Strategic Departure Decisions and Correlation in Dynamic Congestion Games

Thomas J. Rivera, Marco Scarsini, Tristan Tomala

IMS Program on Stochastic Methods in Game Theory
Congestion Games Workshop Dec 14-18
Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^\star.
Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^*.
 - Utilizing a common fixed capacity network.
Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^*.
 - Utilizing a common fixed capacity network.
 - Player i strategically chooses a departure time $d_i < a^*$.
Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^*.
 - Utilizing a common fixed capacity network.
 - Player i strategically chooses a departure time $d_i < a^*$.
 - Wishes to depart as late as possible.
Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^*.
 - Utilizing a common fixed capacity network.
 - Player i strategically chooses a departure time $d_i < a^*$.
 - Wishes to depart as late as possible.
 - But, pays a **large** penalty cost if she arrives after time a^*.
Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^\star.
 - Utilizing a common fixed capacity network.
 - Player i strategically chooses a departure time $d_i < a^\star$.
 - Wishes to depart as late as possible.
 - But, pays a large penalty cost if she arrives after time a^\star.

- Traffic: Want to depart as late as possible before work.
Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^\ast.
 - Utilizing a common fixed capacity network.
 - Player i strategically chooses a departure time $d_i < a^\ast$.
 - Wishes to depart as late as possible.
 - But, pays a large penalty cost if she arrives after time a^\ast.

- Traffic: Want to depart as late as possible before work.

- Seasonal Joint Production: Want to gather information about tastes.
Strategic Departure Problem

- Players wish to arrive at a destination prior to time a^\star.
 - Utilizing a common fixed capacity network.
 - Player i strategically chooses a departure time $d_i < a^\star$.
 - Wishes to depart as late as possible.
 - But, pays a large penalty cost if she arrives after time a^\star.

- Traffic: Want to depart as late as possible before work.

- Seasonal Joint Production: Want to gather information about tastes.
In this talk

- Single origin, single destination, single edge of length 1, capacity 1.
In this talk

- Single origin, single destination, single edge of length 1, capacity 1.
- Arrival time $a^* = 0$, departure time $d_i \in \mathbb{Z}_-$.

Assume without loss $r_i(d_i) = -d_i$.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala
In this talk

- Single origin, single destination, single edge of length 1, capacity 1.
- Arrival time $a^* = 0$, departure time $d_i \in \mathbb{Z}_-$.
- Uniform Random Priority: Ties are broken uniformly.
 - But, earlier departures have priority over later departures.
In this talk

- Single origin, single destination, single edge of length 1, capacity 1.
- Arrival time $a^* = 0$, departure time $d_i \in \mathbb{Z}_-$.
- Uniform Random Priority: Ties are broken uniformly.
 - But, earlier departures have priority over later departures.
- Cost of player $i \in I = \{1, \ldots, n\}$ under pure profile d:
 \[
 R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)
 \]
In this talk

- Single origin, single destination, single edge of length 1, capacity 1.
- Arrival time $a^* = 0$, departure time $d_i \in \mathbb{Z}_-$.
- Uniform Random Priority: Ties are broken uniformly.
 - But, earlier departures have priority over later departures.
- Cost of player $i \in I = \{1, \ldots, n\}$ under pure profile d:

 $$R_i(d_i, d_{\neg i}) = r_i(d_i) + 1_{a_i > 0} \cdot f(a_i, C)$$

- Assume without loss $r_i(d_i) = -d_i$.
Penalty Costs

- Cost of player $i \in l = \{1, \ldots, n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + 1_{a_i > 0} \cdot f(a_i, C)$$
Penalty Costs

- Cost of player $i \in I = \{1, \ldots, n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

- $f(a_i, C)$ penalty increasing in arrival time a_i and C; $f(1, C) = C$.
Penalty Costs

- Cost of player $i \in I = \{1, \ldots, n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

- $f(a_i, C)$ penalty increasing in arrival time a_i and C; $f(1, C) = C$.

- Examples:
 - $f(a_i, C) = a_i \cdot C$; pay C for each period you are late.
Penalty Costs

- Cost of player $i \in I = \{1, \ldots, n\}$ under pure profile d:

$$R_i(d, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

- $f(a_i, C)$ penalty increasing in arrival time a_i and C; $f(1, C) = C$.

- Examples:
 - $f(a_i, C) = a_i \cdot C$; pay C for each period you are late.
 - $f(a_i, C) = a_i + C$; pay C once, pay for additional periods in transit.
Penalty Costs

- Cost of player $i \in I = \{1, \ldots, n\}$ under pure profile d:

\[
R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)
\]

- $f(a_i, C)$ penalty increasing in arrival time a_i and C; $f(1, C) = C$.

- Examples:
 - $f(a_i, C) = a_i \cdot C$; pay C for each period you are late.
 - $f(a_i, C) = a_i + C$; pay C once, pay for additional periods in transit.
 - $f(a_i, C) = a_i + \sqrt{a_i} \cdot C$
Penalty Costs

- Cost of player $i \in I = \{1, \ldots, n\}$ under pure profile d:

\[R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C) \]

- $f(a_i, C)$ penalty increasing in arrival time a_i and C; $f(1, C) = C$.

- Examples:
 - $f(a_i, C) = a_i \cdot C$; pay C for each period you are late.
 - $f(a_i, C) = a_i + C$; pay C once, pay for additional periods in transit.
 - $f(a_i, C) = a_i + \sqrt{a_i} \cdot C$

- We assume $f(a_i, C) = C$, C large, and obtain results robust to model selection.
Penalty Costs

- Cost of player $i \in I = \{1, \ldots, n\}$ under pure profile d:

$$R_i(d_i, d_{-i}) = r_i(d_i) + \mathbb{1}_{a_i > 0} \cdot f(a_i, C)$$

- $f(a_i, C)$ penalty increasing in arrival time a_i and C; $f(1, C) = C$.

- Examples:
 - $f(a_i, C) = a_i \cdot C$; pay C for each period you are late.
 - $f(a_i, C) = a_i + C$; pay C once, pay for additional periods in transit.
 - $f(a_i, C) = a_i + \sqrt{a_i} \cdot C$.

