Linearisation of algebraic structures via functor calculus

Combinatorial and toric homotopy

Singapore, august 2015

Manfred Hartl

Collaborators:

- Thibault Defournneau
- Bruno Loiseau
- Teimuraz Pirashvili
- Tim Van der Linden
- Christine Vespa
Linearisation of algebraic structures via functor calculus

Combinatorial and toric homotopy

Singapore, august 2015

Manfred Hartl

Collaborators:

- Thibault Defourneau
- Bruno Loiseau
- Teimuraz Pirashvili
- Tim Van der Linden
- Christine Vespa
- Jacob Mostovoy
- José-Maria Pérez-Izquierdo
Reminder: Relations between groups and Lie algebras
Reminder: Relations between groups and Lie algebras

1. Lie groups: Classical equivalence of simply connected Lie groups and Lie algebras \((G \mapsto (T_e(G), [-,-]))\).
Reminder: Relations between groups and Lie algebras

1. Lie groups: Classical equivalence of simply connected Lie groups and Lie algebras \((G \mapsto (T_e(G), [-,-]))\).

2. The associated graded of arbitrary groups: For any group \(G\) and elements \(x, y \in G\) let \([x, y] = (xy)(yx)^{-1}\). An \(N\)-series of \(G\) is a filtration

\[
\mathcal{N}: G = N_1 \supset N_2 \supset \ldots
\]

of \(G\) by subgroups \(N_n\) such that \([N_i, N_j] \subset N_{i+j}\).
Reminder: Relations between groups and Lie algebras

1. Lie groups: Classical equivalence of simply connected Lie groups and Lie algebras \((G \mapsto (T_e(G), [-, -]))\).

2. The associated graded of arbitrary groups: For any group \(G\) and elements \(x, y \in G\) let \([x, y] = (xy)(yx)^{-1}\). An \(N\)-series of \(G\) is a filtration

\[N^\vee: G = N_1 \supset N_2 \supset \ldots \]

of \(G\) by subgroups \(N_n\) such that \([N_i, N_j] \subset N_{i+j}\). Then \(\text{Gr}^N_n(G) = N_n/N_{n+1}\) is an abelian group, and

\[\text{Gr}^N(G) = \sum_{k \geq 1} \text{Gr}^N_k(G) \]

is a graded Lie ring whose bracket is induced by the commutator of \(G\).
Examples of N-series

1. The lower central series

\[\gamma : G = \gamma_1(G) \supset \gamma_2(G) \supset \ldots \]

where \(\gamma_n(G) = \langle [x_1, \ldots, x_n] \mid x_1, \ldots, x_n \in G \rangle \) with

\[[x_1, \ldots, x_n] = [x_1, [x_2, \ldots [x_{n-1}, x_n] \ldots] \]

.
Examples of N-series

1. The lower central series

\[\gamma : G = \gamma_1(G) \supset \gamma_2(G) \supset \ldots \]

where \(\gamma_n(G) = \langle [x_1, \ldots, x_n] \mid x_1, \ldots, x_n \in G \rangle \) with

\[[x_1, \ldots, x_n] = [x_1, [x_2, \ldots [x_{n-1}, x_n] \ldots] \]

2. The dimension series: let \(\mathbb{K} \) be a commutative ring. Then the subgroups

\[D_{n,\mathbb{K}}(G) = G \cap (1 + I^n_{\mathbb{K}}(G)) \]

form an N-series where \(I^n_{\mathbb{K}}(G) \) denotes the \(n \)-th power of the augmentation ideal of the group algebra \(\mathbb{K}(G) \).
3. Mal’cev/Lazard equivalence: There is a canonical equivalence between the categories of radicable n-step nilpotent groups and n-step nilpotent Lie algebras over \mathbb{Q}, based on the Baker-Campbell-Hausdorff formula.
3. Mal’cev/Lazard equivalence: There is a canonical equivalence between the categories of radicable \(n \)-step nilpotent groups and \(n \)-step nilpotent Lie algebras over \(\mathbb{Q} \), based on the Baker-Campbell-Hausdorff formula.

