The Homotopy Type of Configuration Spaces

Don Stanley

University of Regina

June 2, 2012
Configuration Spaces

The rational case Q_2

Models for $F(M, 3)$

Throughout M, M' are closed oriented manifolds of dimension n.

Then the configuration space of k points in M is $F(M, k) = \{ (x_1, \ldots, x_k) \in M^k | x_i = x_j \Rightarrow i = j \}$

(Yes you could define this for any manifold, for example $M = \mathbb{R}^n$ or even any space, but that would be a bit extreme.)

Don Stanley

The Homotopy Type of Configuration Spaces
Throughout M, M' are closed oriented manifolds of dimension n.
Throughout M, M' are closed oriented manifolds of dimension n. Then the configuration space of k points in M is...
Throughout M, M' are closed oriented manifolds of dimension n. Then the configuration space of k points in M is

$$F(M, k) = \{(x_1, \cdots x_k) \in M^k | x_i = x_j \implies i = j\}$$
Throughout M, M' are closed oriented manifolds of dimension n. Then the configuration space of k points in M is

$$F(M, k) = \{(x_1, \cdots x_k) \in M^k | x_i = x_j \implies i = j\}$$

(Yes you could define this for any manifold, for example $M = \mathbb{R}^n$)
Throughout M, M' are closed oriented manifolds of dimension n. Then the configuration space of of k points in M is

$$F(M, k) = \{(x_1, \cdots, x_k) \in M^k | x_i = x_j \implies i = j \}$$

(Yes you could define this for any manifold, for example $M = \mathbb{R}^n$ or even any space,
Throughout M, M' are closed oriented manifolds of dimension n.
Then the configuration space of of k points in M is

$$F(M, k) = \{(x_1, \cdots x_k) \in M^k | x_i = x_j \implies i = j\}$$

(Yes you could define this for any manifold, for example $M = \mathbb{R}^n$
or even any space,
but that would be a bit extreme.)
Q1) How does the homotopy type of $F(M, k)$ depend on the homotopy type of M?
Questions

Q1) How does the homotopy type of $F(M, k)$ depend on the homotopy type of M?

For example if M and M' are homotopy equivalent then are $F(M, k)$ and $F(M', k)$ homotopy equivalent?
Questions

Q1) How does the homotopy type of $F(M, k)$ depend on the homotopy type of M?

For example if M and M' are homotopy equivalent then are $F(M, k)$ and $F(M', k)$ homotopy equivalent?

Q2) Can we describe a Sullivan model of $F(M, k)$ out of a Sullivan model of M?
Questions

Q1) How does the homotopy type of $F(M, k)$ depend on the homotopy type of M?
For example if M and M' are homotopy equivalent then are $F(M, k)$ and $F(M', k)$ homotopy equivalent?

Q2) Can we describe a Sullivan model of $F(M, k)$ out of a Sullivan model of M?
Alternatively if M and M' are rationally homotopy equivalent then are $F(M, k)$ and $F(M', k)$ rationally homotopy equivalent?
Questions

Q1) How does the homotopy type of $F(M, k)$ depend on the homotopy type of M?

For example if M and M' are homotopy equivalent then are $F(M, k)$ and $F(M', k)$ homotopy equivalent?

Q2) Can we describe a Sullivan model of $F(M, k)$ out of a Sullivan model of M?

Alternatively if M and M' are rationally homotopy equivalent then are $F(M, k)$ and $F(M', k)$ rationally homotopy equivalent?

(I will say more about Sullivan models soon.)
Answers to Q1 (The good news)

Theorem (Levitt)

Suppose M, M' be a simply connected

Theorem (Klein)
Theorem (Levitt)

Suppose M, M' be a simply connected
then for every k, $\Omega F(M, k) \simeq \Omega F(M', k)$
Answers to Q1 (The good news)

Theorem (Levitt)

Suppose M, M' be a simply connected
then for every k, $\Omega F(M, k) \simeq \Omega F(M', k)$

Theorem (Klein)

Suppose M, M' be a simply connected
Answers to Q1 (The good news)

Theorem (Levitt)

Suppose M, M' be a simply connected then for every k, $\Omega F(M, k) \simeq \Omega F(M', k)$

Theorem (Klein)

Suppose M, M' be a simply connected then for every k, there exists an n such that $\Sigma^n F(M, k) \simeq \Sigma^n F(M', k)$
Answers to Q1 (The good news)

Theorem (Levitt)
Suppose M, M' be a simply connected then for every k, $\Omega F(M, k) \simeq \Omega F(M', k)$