- We assume $f(a_i, C) = C$, C large, and obtain results robust to model selection.

- **IMPORTANT**: We consider fixed n and assume C is large w.r.t. n.
A 3-player Example

Departures

\[-3 \quad -2 \quad -1 \quad 0\]

\[d\]

\[P_1\]

\[P_2, P_3\]

Each player is late with probability 1/3, thus \[R_1 = R_2 = R_3 = 2 + \frac{1}{3} \cdot C\]
A 3-player Example

Departures

-3 -2 -1 0

P_1 P_2, P_3

No player is ever late $\Rightarrow R_1 = 3, R_2 = R_3 = 2$. Each player is late with prob $\frac{1}{3}$ $\Rightarrow R_1 = R_2 = R_3 = 2 + \frac{1}{3} \cdot C$.
A 3-player Example

Departures

\[-3 \quad -2 \quad -1 \quad 0 \]

\[d \quad P1 \quad P2, P3 \quad \text{Prob } \frac{1}{2} \]
A 3-player Example

Departures

-3 P1 exit
-2 P2 exit
-1 P3 exit
0 Prob \(\frac{1}{2} \)

Each player is late with prob \(\frac{1}{3} \) = \(R_1 = R_2 = R_3 = 2 + \frac{1}{3} \cdot C \)
A 3-player Example

Departures

\[\begin{array}{c}
-3 & -2 & -1 & 0 \\
\end{array} \]

\[\begin{array}{c}
P1 exit \\
\end{array} \]

\[\begin{array}{c}
P2, P3 \\
\end{array} \]

\[d \]

\[\begin{array}{c}
P1 \\
\end{array} \]

\[\text{No player is ever late} = R_1 = 3, R_2 = R_3 = 2. \]

\[\text{Each player is late with prob} = \frac{1}{3} = R_1 = R_2 = R_3 = 2 + \frac{1}{3} \times C \]
A 3-player Example

Departures

\[d \]

\[P_1 \]
\[P_2, P_3 \]
\[\text{Prob } \frac{1}{2} \]

No player is ever late implies
\[R_1 = 3, \quad R_2 = R_3 = 2. \]
A 3-player Example

Departures

\[d \]

\[P_1 \]

\[P_2, P_3 \]

\[P_2 \text{ exit} \]

\[P_3 \text{ exit} \]

\[P_1 \text{ exit} \]

\[\text{Prob} \ \frac{1}{2} \]

\[-3 \]

\[-2 \]

\[-1 \]

\[0 \]
A 3-player Example

Departures

\[\begin{array}{|c|c|c|c|}
\hline
\text{Departures} & -3 & -2 & -1 & 0 \\
\hline
\text{d} & P_1 & P_2, P_3 & & \\
\hline
\text{P1 exit} & & & P_3 exit & \\
\hline
\text{P2 exit} & & & & \\
\hline
\end{array} \]

\[\text{Prob} \frac{1}{2} \]

- No player is ever late \(\implies R_1 = 3, R_2 = R_3 = 2. \)
A 3-player Example

\[\begin{array}{cccccc}
-3 & -2 & -1 & 0 \\
\hline
D & P1 & P2, P3 & P2 exit & P3 exit & \text{Prob } \frac{1}{2} \\
\end{array} \]

\[\begin{align*}
\text{No player is ever late} \implies R_1 &= 3, \quad R_2 = R_3 = 2. \\
\end{align*} \]
A 3-player Example

-3 -2 -1 0

Departures

\[d \]

-3 -2 -1 0

\[d \]

\[P1 \]

\[P2, P3 \]

\[P2 \text{ exit} \]

\[P3 \text{ exit} \]

\[\text{Prob } \frac{1}{2} \]

\[\text{Prob } \frac{1}{6} \]

\[P1 \text{ exit} \]

\[R_1 = 3, \ R_2 = R_3 = 2. \]
A 3-player Example

- Departures
 - d
 - P_1, P_2, P_3

- Departures
 - d
 - P_1, P_2, P_3

- No player is ever late $\implies R_1 = 3, R_2 = R_3 = 2.$

$\begin{align*}
\text{Prob } \frac{1}{2} \\
\end{align*}$

$\begin{align*}
\text{Prob } \frac{1}{6} \\
\end{align*}$
A 3-player Example

\begin{align*}
\text{Departures} & \quad \quad -3 \quad \quad -2 \quad \quad -1 \quad \quad 0 \\
\quad d & \quad \quad P1 \quad \quad P2, P3 \quad \quad P2 \quad \quad \text{Prob } \frac{1}{2}
\end{align*}

\textbf{•} No player is ever late \quad \implies \quad R_1 = 3, \quad R_2 = R_3 = 2.

\begin{align*}
\text{Departures} & \quad \quad -3 \quad \quad -2 \quad \quad -1 \quad \quad 0 \\
\quad d & \quad \quad P1, P2, P3 \quad \quad P2 \quad \quad \text{Prob } \frac{1}{6}
\end{align*}
A 3-player Example

\[d \]

Departures

\[\begin{array}{c}
\text{Departures} \\
\text{Prob} \frac{1}{2}
\end{array} \]

\[P1, P2, P3 \]

\[P1 \text{ exit} \]

\[P2 \text{ exit} \]

\[P3 \text{ exit} \]

\[R_1 = 3, \ R_2 = R_3 = 2. \]

\[\begin{array}{l}
\text{No player is ever late} \implies R_1 = 3, \ R_2 = R_3 = 2.
\end{array}\]
A 3-player Example

- No player is ever late $\implies R_1 = 3, R_2 = R_3 = 2$.