4. Primitive operations on group algebras: Primitive elements of Hopf algebras (the bialgebra type of group algebras) form a Lie algebra under the usual ring commutator.
Relations between groups and Lie algebras - Summary

1. Lie groups
2. The associated graded of arbitrary groups
3. Mal’cev/Lazard equivalence
4. Primitive operations on group algebras
Relations between groups and Lie algebras - Summary

1. Lie groups
2. The associated graded of arbitrary groups
3. Mal’cev/Lazard equivalence
4. Primitive operations on group algebras

GOAL:

Given a suitable non-linear “algebraic” structure generalizing groups,

- exhibit a related linear structure = type of algebras (linear operad), generalizing Lie algebras
- generalize the relations 1. to 4. above to this situation.
Approach

- develop and use algebraic functor calculus to construct a suitable notion of commutators and a suitable operad in abelian groups, satisfying relation 2. (basically done)
Approach

- develop and use algebraic functor calculus to construct a suitable notion of commutators and a suitable operad in abelian groups, satisfying relation 2. (basically done)

- use polynomial functor theory to generalize relation 3., in particular the Baker-Campbell-Hausdorff-formula (work in progress - done for $n = 2$ (T. Defourneau))
Approach

- develop and use algebraic functor calculus to construct a suitable notion of commutators and a suitable operad in abelian groups, satisfying relation 2. (basically done)

- use polynomial functor theory to generalize relation 3., in particular the Baker-Campbell-Hausdorff-formula (work in progress - done for $n = 2$ (T. Defourneau))

- combine this with Loday’s theory of generalized bialgebras in order to generalize relation 4. (project)
Approach

- develop and use algebraic functor calculus to construct a suitable notion of commutators and a suitable operad in abelian groups, satisfying relation 2. (basically done)

- use polynomial functor theory to generalize relation 3., in particular the Baker-Campbell-Hausdorff-formula (work in progress - done for $n = 2$ (T. Defourneau))

- combine this with Loday’s theory of generalized bialgebras in order to generalize relation 4. (project)

- try to generalize relation 1. (dream!)
Framework

Definition [Janelidze, Márki, Tholen 2002]: A category C is called **semi-abelian** if it is pointed, finitely complete and cocomplete, protomodular and Barr-exact.
Framework

Definition [Janelidze, Márki, Tholen 2002]: A category C is called **semi-abelian** if it is pointed, finitely complete and cocomplete, protomodular and Barr-exact.

Theorem [Loiseau-H.]: A category C is called **semi-abelian** iff it satisfies the following **four axioms**:
Framework

Definition [Janelidze, Márki, Tholen 2002]: A category C is called semi-abelian if it is pointed, finitely complete and cocomplete, protomodular and Barr-exact.

Theorem [Loiseau-H.]: A category C is called semi-abelian iff it satisfies the following four axioms:

1. C is pointed and finitely complete and cocomplete.
Framework

Definition [Janelidze, Márki, Tholen 2002]: A category C is called semi-abelian if it is pointed, finitely complete and cocomplete, protomodular and Barr-exact.

Theorem [Loiseau-H.]: A category C is called semi-abelian iff it satisfies the following four axioms:

1. C is pointed and finitely complete and cocomplete.

2. For any morphism $p: X \to Y$ in C admitting a section $s: Y \to X$, X “is generated by the kernel of p and the image of s”, that is the morphism $\text{Ker}(p) + Y \to X$ given by the injection of $\text{Ker}(p)$ and s is a cokernel.
Framework

Definition [Janelidze, Márki, Tholen 2002]: A category C is called **semi-abelian** if it is pointed, finitely complete and cocomplete, protomodular and Barr-exact.

Theorem [Loiseau-H.]: A category C is called **semi-abelian** iff it satisfies the following **four axioms**:

1. C is pointed and finitely complete and cocomplete.

2. For any morphism $p: X \to Y$ in C admitting a section $s: Y \to X$, X “is generated by the kernel of p and the image of s”, that is the morphism $\text{Ker}(p) + Y \to X$ given by the injection of $\text{Ker}(p)$ and s is a cokernel.

