t_{\beta,\alpha} &= \hat{t}(1 - 2b, 2c - 1, \lambda_2, \lambda_1) \\
t_{\beta,\beta} &= \hat{t}(1 - 2c, 1 - 2b, \lambda_1, \lambda_1)
\end{align*}
\]

Then then

\[
\hat{x} = \arg \min_{y \in \{(\alpha,\alpha), (\alpha,\beta), (\beta,\alpha), (\beta,\beta)\}} t_y
\]

\[
t_\ast = t_{\hat{x}}
\]
2×2 games

Scenario NN: sur-place actions for $q = 1/2$ and $0 < b, c < 1$

\[
\begin{array}{c|cc}
\alpha & \beta \\
\hline
\alpha & 0 & b \\
\beta & c & b + c - 1 \\
\end{array}
\]
2 × 2 games
Scenario NN: \(R \) and \(V \) for \(q = 1/2 \) and \(0 < b, c < 1 \)

Theorem

If \(0 < b, c < 1 \) and \(q = 1/2 \), then

- The value of the game is \(V = bc \)
- The revision game value is:

\[
R = \frac{1}{4}(2c + 2b - 1) + \frac{1}{2}(c + b - 1)(b - c) \sin(2\mu) \\
+ \frac{1}{4}(2b - 1)(2c - 1) \cos(2\mu),
\]

where \(\mu \) is the smallest \(t \) in \(\mathbb{R}_+ \) satisfying:

\[
e^{-t} = \max\{(1 - 2c) \cos(t) + (1 - 2b) \sin(t), (1 - 2b) \cos(t) - (1 - 2c) \sin(t), \\
-(1 - 2b) \cos(t) + (1 - 2c) \sin(t), -(1 - 2c) \cos(t) - (1 - 2b) \sin(t)\}.
\]
2 × 2 games
Scenario NN: \(R \) and \(V \) for \(q = \frac{1}{2} \) and \(0 < b, c < 1 \)

\[
\begin{array}{c|cc}
\alpha & \alpha & \beta \\
\hline
\alpha & 0 & b \\
\beta & c & b + c - 1 \\
\end{array}
\]

Gensbittel, Lovo, Renault, Tomala
2×2 games
Scenario NN: Sur-place action, R and V

$q = 1/2$
A zero-sum revision game always has a pure strategy equilibrium.

When the component game Nash equilibrium is in pure, then players should be indifferent between paling the game with our without a (long) revision phase.

When the component game Nash equilibrium is not pure, then

- A player gain from being faster than the other player.
- Generically the revision game value is different from the one-shot game value.
- For 2×2 games, the unique equilibrium consists in players waiting on a sur-place action profile until the the deadline is close and then wrestle.