Departures

$\begin{align*}
 &-3 & -2 & -1 & 0 \\
 &P_1 & P_2, P_3 & \text{P2 exit} & \text{P3 exit} \\
 &d & & & \\
\end{align*}$

$\text{Prob} \frac{1}{2}$

Departures

$\begin{align*}
 &-3 & -2 & -1 & 0 \\
 &P_1, P_2, P_3 & \text{P3 exit} & \text{P2 exit} & \\
 &d & & & \\
\end{align*}$

$\text{Prob} \frac{1}{6}$
A 3-player Example

-3 −2 −1 0

Departures

<table>
<thead>
<tr>
<th>Departures -3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>d P1</td>
<td>P2, P3</td>
</tr>
</tbody>
</table>

⇒ No player is ever late

\[R_1 = 3, \quad R_2 = R_3 = 2. \]

-3 −2 −1 0

Departures

<table>
<thead>
<tr>
<th>Departures -3</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>d P1, P2, P3</td>
<td>P2 exit</td>
</tr>
</tbody>
</table>

⇒ Each player is late with prob \(\frac{1}{3} \)

\[R_1 = R_2 = R_3 = 2 + \frac{1}{3} \cdot C \]

Thomas J. Rivera, Marco Scarsini, Tristan Tomala
A 3-player Example

No player is ever late $\implies R_1 = 3$, $R_2 = R_3 = 2$.

$\begin{align*}
Departures & \\
-3 & P1 \quad -2 & P2, P3 \quad -1 & 0 \\
\end{align*}$

$\begin{align*}
d & P1 \quad P2, P3 \quad P2 exit \\
\end{align*}$

$\begin{align*}
\text{Prob } & \frac{1}{2} \\
\end{align*}$

$\begin{align*}
Departures & \\
-3 & P1, P2, P3 \quad -2 \quad -1 & 0 \\
\end{align*}$

$\begin{align*}
d & P2 exit \\
\end{align*}$

$\begin{align*}
\text{Prob } & \frac{1}{6} \\
\end{align*}$
A 3-player Example

- No player is ever late $\implies R_1 = 3, R_2 = R_3 = 2$.

- Each player is late with prob $\frac{1}{3} \implies R_1 = R_2 = R_3 = 2 + \frac{1}{3} \cdot C$
Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the socially optimal payoff.
Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the socially optimal payoff.
- σ^{opt}; one player departs at each time $t \in \{-n, -(n-1), \ldots, -1\}$.

σ^{opt} is not a Nash Equilibrium.

Deviation: P_1 can deviation to time -2.

P_3 is late, but P_1 and P_2 are not.
Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the socially optimal payoff.
- σ^{opt}; one player departs at each time $t \in \{-n, -(n-1), \ldots, -1\}$.

\[
\begin{array}{cccc}
-3 & -2 & -1 & 0 \\
\hline
\text{Departures} & & & \\
\text{σ^{opt}} & P_1 & P_2 & P_3
\end{array}
\]
Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the socially optimal payoff.
- \(\sigma^{opt} \); one player departs at each time \(t \in \{-n, -(n-1), \ldots, -1\} \).

\[
\begin{array}{cccc}
-3 & -2 & -1 & 0 \\
\end{array}
\]

\textit{Departures}

\[
\begin{array}{c}
\sigma^{opt} \\
P1 & P2 & P3
\end{array}
\]

- \(\sigma^{opt} \) is not a Nash Equilibrium.
Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the *socially optimal payoff*.
- σ^{opt}: one player departs at each time $t \in \{-n, -(n-1), \ldots, -1\}$.

\[
\begin{array}{cccccc}
-3 & -2 & -1 & 0 \\
\end{array}
\]

Departures

σ^{opt}

$P1 \rightarrow P2 \rightarrow P3$

- σ^{opt} is not a Nash Equilibrium.
 - Deviation: $P1$ can deviation to time -2.
Nash Equilibrium Results

- Interested in best/worst Nash Equilibrium payoffs.
- To compare with the socially optimal payoff.
- σ^{opt}; one player departs at each time $t \in \{-n, -(n-1), ..., -1\}$.

σ^{opt} is not a Nash Equilibrium.

- Deviation: $P1$ can deviation to time -2.
- $P3$ is late, but $P1$ and $P2$ are not.
Nash Equilibrium Results

- We present our results for the class of games with $C > n$.

Result 1: There are no pure Nash Equilibrium.

Result 2: For all $C > n$, the worst NE payoff is obtained by σ_{wst} with $\text{supp}(\sigma_{\text{wst}}_i) = \{-n, -(n-1)\}$ for all $i \in I$.

σ_{wst} is characterized by the symmetric strategy:

$$
\sigma_{\text{wst}}_i(n) = 1 - \frac{(nC)}{n-1} \quad \sigma_{\text{wst}}_i(n-1) = \frac{(nC)}{n-1}
$$

(Sketch of Proof):

Time $-n$ is a safe time so $R_i(\sigma) \leq n$ in any equilibrium σ.

σ_{wst} is a NE that gives each player a payoff of exactly n.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala
Nash Equilibrium Results

- We present our results for the class of games with $C > n$.

- **Result 1**: There are no pure Nash Equilibrium.
Nash Equilibrium Results

- We present our results for the class of games with $C > n$.

- **Result 1:** There are no pure Nash Equilibrium.

- **Result 2:** For all $C > n$, the worst NE payoff is obtained by σ^{wst} with

$$\text{supp}(\sigma_i^{wst}) = \{-n, -(n - 1)\} \quad \text{for all } i \in I$$

(Sketch of Proof):

- Time $-n$ is a safe time so $R_i(\sigma) \leq n$ in any equilibrium σ.

- σ^{wst} is a NE that gives each player a payoff of exactly n.

Nash Equilibrium Results

- We present our results for the class of games with $C > n$.

- **Result 1**: There are no pure Nash Equilibrium.

- **Result 2**: For all $C > n$, the worst NE payoff is obtained by σ^{wst} with

 $$\text{supp}(\sigma^{wst}_i) = \{-n, -(n-1)\} \quad \text{for all } i \in I$$

- σ^{wst} is characterized by the symmetric strategy:

 $$\sigma^{wst}_i(n) = 1 - \left(\frac{n}{C}\right)^{\frac{1}{n-1}} \quad \sigma^{wst}_i(n-1) = \left(\frac{n}{C}\right)^{\frac{1}{n-1}}$$
Nash Equilibrium Results

- We present our results for the class of games with $C > n$.

- **Result 1:** There are no pure Nash Equilibrium.