3. Any pullback of a cokernel is a cokernel.
Framework

Definition [Janelidze, Márki, Tholen 2002]: A category C is called semi-abelian if it is pointed, finitely complete and cocomplete, protomodular and Barr-exact.

Theorem [Loiseau-H.]: A category C is called semi-abelian iff it satisfies the following four axioms:

1. C is pointed and finitely complete and cocomplete.
2. For any morphism $p: X \to Y$ in C admitting a section $s: Y \to X$, X “is generated by the kernel of p and the image of s”, that is the morphism $\text{Ker}(p) + Y \to X$ given by the injection of $\text{Ker}(p)$ and s is a cokernel.
3. Any pullback of a cokernel is a cokernel.
4. Any image of a kernel by a cokernel is a kernel.
Framework

Definition [Janelidze, Márki, Tholen 2002]: A category C is called semi-abelian if it is pointed, finitely complete and cocomplete, protomodular and Barr-exact.

Theorem [Loiseau-H.]: A category C is called semi-abelian iff it satisfies the following four axioms:

1. C is pointed and finitely complete and cocomplete.
2. For any morphism $p : X \to Y$ in C admitting a section $s : Y \to X$, X “is generated by the kernel of p and the image of s”, that is the morphism $\text{Ker}(p) + Y \to X$ given by the injection of $\text{Ker}(p)$ and s is a cokernel.
3. Any pullback of a cokernel is a cokernel.
4. Any image of a kernel by a cokernel is a kernel.
Examples of semi-abelian categories
- any abelian category
Examples of semi-abelian categories

- any abelian category

- the categories of groups, loops, ω-groups (or one sided loops) of any type, in particular the category of algebras over any linear operad
Examples of semi-abelian categories
- any abelian category
- the categories of groups, loops, \(\omega\)-groups (or one sided loops) of any type, in particular the category of algebras over any linear operad
- compact (Hausdorff) topological groups, \(C^*\)-algebras
Examples of semi-abelian categories

- any abelian category

- the categories of groups, loops, \(\omega\)-groups (or one sided loops) of any type, in particular the category of algebras over any linear operad

- compact (Hausdorff) topological groups, \(C^*\)-algebras

- the categories of (pre)sheaves with values in a semi-abelian category (in particular simplicial or \(\Gamma\)-groups)
Examples of semi-abelian categories

- any abelian category

- the categories of groups, loops, ω-groups (or one sided loops) of any type, in particular the category of algebras over any linear operad

- compact (Hausdorff) topological groups, C^*-algebras

- the categories of (pre)sheaves with values in a semi-abelian category (in particular simplicial or Γ-groups)

- the category of internal groupoids (\iff crossed modules [Janelidze, H.-Van der Linden]) in a semi-abelian category
Examples of semi-abelian categories

- any abelian category
- the categories of groups, loops, ω-groups (or one sided loops) of any type, in particular the category of algebras over any linear operad
- compact (Hausdorff) topological groups, C^*-algebras
- the categories of (pre)sheaves with values in a semi-abelian category (in particular simplicial or Γ-groups)
- the category of internal groupoids (\leftrightarrow crossed modules [Janelidze, H.-Van der Linden]) in a semi-abelian category
- any localisation of a semi-abelian category
Examples of semi-abelian categories

- any abelian category
- the categories of groups, loops, ω-groups (or one sided loops) of any type, in particular the category of algebras over any linear operad
- compact (Hausdorff) topological groups, C^*-algebras
- the categories of (pre)sheaves with values in a semi-abelian category (in particular simplicial or Γ-groups)
- the category of internal groupoids (\Leftrightarrow crossed modules [Janelidze, H.-Van der Linden]) in a semi-abelian category
- any localisation of a semi-abelian category
- the category of cocommutative Hopf algebras (Gadjo-Gran-Vercruysen)
-
The idea of the categorical (Higgins) commutator calculus

