Analysis on Weaker Forms of Compactness Via Grills

Sketch of the talk:

1. New classes of sets and their applications
2. G-compactness, G-Paracompactness and G-weak compactness
3. Nearly compactness and convergence of grills
4. Weaker forms of compactness

Introduction and preliminaries

1. Let (X, τ) be a topological space with no separation properties assumed. A sub collection G (not containing the empty set) of $P(X)$ is called a grill [4] on X if G satisfies the following conditions:
 1. $A \in G$ and $A \subseteq B$ implies that $B \in G$,
 2. $A, B \subseteq X$ and $A \cup B \in G$ implies that $A \in G$ or $B \in G$.

2. Let (X, τ) be a topological space and G be a grill on X. A mapping $\Phi: P(X) \rightarrow P(X)$ is defined as follows: $\Phi(A) = \Phi_G(A, \tau) = \{x \in X : A \cap U \in G \text{ for all } U \in \tau(x)\}$ for each $A \in P(X)$. The mapping Φ is called the operator associated with the grill G and the topology τ.

3. Let G be a grill on a space X. Then a mapping $\Psi: P(X) \rightarrow P(X)$ is defined by $\Psi(A) = A \cup \Phi(A)$ for all $A \in P(X)$ [15]. The map Ψ is a Kuratowski closure axiom.

Corresponding to a grill G on a topological space (X, τ), there exists a unique topology τ_G on X given by $\tau_G = \{U \subseteq X : \Psi(X - U) = X - U\}$, where for any $A \subseteq X$, $\Psi(A) = A \cup \Phi(A) = \tau_G - c l(A)$. An operator Γ_τ is defined as $\Gamma_\tau(A) = X - \Phi(X - A)$.

I. New classes of sets and their applications

We introduce three classes of sets namely A_{ξ} set, G gb-closed set and fuzzy G gp-closed sets. Further G fgp-normal, b-normal, G gp regular and b-regular spaces are introduced. Let (X, τ, G) be a grill topological space. A subset A of X is called A_{ξ} set, If $A \subseteq \text{int}(\psi(\Gamma_\tau(A)))$. The collection of all A_{ξ} sets in (X, τ, G) is denoted by $\mathcal{A}_{\xi}(X, \tau, G)$. Then we define continuous and contra-continuous functions. If A is τ_ξ-dense-in-itself and G_{ξ}-closed set in a fuzzy G -space (X, τ, G), then A is gf-closed.

II. G-compactness, G-Paracompactness and G-weak compactness

G -compactness, G -paracompactness and G -weak compactness induced by θ open sets. One point compactification is also done with the help of the new closure operator cl_θ satisfying the kuratowski’s closure axioms. Let (X, τ) be a non- θ-compact, locally compact, θ-T$_2$ space. By adjoining a new point $p \notin X$ to X, one can construct an extension space $X^* = X \cup \{p\}$ having the following properties: (1) X^* is θ-Hausdorff, (2) X is dense in X^*, then X^* is θ-compact. We attempt to find an analogue of Alexander’s θ-subbase theorem for G - θ-compactness. The E.Micheal’s theorem for θ-open sets is also modified. X is said to be θ-
paracompact with respect to the grill or simply G-θ paracompact if every θ-open cover $U = \{U_\alpha : \alpha \in \lambda\}$ of X has a precise locally finite θ-open refinement U^* such that $X \setminus \cup U^* \notin G$.

III. Nearly compactness and convergence of grills

The concept of δ-convergence and δ-adherence of grills is introduced and its various properties are discussed. We learn about the relationships among G-nearly compact spaces, G-totally cocompact spaces and almost G-cocompact spaces. Further we introduce the concept of relative grill with respect to the subspace (A, τ_μ) of the space (X, τ, G) and study its properties. We also introduce a new space called AS$_\mu$ space and device its characterizations. The space X is said to be nearly compact space if for every open cover $V = \{U_\alpha : \alpha \in \Lambda\}$ of X, there exists a finite subcollection such that $X \setminus \bigcup_{i=1}^n \text{intcl} U_i \notin G$.

IV. Weaker forms of compactness

This part of the talk contemplates the study of other weaker forms of compact spaces like co-compact spaces, Co-paracompact spaces, Lindelof spaces, n-star compact spaces and finally almost paracompact spaces with respect to the grills. Finite intersection property with respect to the grills is introduced, as a tool to investigate the properties of compactness. A collection $\xi = \{A_\alpha : \alpha \in \Lambda\}$ of sets has the finite intersection property with respect to grill or simply G.f.i.p provided that the intersection of any finite subcollection belongs to grill. That is $\bigcap_{i=1}^n A_i \in G$. Results like A Ic-closed subset of an G-Cocompact space is G-Cocompact are obtained. A space X is said to be n-star G-compactness if for every open cover V of X, there is some finite subset V of U such that $X \setminus \text{st}(F, U) \notin G$, where $\text{st}(F, U) = \bigcup \{U \in U ; U \cap F \neq \emptyset\}$. Further we analyze the notions of n-star G-compactness and w-star-G-compactness. We establish the relationships among countably compact, strongly star compact and star compact with respect to grills.