- **Result 2:** For all $C > n$, the worst NE payoff is obtained by σ^{wst} with

 $$\text{supp}(\sigma^{wst}_i) = \{-n, -(n-1)\} \quad \text{for all } i \in I$$

- σ^{wst} is characterized by the symmetric strategy:

 $$\sigma^{wst}_i(n) = 1 - \left(\frac{n}{C}\right)^{\frac{1}{n-1}} \quad \sigma^{wst}_i(n-1) = \left(\frac{n}{C}\right)^{\frac{1}{n-1}}$$

- (Sketch of Proof):
 - Time $-n$ is a safe time so $R_i(\sigma) \leq n$ in any equilibrium σ.
 - σ^{wst} is a NE that gives each player a payoff of exactly n.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala
The Price of Anarchy

- The social planner wants to minimize the sum of equilibrium payoffs.

- Define sum of costs as $SC(\sigma) := \sum_{i \in I} R_i(\sigma)$.

$$SC(\sigma^{opt}) = \frac{n(n + 1)}{2} \quad SC(\sigma^{wst}) = n^2$$
The Price of Anarchy

- The social planner wants to minimize the sum of equilibrium payoffs.
- Define sum of costs as $SC(\sigma) := \sum_{i \in I} R_i(\sigma)$.

$$SC(\sigma^{opt}) = \frac{n(n + 1)}{2} \quad SC(\sigma^{wst}) = n^2$$

- Corollary [The Price of Anarchy]:

$$PoA := \frac{SC(\sigma^{wst})}{SC(\sigma^{opt})} = 2 - \frac{2}{n + 1}$$
The Price of Anarchy

- The social planner wants to minimize the sum of equilibrium payoffs.
- Define sum of costs as $SC(\sigma) := \sum_{i \in I} R_i(\sigma)$.

\[SC(\sigma^{opt}) = \frac{n(n+1)}{2} \quad SC(\sigma^{wst}) = n^2 \]

- Corollary [The Price of Anarchy]:

\[PoA := \frac{SC(\sigma^{wst})}{SC(\sigma^{opt})} = 2 - \frac{2}{n+1} \]

- Conclusion: The worst equilibrium costs are roughly twice the optimum.
Result 3: There exists $\bar{C} \in (n, n^2)$ such that for all $C > \bar{C}$ the best equilibrium payoffs are obtained by σ^{bst} with

$$\text{supp} (\sigma^{bst}_i) = \{-n\} \text{ and } \text{supp} (\sigma^{bst}_j) = \{- (n-1), - (n-2)\} \text{ for all } j \neq i.$$
The Price of Stability

- **Result 3:** There exists \(\bar{C} \in (n, n^2) \) such that for all \(C > \bar{C} \) the best equilibrium payoffs are obtained by \(\sigma^{bst} \) with

\[
\text{supp} (\sigma_i^{bst}) = \{-n\} \quad \text{and} \quad \text{supp} (\sigma_j^{bst}) = \{-n-1, -n-2\} \quad \text{for all} \ j \neq i.
\]

- (Sketch of Proof):
The Price of Stability

ód Result 3: There exists $\bar{C} \in (n, n^2)$ such that for all $C > \bar{C}$ the best equilibrium payoffs are obtained by σ^{bst} with

$$\text{supp} (\sigma_i^{bst}) = \{-n\} \quad \text{and} \quad \text{supp} (\sigma_j^{bst}) = \{-n+1, -n+2\} \quad \text{for all } j \neq i.$$

(Sketch of Proof):

- If no player departs at time $-n$ then at least one player is late for sure.
The Price of Stability

▶ **Result 3:** There exists $\bar{C} \in (n, n^2)$ such that for all $C > \bar{C}$ the best equilibrium payoffs are obtained by σ^{bst} with

$$\text{supp}(\sigma_i^{bst}) = \{-n\} \text{ and } \text{supp}(\sigma_j^{bst}) = \{-n-1, -n-2\} \text{ for all } j \neq i.$$

▶ (Sketch of Proof):

▶ If no player departs at time $-n$ then at least one player is late for sure.

▶ As $C \rightarrow \infty$ the risk of being late becomes too large so there is a deviation to $-n$.
The Price of Stability

- **Result 3:** There exists $\bar{C} \in (n, n^2)$ such that for all $C > \bar{C}$ the best equilibrium payoffs are obtained by σ^{bst} with

\[
\text{supp} (\sigma_i^{bst}) = \{-n\} \quad \text{and} \quad \text{supp} (\sigma_j^{bst}) = \{- (n-1), -(n-2)\} \quad \text{for all} \ j \neq i.
\]

- (Sketch of Proof):

- If no player departs at time $-n$ then at least one player is late for sure.

- As $C \to \infty$ the risk of being late becomes too large so there is a deviation to $-n$.

- Hence for large C, there exists $i \in I$ such that $-n \in \text{supp} (\sigma_i^{bst})$.
Result 3: There exists $\bar{C} \in (n, n^2)$ such that for all $C > \bar{C}$ the best equilibrium payoffs are obtained by σ^{bst} with

$$\text{supp} (\sigma_i^{bst}) = \{-n\} \text{ and } \text{supp} (\sigma_j^{bst}) = \{-n-1, -(n-2)\} \text{ for all } j \neq i.$$

(Sketch of Proof):

- If no player departs at time $-n$ then at least one player is late for sure.

- As $C \to \infty$ the risk of being late becomes too large so there is a deviation to $-n$.

- Hence for large C, there exists $i \in I$ such that $-n \in \text{supp} (\sigma_i^{bst})$.

- But then, at least $n-1$ players must mix over time $-(n-1)$.
The Price of Stability

▶ Corollary [Price of Stability]: There exists $\bar{C} \in (n, n^2]$ such that for all $C > \bar{C}$

$$PoS := \frac{SC(\sigma^{bst})}{SC(\sigma^{opt})} = \frac{n + (n - 1)^2}{\frac{n(n+1)}{2}} = 2 + \frac{2}{n(n+1)} - \frac{4}{n+1}$$
The Price of Stability

▶ **Corollary [Price of Stability]:** There exists $\bar{C} \in (n, n^2]$ such that for all $C > \bar{C}$

$$PoS := \frac{SC(\sigma^{bst})}{SC(\sigma^{opt})} = \frac{n + (n - 1)^2}{n(n+1)} = 2 + \frac{2}{n(n+1)} - \frac{4}{n+1}$$

▶ **Conclusion:** The best Nash equilibrium cost is also roughly twice the social optimum.
The Price of Stability

- **Corollary [Price of Stability]:** There exists $\bar{C} \in (n, n^2]$ such that for all $C > \bar{C}$

$$PoS := \frac{SC(\sigma^{bst})}{SC(\sigma^{opt})} = \frac{n + (n - 1)^2}{n(n+1)} = 2 + \frac{2}{n(n+1)} - \frac{4}{n+1}$$

- **Conclusion:** The best Nash equilibrium cost is also roughly twice the social optimum.