(blackboard)
Basic (algebraic) functor calculus

In the sequel, \(F : \mathcal{C} \to \mathcal{D} \) denotes a functor between categories satisfying

- \(\mathcal{C} \) is pointed and has finite sums (\(= \) coproducts)
- \(\mathcal{D} \) is semi-abelian.
Basic (algebraic) functor calculus

In the sequel, $F : \mathcal{C} \to \mathcal{D}$ denotes a functor between categories satisfying
- \mathcal{C} is pointed and has finite sums (\(=\) coproducts)
- \mathcal{D} is semi-abelian.

The n-th cross-effect of F is defined to be the multifunctor $\text{cr}_n F : \mathcal{C}^n \to \mathcal{D}$ given by

\[
\text{cr}_n F(X_1, \ldots, X_n) = F(X_1 \mid \ldots \mid X_n) = \bigwedge_{k=1}^n \ker \left(F(X_1 + \ldots + X_n) \to F(X_1 + \ldots + \hat{X}_k + \ldots + X_n) \right) \ll F(X_1 + \ldots + X_n).
\]
Basic (algebraic) functor calculus

In the sequel, $F : \mathcal{C} \to \mathcal{D}$ denotes a functor between categories satisfying
- \mathcal{C} is pointed and has finite sums ($=\$coproducts$)
- \mathcal{D} is semi-abelian.

The \textit{n-th cross-effect of F} is defined to be the multifunctor $cr_n F : \mathcal{C}^n \to \mathcal{D}$ given by

$$cr_n F(X_1, \ldots, X_n) = F(X_1|\ldots|X_n) =$$

$$\bigcap_{k=1}^n \ker\left(F(X_1 + \ldots + X_n) \to F(X_1 + \ldots + \hat{X}_k + \ldots X_n) \right)$$

$$\triangleleft F(X_1 + \ldots + X_n)$$
Basic (algebraic) functor calculus

In the sequel, \(F : \mathcal{C} \to \mathcal{D} \) denotes a functor between categories satisfying
- \(\mathcal{C} \) is pointed and has finite sums (\(\equiv \) coproducts)
- \(\mathcal{D} \) is semi-abelian.

The \(n \)-th cross-effect of \(F \) is defined to be the multifunctor \(cr_nF : \mathcal{C}^n \to \mathcal{D} \) given by

\[
\begin{align*}
 cr_nF(X_1, \ldots, X_n) &= F(X_1| \ldots |X_n) = \\
 &\cap_{k=1}^n \ker\left(F(X_1 + \ldots + X_n) \to F(X_1 + \ldots + \widehat{X_k} + \ldots X_n) \right) \\
 &\triangleleft F(X_1 + \ldots + X_n)
\end{align*}
\]

In particular, \(cr_1F(X) = \ker\left(F(0) : F(X) \to F(0) \right) \).
Basic (algebraic) functor calculus

In the sequel, $F : C \to D$ denotes a functor between categories satisfying
- C is pointed and has finite sums (= coproducts)
- D is semi-abelian.

The n-th cross-effect of F is defined to be the multifunctor $cr_n F : C^n \to D$ given by

$$cr_n F (X_1, \ldots, X_n) = \cap_{k=1}^n \text{Ker} \left(F(X_1 + \ldots + X_n) \to F(X_1 + \ldots + \hat{X}_k + \ldots X_n) \right) \triangleleft F(X_1 + \ldots + X_n)$$

In particular, $cr_1 F (X) = \text{Ker} \left(F(0) : F(X) \to F(0) \right)$ and

$$cr_2 F (X, Y) = \text{Ker} \left(r_{12} : F(X + Y) \to F(X) \times F(Y) \right).$$
Examples

- A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between abelian categories is additive iff $cr_2 F = 0$.
Examples
- A functor $F : A \rightarrow B$ between abelian categories is additive iff $cr_2 F = 0$.
- For $T^2 : Ab \rightarrow Ab$, $T^2(A) = A \otimes A$, we have
 $$cr_2 T^2(A, B) = (A \otimes B) \oplus (B \otimes A),$$
 $$cr_n T^2(A, B) = 0 \text{ for } n > 2.$$
Examples

- A functor $F : \mathcal{A} \to \mathcal{B}$ between abelian categories is additive iff $cr_2 F = 0$.

