Imitation dynamics and dominated strategies

Ovvero: Does learning by imitation eliminate irrational behaviors?

Yannick Viossat (Université Paris-Dauphine)
Panayotis Mertikopoulos (CNRS, Université de Grenoble)
Bill Sandholm (Wisconsin University)

Learning workshop, IMS, Singapore, November 21, 2015
Evolutionary game theory

Evolution of behaviour in population of weakly rational agents interacting

Strategies with currently good payoffs spread

Specification of this process: evolutionary dynamics

Central topic: link between outcome of dynamics and static concepts?

Today: elimination of pure strategies dominated by other pure strategies

Two big classes: *imitative* and *innovative* dynamics

Imitative dynamics eliminate pure strategies dominated by other pure strategies; innovative dynamics need not.

Claim: misleading picture. Studied imitative dynamics are special.

Dynamics based on imitation need not eliminate dominated strategies
Outline

- Imitative and innovative dynamics
- Innovative dynamics favour rare strategies
- Imitation dynamics favouring rare/frequent strategies
- Survival of dominated strategies under imitation dynamics
Framework 1: Single population dynamics

Interactions within a single, large population

- finite set of pure strategies \(I := \{1, \ldots, N \} \).
- \(x_i(t) \): frequency of strategy \(i \) at time \(t \)
- \(x(t) := (x_i(t))_{i \in I} \): state of the population
- evolves in \(S_N = \{ x \in \mathbb{R}_+^N, \sum_{i \in I} x_i = 1 \} \)
- Payoff for \(i \)-strategists: \(u_i(x(t)) \)
- Dynamics: \(\dot{x} = f(x, \text{payoffs}) \)
Agents from focal population interact against unspecified opponent.

At time t, opponent plays $y(t) \in S_{opp}$, with S_{opp} compact.

Payoffs of i-strategist in focal population: $u_i(y)$

Dynamics: $\dot{x} = f(x, y, \text{payoffs})$

No assumption on evolution of $y(\cdot)$, except regular enough.

Single-population dynamics correspond to $S_{opp} = S_N$ and $y(t) = x(t)$.
Domination and extinction

Strategy i dominated by j if: $\forall y \in S_{opp}, u_i(y) < u_j(y)$

Pure strategy i goes extinct if $x_i(t) \to 0$ as $t \to +\infty$

Issue: do dominated strategies go extinct?
Replicator dynamics

\[\dot{x}_i = x_i (u_i - \bar{u}) \quad \text{with} \quad \bar{u} = \sum_i x_i u_i \]

Introduced in biology (78), but later reinterpreted as imitation model.

Idea: assume \(i \)-strategists switch to strategy \(j \) at rate \(\rho_{ij}(x, \text{payoffs}) \)

\[\leftrightarrow \quad \dot{x}_i = \sum_j x_j \rho_{ji} - x_i \sum_j \rho_{ij} \]

Several specifications of the \(\rho_{ij} \) based on imitation lead to REP:

\[\rho_{ij} = x_j (K + u_j) \quad \text{(imitation of success)} \]

\[\rho_{ij} = x_j [u_j - u_i]_+ \quad \text{(proportional pairwise imitation rule)} \]
“Revision protocol” specifies rate ρ_{ij} at which i-strategists switch to j.

Imitative dynamics (Sandholm, 10): $\rho_{ij} = x_j r_{ij}$ with $u_i < u_j \iff r_{ij} > r_{ji}$

Models two step process:
Step 1: revising i-strategist meets j-strategist with probability x_j
Step 2: imitate him with “probability” r_{ij} favouring successful strategies

Coincide with Nachbar’s (90) monotone dynamics: $\dot{x}_i = x_i (g_i - \bar{g})$
with $g_i = g_i(x, \text{payoffs})$, $\bar{g} = \sum_{i \in I} x_i g_i$, and $g_i < g_j \iff u_i < u_j \quad \forall i, j, x$
Theorem (Akin 1980, Nachbar, 1990)

Assume strategy i strictly dominated by strategy j. Then under any imitative dynamics, $x_i(t) \to 0$ as $t \to +\infty$.

Proof.

Simply use: $u_i < u_j \Rightarrow g_i < g_j \Rightarrow \frac{\dot{x}_i}{x_i} < \frac{\dot{x}_j}{x_j}$
In innovative dynamics, strategies initially not played may appear.

Smith dynamics: revising i-strategists pick a strategy j at random, and adopt it with probability proportional to $[u_j - u_i]^+$. So $\rho_{ij} = \frac{1}{N}[u_j - u_i]^+$

Theorem (Hofbauer-Sandholm, 2011)

Under Smith and all innovative dynamics satisfying 4 natural conditions (Positive correlation, Continuity, Innovation, Nash stationarity), pure strategies dominated by other pure strategies may survive!