- **Question:** Is there any way to coordinate the players actions to obtain an outcome closer to the social optimum?
Correlated Equilibrium Example

- The planner draws an outcome $s \sim Q \in \Delta(S)$ and tells each player to play s_i.
Correlated Equilibrium Example

- The planner draws an outcome $s \sim Q \in \Delta(S)$ and tells each player to play s_i.

- If playing s_i is optimal for each $i \in I$ and s_i in the support of Q

 - Given beliefs about s_{-i} formed using $s \sim Q$.

 - Thomas J. Rivera, Marco Scarsini, Tristan Tomala
Correlated Equilibrium Example

- The planner draws an outcome \(s \sim Q \in \Delta(S) \) and tells each player to play \(s_i \).

- If playing \(s_i \) is optimal for each \(i \in I \) and \(s_i \) in the support of \(Q \),
 - Given beliefs about \(s_{-i} \) formed using \(s \sim Q \).

- Then \(Q \) is a correlated equilibrium.
Example: 4 players, \(C=20 \).

\[
\begin{array}{cccc}
-4 & -3 & -2 & -1 \\
\end{array}
\]

\textit{Departures}

\(s' := P1 \quad P2 \quad P3 \quad P4 \)

\(s'' := P1 \quad P2 \quad P3, P4 \)

\(s''' := P1 \quad P2, P3, P4 \)

\(\star \quad \star \quad \star \quad \star \)

\(Q(\star) = \frac{59}{100} \)

\(Q(\star) = \frac{21}{100} \)

\(Q(\star) = \frac{20}{100} \)

\(\rightarrow \text{Claim: No deviation by } P1 \text{ to time } -3. \)

\(R_1(Q(\star)) = 4 \leq 3 + 20 \cdot \frac{1}{100} \cdot C = 4 = R_1(-3, Q(\star)) \)

\(Q(\star) \) is a CE that yields the best SC:

\(SC(\sigma_{bst}) = 13 \)

\(SC(\sigma_{opt}) = 10 \)

\(SC(Q(\star)) = 10 \)
Example: 4 players, C=20.

\[
\begin{array}{c}
\text{Departures} \\
\hline
-4 & -3 & -2 & -1 \\
Q^*(s') = \frac{59}{100} & s' := P1 & P2 & P3 & P4 \\
\hline
s'' := P1 & P2 & P3, P4 \\
\hline
s''' := P1 & P2, P3, P4 \\
\end{array}
\]
Example: 4 players, $C=20$.

<table>
<thead>
<tr>
<th>Departures</th>
<th>−4</th>
<th>−3</th>
<th>−2</th>
<th>−1</th>
</tr>
</thead>
</table>

\[
Q^*(s') = \frac{59}{100} \quad s' := P1 \quad P2 \quad P3 \quad P4
\]

\[
Q^*(s'') = \frac{21}{100} \quad s'' := P1 \quad P2 \quad P3, P4
\]

\[
s''' := P1 \quad P2, P3, P4
\]
Example: 4 players, $C=20$.

<table>
<thead>
<tr>
<th>Departures</th>
<th>-4</th>
<th>-3</th>
<th>-2</th>
<th>-1</th>
</tr>
</thead>
</table>

$Q^*(s') = \frac{59}{100}$ \quad $s' := P1 \quad P2 \quad P3 \quad P4$

$Q^*(s'') = \frac{21}{100}$ \quad $s'' := P1 \quad P2 \quad P3, P4$

$Q^*(s''') = \frac{20}{100}$ \quad $s''' := P1 \quad P2, P3, P4$

Claim: No deviation by $P1$ to time -3.

$R_1(Q^*) = 4 \leq 3 + \frac{20}{100} \cdot C = 4 = R_1(−3, Q^*)$

Q^* is a CE that yields the best SC:

$SC(σ_{bst}) = 13$ \quad $SC(σ_{opt}) = 10$ \quad $SC(Q^*) = 10$.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala
Example: 4 players, $C = 20$.

\[
\begin{array}{cccccc}
-4 & -3 & -2 & -1 & \\
\end{array}
\]

\textit{Departures}\hspace{1cm} |

\[
Q^*(s') = \frac{59}{100} \quad s' := \quad P1 \rightarrow P2 \quad P3 \quad P4
\]

\[
Q^*(s'') = \frac{21}{100} \quad s'' := \quad P1 \rightarrow P2 \quad P3, P4
\]

\[
Q^*(s''') = \frac{20}{100} \quad s''' := \quad P1 \rightarrow P2, P3, P4
\]

- Claim: No deviation by P1 to time -3.
Example: 4 players, \(C = 20 \).

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{cccc}
\text{Departures} & -4 & -3 & -2 & -1 \\
\end{array}
\end{array}
\end{array}
\]

\[
\begin{align*}
Q^*(s') &= \frac{59}{100} & s' &= P1 \rightarrow P2 \quad P3 \quad P4 \\
Q^*(s'') &= \frac{21}{100} & s'' &= P1 \rightarrow P2 \quad P3, P4 \\
Q^*(s''') &= \frac{20}{100} & s''' &= P1 \rightarrow P2, P3, P4
\end{align*}
\]

▶ Claim: No deviation by P1 to time -3.

\[
R_1(Q^*) = 4
\]
Example: 4 players, $C = 20$.

\[
\begin{array}{cccc}
-4 & -3 & -2 & -1 \\
\end{array}
\]

Departures

\[
\begin{align*}
Q^*(s') &= \frac{59}{100} & s' := & P1, P2, P3, P4 \\
Q^*(s'') &= \frac{21}{100} & s'' := & P1, P2, P3, P4 \\
Q^*(s''') &= \frac{20}{100} & s''' := & P1, P2, P3, P4 \\
\end{align*}
\]

- Claim: No deviation by $P1$ to time -3.

\[
R_1(Q^*) = 4 \leq 3 + \frac{20}{100} \cdot \frac{C}{4}
\]
Example: 4 players, C=20.