- For $T^2 : \text{Ab} \to \text{Ab}$, $T^2(A) = A \otimes A$, we have

 \[cr_2 T^2(A, B) = (A \otimes B) \oplus (B \otimes A), \]

 \[cr_n T^2(A, B) = 0 \text{ for } n > 2. \]

- Let Gr denote the category of groups. Then for groups X_1, \ldots, X_n and elements $x_k \in X_k$, $k = 1, \ldots, n$, we have

 \[[x_1, \ldots, x_n] \in \text{Id}_{Gr}(X_1|\ldots|X_n). \]

 If $n = 2$ these elements generate $\text{Id}_{Gr}(X_1|X_2)$ (freely if one takes $x_1, x_2 \neq e$).

- Let Lp denote the category of loops. Then for loops X_1, X_2, X_3 and elements $x_k \in X_k$ the associator

 \[A(x_1, x_2, x_3) = (x_1(x_2x_3))\backslash((x_1x_2)x_3) \in \text{Id}_{Lp}(X_1|X_2|X_3). \]
Basic properties of cross-effects

- the multifunctor $cr_n F$ is symmetric and multi-reduced
Basic properties of cross-effects

- the multifunctor $cr_n F$ is symmetric and multi-reduced
- Inductive nature: for a multifunctor $M : C^n \to D$ define its k-th derivative $\partial_k M : C^{n+1} \to D$ by

$$\partial_k M(X_1, \ldots, X_{k-1}, - , X_k + 1, \ldots, X_{n+1}) = cr_2 (M(X_1, \ldots, X_{k-1}, - , X_{k+2}, \ldots, X_{n+1})(X_k, X_k + 1))$$

Then there is a natural isomorphism $\partial_k cr_n F \cong cr_{n+1} F$ for all $k = 1, \ldots, n$.

- The functor $cr_n : \text{Func}(C, D) \to \text{Func}(C^n, D)$ is exact.
- “Pseudo-right-exactness” [Van der Linden]: If F preserves coequalizers of reflexive parallel pairs of morphisms (reflexive meaning that these morphisms admit a common section) then so does $cr_n F$ in all variables, for any n.
Basic properties of cross-effects

- the multifunctor \(cr_n F \) is symmetric and multi-reduced
- Inductive nature: for a multifunctor \(M : \mathcal{C}^n \rightarrow \mathcal{D} \) define its \(k \)-th derivative \(\partial_k M : \mathcal{C}^{n+1} \rightarrow \mathcal{D} \) by

\[
\partial_k M(X_1, \ldots, X_{n+1})
\]

- The functor \(cr_n : \text{Func}(\mathcal{C}, \mathcal{D}) \rightarrow \text{Func}(\mathcal{C}^n, \mathcal{D}) \) is exact.
- "Pseudo-right-exactness" [Van der Linden]: If \(F \) preserves coequalizers of reflexive parallel pairs of morphisms (reflexive meaning that these morphisms admit a common section) then so does \(cr_n F \) in all variables, for any \(n \).
Basic properties of cross-effects

- the multifunctor $cr_n F$ is symmetric and multi-reduced

- Inductive nature: for a multifunctor $M: C^n \to D$ define its k-th derivative $\partial_k M: C^{n+1} \to D$ by

$$\partial_k M(X_1, \ldots, X_{n+1}) = cr_2(M(X_1, \ldots, X_{k-1}, -, X_{k+2}, \ldots, X_{n+1}))(X_k, X_{k+1})$$
Basic properties of cross-effects
- the multifunctor \(cr_n F \) is symmetric and multi-reduced
- Inductive nature: for a multifunctor \(M : C^n \rightarrow D \) define its \(k \)-th derivative \(\partial_k M : C^{n+1} \rightarrow D \) by

\[
\partial_k M(X_1, \ldots, X_{n+1}) = cr_2(M(X_1, \ldots, X_{k-1}, -, X_{k+2}, \ldots, X_{n+1}))(X_k, X_{k+1})
\]