Hofbauer and Sandholm use two 4 strategy games:
- Rock-Paper-Scissors + feeble Twin
- Hypnodisk game + feeble Twin
A simpler example for games against the environment

Consider a 3×2 game:

\[
\begin{pmatrix}
L & R \\
A & \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \\
B & \begin{pmatrix} -\alpha & 1 - \alpha \end{pmatrix}
\end{pmatrix}
\]

Consider dynamics satisfying the following conditions:

- **Continuity**: \dot{x} depends continuously on $x, y, \text{payoffs}$.
- **Innovation**: if i is an unplayed best-reply to y, but not x, then $\dot{x}_i > 0$.
- **Positive correlation**: if x not a best-reply to y, then $\sum_i \dot{x}_i u_i > 0$.

Theorem

$\forall \alpha$ small enough, $\exists y : \mathbb{R} \to S_{opp}$ such that strategy T survives.
Innovative dynamics favour rare strategies

Innovation: if \(i \) unused best-reply, then \(\dot{x}_i > 0 \). Hence \(\dot{x}_i / x_i = +\infty \).

So by **Continuity:** if \(i \) almost best-reply and \(x_i << 1 \), then \(\dot{x}_i / x_i \) huge.

Thus, if \(x_i << 1 \), we may have: \(u_i < u_j \) but \(\frac{\dot{x}_i}{x_i} > \frac{\dot{x}_j}{x_j} \)

\(\leftrightarrow \) favours rare strategies.

Imitative dynamics neutral: \(u_i < u_j \Rightarrow \frac{\dot{x}_i}{x_i} < \frac{\dot{x}_j}{x_j} \) whatever \(x_i, x_j > 0 \).

But imitation dynamics might favour rare/frequent strategies ; then same survival results should hold.
Imitation protocol favouring rare/frequent strategies

Step 1:
1a) a revising agent meets 3 randomly drawn agents, e.g, (j, k, k)
1b) make a list of strategies played by these agents; here: {j, k}
1c) pick one at random: here j with probability 1/2

Step 2: decides whether to imitate him according to standard r_{ij}.

Leads to: $\rho_{ij} = p_{j}(x)r_{ij}$ where $p_{j}(x)$ proba of picking j in step 1.

Step 1 favours rare strategies: $x_{i} < x_{j} \Rightarrow p_{i}/x_{i} > p_{j}/x_{j}$.

If instead, when meeting (j, k, k), agent 1 focuses on the “majoritarian choice” k, favours frequent strategies: $x_{i} < x_{j} \Rightarrow p_{i}/x_{i} < p_{j}/x_{j}$.
Consider dynamics derived from imitation revision protocol such that:

- step 1 favours rare strategies.
- in step 2, \(r_{ij} = K + u_j \), or \(r_{ij} = f(u_j) \), with \(f \) positive increasing.

Theorem

There are two-strategy games with a strictly dominated strategy that survives in proportion almost 1/2 for most initial conditions.

With advantage to frequent strategies, survival in proportion almost 1!
Proof (advantage to rare strategies)

Dynamics:

\[\dot{x}_i = \sum_j x_j p_i f(u_i) - x_i \sum_j p_j f(u_j) \]

Let \(p_i = x_i (1 + \varepsilon_i) \). For two strategies \(i \) and \(j \) with same payoff \(u \):

\[\frac{\dot{x}_i}{x_i} - \frac{\dot{x}_j}{x_j} = (\varepsilon_i - \varepsilon_j) f(u) \]

With only these strategies: since \(x_i < x_j \Rightarrow \varepsilon_i > \varepsilon_j, \ x_i \rightarrow 1/2 \)

Now perturb: assume payoff of \(x_i \) is \(u - \alpha \) so \(i \) dominated

We get: \(\forall \eta > 0, \ \exists \bar{\alpha} > 0, \ \forall \alpha < \bar{\alpha}, \ x_i > \eta \Rightarrow \lim \inf x_i > \frac{1}{2} - \eta \).

With advantage to frequent strategies: \(x_i > 1/2 + \eta \Rightarrow \lim \inf x_i > 1 - \eta. \)
Other dynamics?

Distorted imitation of success does not satisfy Positive Correlation, has non Nash interior rest-points, and not all Nash equilibria are rest-points!

Can we have similar results for dynamics with more usual properties?

↪ Yes, but requires more elaborate examples.
Other dynamics?

Distorted imitation of success does not satisfy Positive Correlation, has non Nash interior rest-points, and not all Nash equilibria are rest-points!

Can we have similar results for dynamics with more usual properties?

→ Yes, but requires more elaborate examples.
Consider again 3×2 game:

$$
\begin{pmatrix}
L & R \\
A & \begin{pmatrix}
1 & 0 \\
0 & 1 \\
B & \begin{pmatrix}
-\alpha & 1-\alpha \\
T & \begin{pmatrix}
\end{pmatrix}
\end{pmatrix}
\end{pmatrix}
\end{pmatrix}
$$

Consider dynamics derived from imitation revision protocol such that:

- step 1 favours rare strategies.
- in step 2, $r_{ij} = [u_j - u_i]_+$, or same sign.