<table>
<thead>
<tr>
<th>Departures</th>
</tr>
</thead>
<tbody>
<tr>
<td>−4 −3 −2 −1</td>
</tr>
</tbody>
</table>

\[
Q^*(s') = \frac{59}{100} \quad s' := \quad \longrightarrow P1, P2 \quad P3 \quad \cancel{P4}
\]

\[
Q^*(s'') = \frac{21}{100} \quad s'' := \quad \longrightarrow P1, P2 \quad \cancel{P3}, \cancel{P4}
\]

\[
Q^*(s''') = \frac{20}{100} \quad s''' := \quad \rightarrow P1, P2, P3, P4
\]

▶ Claim: No deviation by P1 to time -3.

\[
R_1(Q^*) = 4 \leq 3 + \frac{20}{100} \cdot \frac{C}{4} = 4 = R_1(-3, Q^*_{-1})
\]
Example: 4 players, C=20.

| Departures | -4 | -3 | -2 | -1 |

\[
\begin{align*}
Q^*(s') &= \frac{59}{100} \quad s' := \quad \rightarrow P1, P2 \quad P3 \quad \textcolor{red}{P4} \\
Q^*(s'') &= \frac{21}{100} \quad s' := \quad \rightarrow P1, P2 \quad P3, P4 \\
Q^*(s''') &= \frac{20}{100} \quad s''' := \quad \rightarrow P1, P2, P3, P4
\end{align*}
\]

▶ Claim: No deviation by P1 to time -3.

\[
R_1(Q^*) = 4 \leq 3 + \frac{20}{100} \cdot \frac{C}{4} = 4 = R_1(-3, Q^*)
\]

▶ \(Q^*)\) is a CE that yields the best SC:

\[
SC(\sigma^{bst}) = 13 \quad SC(\sigma^{opt}) = 10 \quad SC(Q^*) = 10.81
\]
Characterizing Best Correlated Equilibrium

- $S = \mathbb{Z}^n_-$, we look for CE $Q \in \Delta(S)$ that minimize

$$SC(Q) := \sum_{s \in S} Q(s)SC(s)$$

- Only interested in $Q \in \Delta(S^Y)$: set of outcomes where no player is late.

- Enforcing strategies: $s \in S$ enforces time k for player i if when i is told to depart at time k, she is late with positive probability when departing at time $k - 1$ instead, when others play s_{-i}.

- $Z^{i,k}$ set of strategies that enforce k for player i.

- $S^{i,k} = \{s \in S : s_i = k\}$.
Lemma: $Q \in \Delta(S^Y)$ is a correlated equilibrium of SD game with penalty C if and only if for all $i \in I$

$$\sum_{s \in Z^{i,k}} Q(s) \geq \frac{k}{C} \left[\sum_{s \in S^{i,k}} Q(s) \right]$$

for $k = 2, \ldots, n$

Proof:
Lemma: $Q \in \Delta(S^Y)$ is a correlated equilibrium of SD game with penalty C if and only if for all $i \in I$

$$\sum_{s \in Z^{i,k}} Q(s) \geq \frac{k}{C} \left[\sum_{s \in S^{i,k}} Q(s) \right]$$ for $k = 2, \ldots, n$

Proof:

$s \in Z^{i,k}$ means exactly $k - 1$ other players depart at time $-(k - 1)$.
Lemma: $Q \in \Delta(S^Y)$ is a correlated equilibrium of SD game with penalty C if and only if for all $i \in I$

$$\sum_{s \in Z^{i,k}} Q(s) \geq \frac{k}{C} \left[\sum_{s \in S^{i,k}} Q(s) \right]$$ for $k = 2, \ldots, n$

Proof:

$s \in Z^{i,k}$ means exactly $k - 1$ other players depart at time $-(k - 1)$.

Hence, if the outcomes is s and player i departs instead at $-(k - 1)$ he is late with probability $\frac{1}{k}$.
Lemma: $Q \in \Delta(S^Y)$ is a correlated equilibrium of SD game with penalty C if and only if for all $i \in I$

\[\sum_{s \in Z^{i,k}} Q(s) \geq \frac{k}{C} \left[\sum_{s \in S^{i,k}} Q(s) \right] \quad \text{for } k = 2, \ldots, n\]

Proof:

- $s \in Z^{i,k}$ means exactly $k - 1$ other players depart at time $-(k - 1)$.
- Hence, if the outcomes is s and player i departs instead at $-(k - 1)$ he is late with probability $\frac{1}{k}$.
- So player i, being told to depart at $-k$ does not want to deviate to $-(k - 1)$ only if

\[k \leq k - 1 + \mathbb{P}(s \in Z^{i,k} | s_i = -k) \cdot \frac{C}{k}\]
Lemma: $Q \in \Delta(S^Y)$ is a correlated equilibrium of SD game with penalty C if and only if for all $i \in I$

$$\sum_{s \in Z^{i,k}} Q(s) \geq \frac{k}{C} \left[\sum_{s \in S^{i,k}} Q(s) \right]$$

for $k = 2, \ldots, n$

Proof:
- $s \in Z^{i,k}$ means exactly $k - 1$ other players depart at time $-(k - 1)$.
- Hence, if the outcomes is s and player i departs instead at $-(k - 1)$ he is late with probability $\frac{1}{k}$.
- So player i, being told to depart at $-k$ does not want to deviate to $-(k - 1)$ only if

$$k \leq k - 1 + \mathbb{P}(s \in Z^{i,k} | s_i = -k) \cdot \frac{C}{k}$$

and

$$\mathbb{P}(s \in Z^{i,k} | s_i = -k) = \frac{\sum_{s \in Z^{i,k}} Q(s)}{\sum_{s \in S^{i,k}} Q(s)}$$
From Strategies to Outcomes

\[s = (4, 3, 3, 3) \rightarrow y^s = (1, 3, 0, 0) \]

- Working with strategies is difficult so we switch to distributions \(Q^o \in \Delta(Y) \). Y outcomes where no one is late.
From Strategies to Outcomes

\[s = (4, 3, 3, 3) \rightarrow y^s = (1, 3, 0, 0) \]

- Working with strategies is difficult so we switch to distributions \(Q^o \in \Delta(Y) \). Y outcomes where no one is late.

