Orbit type filtrations of torus manifolds and combinatorics of simplicial posets

Anton Ayyenberg

Let X be a closed $2n$-manifold on which the compact n-torus T acts in a locally standard manner. The orbit space X/T is a manifold with corners; let S be the simplicial poset dual to X/T. Consider a filtration of X by torus invariant subsets X_i, the union of all i-dimensional orbits, and take the homological spectral sequence associated with this filtration. In the classical case, i.e. when X is a toric or quasitoric manifold, this spectral sequence collapses at the second page, all entries of E_{pq}^∞ are concentrated at the diagonal $p = q$, and their ranks are h-numbers of S. The same holds when all faces of the orbit space are acyclic. In more general situations the spectral sequence does not collapse at a second page. Nevertheless sometimes it can be described in full.

In combinatorial commutative algebra there are notions of h'- and h''-numbers of simplicial manifolds which generalize h-numbers of spheres. We obtain those numbers as the ranks of certain terms of the spectral sequence. In particular, this gives a topological proof that h''-numbers of Buchsbaum posets are nonnegative, which was previously proved algebraically by Novik and Swartz.