Theorem (Klein)
Suppose M, M' be a simply connected then for every k, there exists an n such that $\Sigma^n F(M, k) \simeq \Sigma^n F(M', k)$
Answers to Q1 (More good news and some very bad news)
Theorem (Levitt)

Suppose \(M, M' \) be a 2-connected
Answers to Q1 (More good news and some very bad news)

Theorem (Levitt)

Suppose M, M' be a 2-connected
then $F(M, 2) \simeq F(M', 2)$
Answers to Q1 (More good news and some very bad news)

Theorem (Levitt)
Suppose M, M' be a 2-connected then $F(M, 2) \simeq F(M', 2)$

Theorem (Longoni-Salvatore)
There exist lens spaces $L(p, q), L(p, q')$ such that $L(p, q), \simeq L(p, q')$ but
Answers to Q1 (More good news and some very bad news)

Theorem (Levitt)

Suppose M, M' be a 2-connected
then $F(M, 2) \sim F(M', 2)$

Theorem (Longoni-Salvatore)

There exist lense spaces $L(p, q), L(p, q')$ such that
$L(p, q), \sim L(p, q')$ but
$F(L(p, q), 2) \not\sim F(L(p, q'), 2)$
Rational homotopy theory
From now on A will be a CDGA

(commutative differential graded algebra)
From now on A will be a CDGA

(commutative differential graded algebra)

A CDGA is an algebra and a chain complex with compatible structures
From now on A will be a CDGA

(commutative differential graded algebra)

A CDGA is an algebra and a chain complex with compatible structures

Fact: rational spaces are modeled by CDGA.
From now on A will be a CDGA

(commutative differential graded algebra)

A CDGA is an algebra and a chain complex with compatible structures

Fact: rational spaces are modeled by CDGA.

We will say A is a model of X, if it is the CDGA corresponding to X.
From now on A will be a CDGA

(commutative differential graded algebra)

A CDGA is an algebra and a chain complex with compatible structures

Fact: rational spaces are modeled by CDGA.

We will say A is a model of X, if it is the CDGA corresponding to X.

Fact: $H(A) \simeq H^*(X)$ in a functorial way.
Rational Poincare Duality Models

Definition
A CDGA A is PDCDGA (Poincare duality CDGA) if the underlying algebra of A satisfies Poincare duality.

Theorem (Lambrechts-S)
If B is a CDGA such that $H(B)$ satisfies Poincare duality then there is a quasi-isomorphic PDCDGA A.

Don Stanley
The Homotopy Type of Configuration Spaces
Rational Poincare Duality Models

Definition

A CDGA A is PDCDGA (Poincare duality CDGA) if the underlying algebra of A satisfies Poincare duality.
Definition

A CDGA A is PDCDGA (Poincare duality CDGA) if the underlying algebra of A satisfies Poincare duality.

Theorem (Lambrechts-S)

*If B is a CDGA such that $H(B)$ satisfies Poincare duality then there is a quasi-isomorphic PDCDGA A.***
Models for configuration spaces of projective manifolds

Definition
Suppose A is a PDCDGA, let $F(A, k) = A^k[\delta_{ij}]_{1 \leq i < j \leq k} \cong d(\delta_{ij}) = \Delta_{ij}$

This is an exterior algebra on the δ_{ij} modulo symmetry and Arnold relations and Δ_{ij} is a diagonal element in the ith and jth factor of A^k.

Don Stanley
Models for configuration spaces of projective manifolds

Definition

Suppose A is a PDCDGA, let

$$F(A, k) = A^k[g_{ij}]_{1 \leq i < j \leq k} \cong$$
Models for configuration spaces of projective manifolds

Definition

Suppose A is a PDCDGA, let

$$F(A, k) = A^k[g_{ij}]_{1 \leq i < j \leq k} / \simeq$$

$$d(g_{ij}) = \Delta_{ij}$$
Models for configuration spaces of projective manifolds

Definition

Suppose A is a PDCDGA, let

$$F(A, k) = A^k [g_{ij}]_{1 \leq i < j \leq k} \cong$$

$$d(g_{ij}) = \Delta_{ij}$$

This is an exterior algebra on the g_{ij} modulo symmetry and Arnold relations.
Models for configuration spaces of projective manifolds

Definition

Suppose A is a PDCDGA, let

$$F(A, k) = A^k[g_{ij}]_{1 \leq i < j \leq k}/ \simeq$$

$$d(g_{ij}) = \Delta_{ij}$$

This is an exterior algebra on the g_{ij} modulo symmetry and Arnold relations and Δ_{ij} is a diagonal element in the ith and jth factor of A^k.
Known models for configuration spaces

Theorem (Fulton-MacPherson, Kriz)
Suppose that M is a projective algebraic complex manifold. Then $F((H^* M), k)$ is a model for $F(M, k)$.