- Implementation: Draw \(y \) from \(Q^o \in \Delta(Y) \).

Thomas J. Rivera, Marco Scarsini, Tristan Tomala
From Strategies to Outcomes

\[s = (4, 3, 3, 3) \rightarrow y^s = (1, 3, 0, 0) \]

- Working with strategies is difficult so we switch to distributions \(Q^o \in \Delta(Y) \). Y outcomes where no one is late.

- Implementation: Draw \(y \) from \(Q^o \in \Delta(Y) \).

- Then draw \(s \in S(y) \) that induces \(y \) with uniform probability \(\frac{1}{|S(y)|} \).
From Strategies to Outcomes

\[s = (4, 3, 3, 3) \rightarrow y^s = (1, 3, 0, 0) \]

- Working with strategies is difficult so we switch to distributions \(Q^o \in \Delta(Y) \). Y outcomes where no one is late.

- Implementation: Draw \(y \) from \(Q^o \in \Delta(Y) \).

- Then draw \(s \in S(y) \) that induces \(y \) with uniform probability \(\frac{1}{|S(y)|} \).

- If \(y = (1, 3, 0, 0) \) then
 \[S(y) = \{(4, 3, 3, 3), (3, 4, 3, 3), (3, 3, 4, 3), (3, 3, 3, 4)\} \]
From Strategies to Outcomes

\[s = (4, 3, 3, 3) \rightarrow y^s = (1, 3, 0, 0) \]

- Working with strategies is difficult so we switch to distributions \(Q^o \in \Delta(Y) \). Y outcomes where no one is late.

- Implementation: Draw \(y \) from \(Q^o \in \Delta(Y) \).

- Then draw \(s \in S(y) \) that induces \(y \) with uniform probability \(\frac{1}{|S(y)|} \).

- If \(y = (1, 3, 0, 0) \) then

\[S(y) = \{(4, 3, 3, 3), (3, 4, 3, 3), (3, 3, 4, 3), (3, 3, 3, 4)\} \]

- We show it is without loss to restrict attention to distributions over outcomes with this implementation.
A Best Correlated Equilibrium

Let \(y^k = (1, \ldots, 1, k - 1, 0, \ldots, 0) \). \(y^2 \) is the socially optimal outcome.
A Best Correlated Equilibrium

- Let $y^k = (1, ..., 1, k - 1, 0, ..., 0)$. y^2 is the socially optimal outcome.

Theorem: There exists \bar{C} such that for all $C > \bar{C}$, the best correlated equilibrium payoff is generated by $Q^* \in \Delta(S^Y)$:

$$Q^*(s) = \frac{1}{|S(y^s)|} \hat{Q}^o(y^s)$$

and $\hat{Q}^o(y) \in \Delta(Y)$ satisfies

$$\hat{Q}^o(y^k) = \frac{k}{C} [k \hat{Q}^o(y^{k+1}) + \sum_{j=2}^{k} \hat{Q}^o(y^j)] \quad \text{for } k = 3, ..., n$$

$$\hat{Q}^o(y^2) = 1 - \sum_{j=3}^{n} \hat{Q}^o(y^j)$$
A Best Correlated Equilibrium

- Let $y^k = (1, \ldots, 1, k - 1, 0, \ldots, 0)$. y^2 is the socially optimal outcome.

Theorem: There exists \bar{C} such that for all $C > \bar{C}$, the best correlated equilibrium payoff is generated by $Q^* \in \Delta(S^Y)$:

$$Q^*(s) = \frac{1}{|S(y^s)|} \hat{Q}^o(y^s)$$

and $\hat{Q}^o(y) \in \Delta(Y)$ satisfies

$$\hat{Q}^o(y^k) = \frac{k}{C} [k \hat{Q}^o(y^{k+1}) + \sum_{j=2}^{k} \hat{Q}^o(y^j)] \quad \text{for } k = 3, \ldots, n$$

$$\hat{Q}^o(y^2) = 1 - \sum_{j=3}^{n} \hat{Q}^o(y^j)$$

Corollary: As $C \to \infty$, $Q^*(\sigma^{opt}) \to 1$.
A Mechanism For Implementing The Social Optimum With Arbitrary Probability

Consider the following *toll pricing mechanism* M_τ: Any player exiting the road after time 0 pays a large toll of τ.

Corollary: For every $\epsilon > 0$ there exists $\tau > 0$ such that Q^\star is implementable with the mechanism M_τ and $Q^\star(\sigma_{\text{opt}}) = 1 - \epsilon$.

Proof: M_τ effectively increases $C \rightarrow C + \tau$.
A Mechanism For Implementing The Social Optimum With Arbitrary Probability

- Consider the following \textit{toll pricing mechanism} \mathcal{M}_τ: Any player exiting the road after time 0 pays a large toll of τ.

\textbf{Corollary:} For every $\epsilon > 0$ there exists $\tau > 0$ such that Q^* is implementable with the mechanism \mathcal{M}_τ and

\[Q^*(\sigma^{opt}) = 1 - \epsilon \]
A Mechanism For Implementing The Social Optimum With Arbitrary Probability

- Consider the following *toll pricing mechanism* \mathcal{M}_τ: Any player exiting the road after time 0 pays a large toll of τ.

Corollary: For every $\epsilon > 0$ there exists $\tau > 0$ such that Q^* is implementable with the mechanism \mathcal{M}_τ and

$$Q^*(\sigma^{opt}) = 1 - \epsilon$$

- Proof: \mathcal{M}_τ effectively increases $C \rightarrow C + \tau$.