Then there is a natural isomorphism

\[
\partial_k cr_n F \cong cr_{n+1} F
\]

for all \(k = 1, \ldots, n \).
Basic properties of cross-effects
- the multifunctor $cr_n F$ is symmetric and multi-reduced
- Inductive nature: for a multifunctor $M: C^n \to D$ define its k-th derivative $\partial_k M: C^{n+1} \to D$ by
 $$\partial_k M(X_1, \ldots, X_{n+1}) = cr_2(M(X_1, \ldots, X_{k-1}, -, X_{k+2}, \ldots, X_{n+1}))(X_k, X_{k+1})$$
Then there is a natural isomorphism
 $$\partial_k cr_n F \cong cr_{n+1} F$$
for all $k = 1, \ldots, n$.
- The functor $cr_n: Func(C, D) \to Func(C^n, D)$ is exact.
Basic properties of cross-effects

- the multifunctor $cr_n F$ is symmetric and multi-reduced

- Inductive nature: for a multifunctor $M : C^n \to D$ define its k-th derivative $\partial_k M : C^{n+1} \to D$ by

$$\partial_k M(X_1, \ldots, X_{n+1}) = cr_2(M(X_1, \ldots, X_k-1, -, X_{k+2}, \ldots, X_{n+1}))(X_k, X_{k+1})$$

Then there is a natural isomorphism

$$\partial_k cr_n F \cong cr_{n+1} F$$

for all $k = 1, \ldots, n$.

- The functor $cr_n : Func(C, D) \to Func(C^n, D)$ is exact.

- “Pseudo-right-exactness” [Van der Linden]: If F preserves coequalizers of reflexive parallel pairs of morphisms (reflexive meaning that these morphisms admit a common section) then so does $cr_n F$ in all variables, for any n.
Preservation of coequalizers of reflexive parallel pairs

A functor $F : \mathcal{C} \to \mathcal{D}$ as before preserves coequalizers of reflexive parallel pairs iff for any right-exact sequence

$$A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{} 0$$

in \mathcal{C} the sequence

$$F(A) + F(A|B) \xrightarrow{\langle F(a) \rangle_\delta} F(B) \xrightarrow{F(b)} F(C) \xrightarrow{} 0$$

in \mathcal{D} is exact, where

$$\delta : F(A|B) \xrightarrow{F(a|1_B)} F(B|B) \xrightarrow{} F(B + B) \xrightarrow{F(\nabla^2)} F(B) .$$
Operadic structure of cross-effects

- Operadic structure: Let $\mathcal{C} \xrightarrow{F} \mathcal{D} \xrightarrow{G} \mathcal{E}$ be reduced functors where the category \mathcal{E} is semi-abelian, too.

Denote “multi-objects”, i.e. sequences of objects in \mathcal{C}, by $X_j = X_{j,1}, \ldots, X_{j,k_j}$ and concatenation of such by

$X_1 \cup \ldots \cup X_n = X_{1,1}, \ldots, X_{1,k_1}, \ldots, X_{n,1}, \ldots, X_{n,k_n}$.

Then there is a natural transformation

$$cr_n G \left(cr_{k_1} F(X_1), \ldots, cr_{k_n} F(X_n) \right)$$

$$\downarrow$$

$$cr_{k_1 + \ldots + k_n} (G \circ F) (X_1 \cup \ldots \cup X_n)$$

rendering a certain canonical diagram commutative.
Polynomial functors

Definition: The functor F is polynomial of degree $\leq n$ if $cr_{n+1}F = 0$.
Definition: The functor F is polynomial of degree $\leq n$ if $cr_{n+1}F = 0$.