Note that by a result of Deligne-Griffiths-Morgan-Sullivan, M is formal and so $H^*(M)$ is a model for M.

Theorem (Lambrechts-S)
If M is 2-connected and A is a PDCDGA model of M then $F(A, 2)$ is a model of $F(M, 2)$.
Known models for configuration spaces

Theorem (Fulton-MacPherson, Kriz)

Suppose that M is a projective algebraic complex manifold.
Known models for configuration spaces

Theorem (Fulton-MacPherson, Kriz)

Suppose that M is a projective algebraic complex manifold. Then $F((H^*M), k)$ is a model for $F(M, k)$.
Theorem (Fulton-MacPherson, Kriz)

Suppose that M is a projective algebraic complex manifold. Then $F((H^*M), k)$ is a model for $F(M, k)$.

Note that by a result of Deligne-Griffiths-Morgan-Sullivan, M is formal and so $H^*(M)$ is a model for M.
Theorem (Fulton-MacPherson, Kriz)

Suppose that M is a projective algebraic complex manifold. Then $F((H^* M), k)$ is a model for $F(M, k)$.

Note that by a result of Deligne-Griffiths-Morgan-Sullivan, M is formal and so $H^*(M)$ is a model for M.

Theorem (Lambrechts-S)

If M is 2-connected and A is a PDCDGA model of M
Known models for configuration spaces

Theorem (Fulton-MacPherson, Kriz)

Suppose that M is a projective algebraic complex manifold. Then $F((H^*M), k)$ is a model for $F(M, k)$.

Note that by a result of Deligne-Griffiths-Morgan-Sullivan, M is formal and so $H^*(M)$ is a model for M.

Theorem (Lambrechts-S)

If M is 2-connected and A is a PDCDGA model of M then $F(A, 2)$ is a model of $F(M, 2)$.
New models for configuration spaces

Theorem (Lambrechts-S)
If M is 4-connected and A is a PDCDGA model of M then $F(M, 3)$ is a model of $F(M, 3)$.
New models for configuration spaces

Theorem (Lambrechts-S)

If M is 4-connected and A is a PDCDGA model of M
New models for configuration spaces

Theorem (Lambrechts-S)

If M is 4-connected and A is a PDCDGA model of M then $F(A, 3)$ is a model of $F(M, 3)$.
Ideas from the proofs 2-points
Ideas from the proofs 2-points

Theorem (Lambrechts-S)

> If M is 4-connected and A is a PDCDGA model of M then $F(A, 3)$ is a model of $F(M, 3)$.

The embedding
Ideas from the proofs 2-points

Theorem (Lambrechts-S)

If M is 4-connected and A is a PDCDGA model of M then $F(A, 3)$ is a model of $F(M, 3)$.

The embedding $M \xrightarrow{\Delta} M \times M$
Ideas from the proofs 2-points

Theorem (Lambrechts-S)

If M is 4-connected and A is a PDCDGA model of M then $F(A, 3)$ is a model of $F(M, 3)$.

The embedding $M \xrightarrow{\Delta} M \times M$

has high enough codimension that the homotopy class of the embedding determines the isotopy class and hence
Ideas from the proofs 2-points

Theorem (Lambrechts-S)

If M is 4-connected and A is a PDCDGA model of M then \(F(A, 3) \) is a model of \(F(M, 3) \).

The embedding \(M \xrightarrow{\Delta} M \times M \)

has high enough codimension that the homotopy class of the embedding determines the isotopy class and hence determines \(M \times M \setminus \Delta = F(M, 2) \).
Ideas from the proofs 2-points rational

If \(A \) is a model for \(M \) then the multiplication \(\phi: A \otimes A \to A \) is a model for \(M \). Also there is a diagonal map \(\Delta: \text{sn} A \to A \times A \) that is a shriek map for \(\phi \). This implies (using general results of Lambrechts-S) that

\[
A \otimes A \oplus \Delta \text{sn} A - 1 = A^2 \bigg[g_{12} \bigg] / \simeq
\]

is a model for \(F(M, 2) \).
If A is a model for M then the multiplication $\phi: A \otimes A \to A$
Ideas from the proofs 2-points rational

If A is a model for M then the multiplication $\phi: A \otimes A \rightarrow A$

is a model for $M \xrightarrow{\Delta} M \times M$.
Ideas from the proofs 2-points rational

If A is a model for M then the multiplication $\phi: A \otimes A \to A$

is a model for $M \xrightarrow{\Delta} M \times M$.