Correlated Price of Stability:

$$\text{CPoS} := \frac{SC(Q^*)}{SC(\sigma^{opt})} = 1 + \delta(C)$$

where $\delta(C) \rightarrow 0$ as $C \rightarrow \infty$.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala
A Mechanism For Implementing The Social Optimum With Arbitrary Probability

- Consider the following toll pricing mechanism \mathcal{M}_τ: Any player exiting the road after time 0 pays a large toll of τ.

Corollary: For every $\epsilon > 0$ there exists $\tau > 0$ such that Q^* is implementable with the mechanism \mathcal{M}_τ and

$$Q^*(\sigma^{opt}) = 1 - \epsilon$$

- Proof: \mathcal{M}_τ effectively increases $C \rightarrow C + \tau$.

Correlated Price of Stability:

$$CPoS := \frac{SC(Q^*)}{SC(\sigma^{opt})} = 1 + \delta(C)$$

- where $\delta(C) \rightarrow 0$ as $C \rightarrow \infty$.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala
Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium σ^{NE}
Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium σ^{NE}

$$C \leq 1 \quad \implies \quad \text{supp}(\sigma^{NE}) = \{0\}$$
Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium σ^{NE}

\[
\begin{align*}
C \leq 1 & \implies \text{supp}(\sigma^{NE}) = \{0\} \\
1 < C \leq 2 & \implies \text{supp}(\sigma^{NE}) = \{1, 0\} \\
C = 3 & \implies \text{supp}(\sigma^{NE}) = \{2\} \\
\end{align*}
\]

As C varies the equilibrium support varies. Exacerbated if $f(a_i, C) \neq C$.

Corollary: There exists $\bar{C} \in \mathbb{R}$ such that for all $C > \bar{C}$ our results regarding the PoA, PoS, and CPoS are robust to changes in C and to the specification of $f(a_i, C)$.
Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium σ^{NE}

\[
\begin{align*}
 C \leq 1 & \implies \text{supp}(\sigma^{NE}) = \{0\} \\
 1 < C \leq 2 & \implies \text{supp}(\sigma^{NE}) = \{1, 0\} \\
 2 < C < 2.5 & \implies \text{supp}(\sigma^{NE}) = \{2, 1, 0\} \\
 C = 3 & \implies \text{supp}(\sigma^{NE}) = \{2\}
\end{align*}
\]

As C varies the equilibrium support varies. Exacerbated if $f(a_i, C) \neq C$.

Corollary

There exists $\bar{C} \in \mathbb{R}$ such that for all $C > \bar{C}$ our results regarding the PoA, PoS, and CPoS are robust to changes in C and to the specification of $f(a_i, C)$.
Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium σ^{NE}

\[
\begin{align*}
C \leq 1 & \implies \text{supp}(\sigma^{NE}) = \{0\} \\
1 < C \leq 2 & \implies \text{supp}(\sigma^{NE}) = \{1, 0\} \\
2 < C < 2.5 & \implies \text{supp}(\sigma^{NE}) = \{2, 1, 0\} \\
2.5 \leq C < 3 & \implies \text{supp}(\sigma^{NE}) = \{2, 0\}
\end{align*}
\]
Small C and Model Robustness

Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium σ^{NE}

- $C \leq 1 \implies \text{supp}(\sigma^{NE}) = \{0\}$
- $1 < C \leq 2 \implies \text{supp}(\sigma^{NE}) = \{1, 0\}$
- $2 < C < 2.5 \implies \text{supp}(\sigma^{NE}) = \{2, 1, 0\}$
- $2.5 \leq C < 3 \implies \text{supp}(\sigma^{NE}) = \{2, 0\}$
- $C = 3 \implies \text{supp}(\sigma^{NE}) = \{2\}$

As C varies the equilibrium support varies. Exacerbated if $f(a_i, C) \neq C$.

Corollary: There exists $\bar{C} \in \mathbb{R}$ such that for all $C > \bar{C}$ our results regarding the PoA, PoS, and CPoS are robust to changes in C and to the specification of $f(a_i, C)$.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala
Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium σ^{NE}

\[
\begin{align*}
C \leq 1 & \quad \implies \quad \text{supp} (\sigma^{NE}) = \{0\} \\
1 < C \leq 2 & \quad \implies \quad \text{supp} (\sigma^{NE}) = \{1, 0\} \\
2 < C < 2.5 & \quad \implies \quad \text{supp} (\sigma^{NE}) = \{2, 1, 0\} \\
2.5 \leq C < 3 & \quad \implies \quad \text{supp} (\sigma^{NE}) = \{2, 0\} \\
C = 3 & \quad \implies \quad \text{supp} (\sigma^{NE}) = \{2\}
\end{align*}
\]

- As C varies the equilibrium support varies. Exacerbated if $f(a_i, C) \neq C$.

Corollary

There exists $\bar{C} \in \mathbb{R}$ such that for all $C > \bar{C}$ our results regarding the PoA, PoS, and CPoS are robust to changes in C and to the specification of $f(a_i, C)$.

Thomas J. Rivera, Marco Scarsini, Tristan Tomala
Small C and Model Robustness

- Example: 3 players, $0 \leq C \leq 3$: Unique Nash Equilibrium σ^{NE}

\[
\begin{align*}
C \leq 1 & \implies \text{supp} (\sigma^{NE}) = \{0\} \\
1 < C \leq 2 & \implies \text{supp} (\sigma^{NE}) = \{1, 0\} \\
2 < C < 2.5 & \implies \text{supp} (\sigma^{NE}) = \{2, 1, 0\} \\
2.5 \leq C < 3 & \implies \text{supp} (\sigma^{NE}) = \{2, 0\} \\
C = 3 & \implies \text{supp} (\sigma^{NE}) = \{2\}
\end{align*}
\]

- As C varies the equilibrium support varies. Exacerbated if $f(a_i, C) \neq C$.

Corollary There exists $\bar{C} \in \mathbb{R}$ such that for all $C > \bar{C}$ our results regarding the PoA, PoS, and CPoS are robust to changes in C and to the specification of $f(a_i, C)$.
Thank you!

thomas.rivera@hec.edu