Theorem

$$
\forall \eta > 0, \exists \alpha > 0, \forall \alpha < \alpha, \exists y(\cdot), \forall x(0) \in \text{int}(S_3), \lim \inf x_T > \frac{1}{2} - \eta
$$

Same results if $r_{ij} = [u_j - \bar{u}]_+$, or same sign.

Favour frequent strategies: $x_T(0) > x_B(0) + \eta \Rightarrow \lim \inf x_T > 1 - \eta$
Result 3 - Single population dynamics

Consider dynamics derived from imitation revision protocol such that:
- step 1 favours rare (resp. frequent) strategies.
- in step 2, \(r_{ij} = [u_j - u_i]_+ \), or same sign.

Theorem

There are 4 strategy games such that for large sets of initial conditions, a pure strategy dominated by another pure strategy survives in proportion roughly 1/6 (resp. 1/3).

Same results if \(r_{ij} = [u_j - \bar{u}] \), or same sign.

Proportion may be increased to \(1/2 - \eta \) (resp. \(1 - \eta \)).
We mimick Hofbauer and Sandholm (2011).

They consider dynamics satisfying Positive Correlation (PC):

\[\dot{x} \neq 0 \Rightarrow \dot{x} \cdot u(x) > 0. \]

Geometrically: acute angle between \(\dot{x} \) and payoff vector \(u(x) \).

Also: acute angle between \(\dot{x} \) and projection of payoff vector on simplex.

Lemma

Under theorem’s assumptions, our imitation dynamics satisfy (PC)
Hypnodisk game (Hofbauer and Sandholm)

3-strategy game with projected payoff vector field:

Due to (PC), all interior solutions enter annulus, except Nash equilibrium.
Hypnodisk game with a twin (Hofbauer and Sandholm)

Add as strategy 4 a twin of strategy 3.

- Segment of equilibrium: $x_1 = x_2 = x_3 + x_4 = 1/3$.

- Attracting annulus becomes attracting "intercylinder zone"
Effect of advantage to rare strategies

Advantage to rare strategies: \(\frac{x_3}{x_4} \rightarrow 1 \).

Attractor \(A \) in intersection of intercylinder zone and plane \(x_3 = x_4 \).

Basin of attraction \(B(A) = \text{int}(S_4) \setminus \text{Nash equilibria} \)
Subtract ε to strategy 4 \rightarrow makes it dominated

By standard results on continuation of attractors, for ε small enough, most solutions still converge to an attractor A_ε in the neighborhood of A.

\hookrightarrow under most solutions, strategy 4 survives, and $\liminf x_4 \geq 1/6 - r$, with r radius of outer cylinder

Rk: $1/6$ may be changed to anything $< 1/2$ by modifying base game.
Conjecture for Josef

Done: survival of dominated strategies under imitation dynamics for

- games against the environment: symmetric bimatrix games, many dynamics;
- single-population dynamics: specific dynamics, or many dynamics but with hypnodisk game.

Conjecture

Similar results for many single-population dynamics in Hofbauer and Sandholm’s Rock-Paper-Scissors-feeble Twin game

Problem: prove instability of segment of Nash equilibria.
Elimination of dominated strategies "requires":

$$\forall x, u_i = u_j \Rightarrow \dot{x}_i/x_i = \dot{x}_j/x_j.$$

Fragile property, destroyed by appropriate small perturbation.

May be a pinch of innovation, or a twist in imitation process.
When evolutionary game theorists imported replicator dynamics in economics, they justified it through an imitation model.

They probably did not think to imitation models ex-nihilo.

Doing so leads to different kinds of imitation dynamics, which need not eliminate pure strategies dominated by other pure strategies.

Dichotomy innovative/imitative should be supplemented by "treat strategies differently as function of their frequencies or not".
Literature (non exhaustive)

- Akin (80): replicator dynamics; Nachbar (90): monotone dynamics
- Samuelson & Zhang (92): aggregate monotone dynamics
- Hofbauer & Weibull (96): convex monotone dynamics
- Dekel & Scotchmer (92), Cabrales & Sobel (92), Björnerstedt et al (96): discrete-time dynamics

More recently:
- Cressman & Hofbauer (05); Cressman et al (06); Heifetz et al (07a, 07b), Jouini et al. (13): continuum of pure strategies
- Fudenberg & Harris (92), Cabrales (00), Imhof (05), Hofbauer & Imhof (09); Mertikopoulos & Moustakas (10), Mertikopoulos & Viossat (15): stochastic dynamics
- Berger & Hofbauer (06), Hofbauer & Sandholm (11): innovative dynamics