Also there is a diagonal map $\Delta: s^n A \to A \times A$ that is a shriek map for ϕ.
If A is a model for M then the multiplication $\phi: A \otimes A \to A$
is a model for $M \xrightarrow{\Delta} M \times M$.

Also there is a diagonal map $\Delta: s^nA \to A \times A$ that is a shriek map
for ϕ.

This implies (using general results of Lambrechts-S) that

$$A \otimes A \oplus \Delta s^{n-1}A = A^2[g_{12}]/\simeq$$

is a model for $F(M, 2)$.
Ideas from the proofs 3-points I
Ideas from the proofs 3-points I

Notation: $\Delta_{ij} = \{(x_1, x_2, x_3) \in M^3 | x_i = x_j\}$
Ideas from the proofs 3-points I

Notation: $\Delta_{ij} = \{(x_1, x_2, x_3) \in M^3 | x_i = x_j\}$
$\Delta_{123} = \{(x_1, x_2, x_3) \in M^3 | x_1 = x_2 = x_3\}$
Ideas from the proofs 3-points I

Notation: $\Delta_{ij} = \{(x_1, x_2, x_3) \in M^3 | x_i = x_j\}$
$\Delta_{123} = \{(x_1, x_2, x_3) \in M^3 | x_1 = x_2 = x_3\}$

so $F(M, 3) = M^3 \setminus \Delta_{12} \cup \Delta_{13} \cup \Delta_{23}$.
Notation: $\Delta_{ij} = \{(x_1, x_2, x_3) \in M^3 | x_i = x_j\}$
$\Delta_{123} = \{(x_1, x_2, x_3) \in M^3 | x_1 = x_2 = x_3\}$

so $F(M, 3) = M^3 \setminus \Delta_{12} \cup \Delta_{13} \cup \Delta_{23}$.

Lemma (*)

![Diagram]

Is a pullback and a homotopy pullback.
Ideas from the proofs 3-points II

Is $3^n - 4$ connected.
The natural map $F(M, 3)$ into the holim of

\[
\begin{align*}
M^3 \setminus \Delta_{12} \cup \Delta_{13} & \rightarrow M^3 \setminus \Delta_{12} \leftarrow M^3 \setminus \Delta_{12} \cup \Delta_{23} \\
M^3 \setminus \Delta_{12} & \rightarrow M^3 \setminus \Delta_{123} \\
M^3 \setminus \Delta_{123} & \rightarrow M^3 \setminus \Delta_{13} \\
M^3 \setminus \Delta_{13} & \rightarrow M^3 \setminus \Delta_{13} \cup \Delta_{23} \\
M^3 \setminus \Delta_{13} \cup \Delta_{23} & \rightarrow M^3 \setminus \Delta_{23} \\
M^3 \setminus \Delta_{23} & \rightarrow M^3 \setminus \Delta_{12} \cup \Delta_{23} \\
M^3 \setminus \Delta_{12} \cup \Delta_{23} & \rightarrow M^3 \setminus \Delta_{12} \leftarrow M^3 \setminus \Delta_{12} \cup \Delta_{23}
\end{align*}
\]

Is $3n - 4$ connected.
Ideas from the proofs 3-points III

Lemma (*) allows us to compare diagrams of the form

\[M^3 \setminus \Delta_{12} \cup \Delta_{13} \rightarrow M^3 \setminus \Delta_{12} \leftarrow M^3 \setminus \Delta_{12} \cup \Delta_{23} \]

But still need to extend over whole diagrams.
Ideas from the proofs 3-points III

Lemma (*) allows us to compare diagrams of the form

\[M^3 \setminus \Delta_{12} \cup \Delta_{13} \rightarrow M^3 \setminus \Delta_{12} \leftarrow M^3 \setminus \Delta_{12} \cup \Delta_{23} \]

\[M^3 \downarrow \downarrow M^3 \]

\[M^3 \setminus \Delta_{13} \leftarrow M^3 \setminus \Delta_{23} \]

\[M^3 \setminus \Delta_{13} \cup \Delta_{23} \]

But still need to extend over whole diagrams.