Example 1: A reduced functor between abelian categories is linear (that is, polynomial of degree ≤ 1) iff it is additive.

Example 2: The n-th tensor power functor $T^n : \text{Ab} \to \text{Ab}, T^n(A) = A \otimes^n$, is polynomial of degree n.
Commutators via functor calculus

Let $F : C \to D$ be a reduced functor as before.

For subobjects $x_k : X_k \to X$, $k = 1, \ldots, n$, of an object X of C define the subobject $[X_1, \ldots, X_n]_F$ of $F(X)$ to be the image of the morphism

$$F(X_1|\ldots|X_n) \to F(X_1 + \ldots + X_n) \xrightarrow{F(x_1,\ldots,x_n)} F(X)$$

Note that

$$[X_1, \ldots, X_n]_{Id_D} \leq X,$$

and that

$$[X_1]_F = \text{Im}\left(cr_1 F(X_1) \xrightarrow{\text{Id}} F(X_1) \xrightarrow{F(x_1)} F(X) \right).$$
Examples

1. If \mathcal{D} is the category of groups Gr then

 - $[X_1, X_2]_{\text{Id}_{\text{Gr}}} = [X_1, X_2]$;
Examples

1. If \(\mathcal{D} \) is the category of groups \(\text{Gr} \) then

 - \([X_1, X_2]_{ld_{Gr}} = [X_1, X_2] \);

 - \([X_1, X_2, X_3]_{ld_{Gr}} \) is the normal subgroup of \(\langle X_1 \cup X_2 \cup X_3 \rangle \) generated by the product
 \[
 [X_1, [X_2, X_3]].[X_2, [X_3, X_1]].[X_3, [X_1, X_2]].
 \]
Examples

1. If \mathcal{D} is the category of groups Gr then
 - $[X_1, X_2]_{Id_{Gr}} = [X_1, X_2]$;
 - $[X_1, X_2, X_3]_{Id_{Gr}}$ is the normal subgroup of $\langle X_1 \cup X_2 \cup X_3 \rangle$ generated by the product
 $[X_1, [X_2, X_3]].[X_2, [X_3, X_1]].[X_3, [X_1, X_2]]$.

In particular, if X_1, X_2, X_3 are normal subgroups of X then $[X_1, X_2, X_3]_{Id_{Gr}}$ is their symmetric commutator.
Examples

1. If \mathcal{D} is the category of groups Gr then
 - $[X_1, X_2]_{Id_{Gr}} = [X_1, X_2]$;
 - $[X_1, X_2, X_3]_{Id_{Gr}}$ is the normal subgroup of $\langle X_1 \cup X_2 \cup X_3 \rangle$ generated by the product $[X_1, [X_2, X_3]].[X_2, [X_3, X_1]].[X_3, [X_1, X_2]]$.

 In particular, if X_1, X_2, X_3 are normal subgroups of X then $[X_1, X_2, X_3]_{Id_{Gr}}$ is their symmetric commutator.

2. If \mathcal{D} is the category of loops Lp, then
 - $[X_1, X_2]_{Id_{Lp}}$ is the normal subloop of $\langle X_1 \cup X_2 \rangle$ generated by the elements $[x_2, x_1], A(x_1, y_1, y_2), A(x_1, x_2, y_1), A(x_1, x_2, y_2) A(x_2, x_1, y_2)$, and $A_3(x_1, x_2, x_1, y_2)$ where $x_i, y_i \in X_i$ and

 $[a, b] = ba \backslash ab$

 $A_3(a, b, c, d) = (A(a, b, c)A(a, b, d)) \backslash A(a, b, cd)$.
Examples - sequel 1

3. If \mathcal{D} is a category of ω-loops then $[X_1, X_2]_{Id_{\mathcal{D}}}$ is the normal subobject of $X_1 \vee X_2$ generated by the elements

$$\theta((x_1, \ldots, x_n), (y_1, \ldots, y_n)) = \theta(x_1 y_1, \ldots, x_n y_n)/\theta(x_1, \ldots, x_n)\theta(y_1, \ldots, y_n)$$

where $x_1, \ldots, x_n \in X_1$, $y_1, \ldots, y_n \in X_2$ and θ is a generating operation of \mathcal{D}.

- 3a) If $\mathcal{D} = Groups$ then $[x, y] = y^{-1}x^{-1}yx$ and $[(x_1, x_2), (y_1, y_2)]. = x_1[y_1, x_2]$.

- 3a) If $\mathcal{D} = Loops$ then

$$[(x_1, x_2), (y_1, y_2)]. = ((x_1 y_1)(x_2 y_2))/((x_1 x_2)(y_1 y_2)).$$

In particular, $[(e, x_2), (y_1, e)]. = (y_1 x_2)/(x_2 y_1)$ and $[(x_1, e), (y_1, y_2)]. = ((x_1 y_1)y_2)/(x_1(y_1 y_2))$.
4. If \mathcal{D} is the category of \mathcal{P}-algebras \mathcal{P}-Alg, then

$$[X_1, \ldots, X_n]_{\mathcal{P}$-$\text{Alg}} = \sum_{p_k \geq 1} \mu_p(X_1^{\otimes p_1} \otimes \ldots \otimes X_n^{\otimes p_n} \otimes \mathcal{P}(p)).$$

where $p = p_1 + \ldots + p_n$.
Properties

- **Reducedness**: if one of the $X_i = 0$ then
 $[X_1, \ldots, X_n]_F = 0$.
Properties

- **Reducedness**: if one of the $X_i = 0$ then $[X_1, \ldots, X_n]_F = 0$.

- **Distributivity law**:

 $$[A, B \lor C]_F = [A, B]_F \lor [A, C]_F \lor [A, B, C]_F$$

 where $A \lor B$ denotes the smallest subobject containing both A and B.
Properties

- **Reducedness**: if one of the $X_i = 0$ then $[X_1, \ldots, X_n]_F = 0$.

- **Distributivity law**:

 $$[A, B \lor C]_F = [A, B]_F \lor [A, C]_F \lor [A, B, C]_F$$

 where $A \lor B$ denotes the smallest subobject containing both A and B.

- **Removing internal brackets or repetitions** of subobjects enlarges the commutator (the relations below indicated in red color are valid only if C is semi-abelian and F preserves the class of cokernels):

 $$[[A, B]_{Id_C}, C]_F \subset [A, B, C]_F \supset [[A, B]_F, [C]_F]_{Id_D}$$
Properties

- **Reducedness**: if one of the $X_i = 0$ then $[X_1, \ldots, X_n]_F = 0$.

- **Distributivity law**:

 $$[A, B \lor C]_F = [A, B]_F \lor [A, C]_F \lor [A, B, C]_F$$

 where $A \lor B$ denotes the smallest subobject containing both A and B.

- **Removing internal brackets or repetitions** of subobjects enlarges the commutator (the relations below indicated in red color are valid only if C is semi-abelian and F preserves the class of cokernels):

 $$[[[A, B]_{Id_C}, C]_F \subset [A, B, C]_F \supset [[A, B]_F, [C]_F]_{Id_D}$$

 $$[A, A, B]_F \subset [A, B]_F.$$
Properties

- **Reducedness**: if one of the $X_i = 0$ then $[X_1, \ldots, X_n]_F = 0$.

- **Distributivity law**:

$$[A, B \lor C]_F = [A, B]_F \lor [A, C]_F \lor [A, B, C]_F$$

where $A \lor B$ denotes the smallest subobject containing both A and B.

- **Removing internal brackets or repetitions** of subobjects enlarges the commutator (the relations below indicated in red color are valid only if C is semi-abelian and F preserves the class of cokernels):

$$[[A, B]_{\text{Id}_C}, C]_F \subset [A, B, C]_F \supset [[A, B]_F, [C]_F]_{\text{Id}_D}$$

$$[A, A, B]_F \subset [A, B]_F.$$

- **Preservation by morphisms**: For $f : X \to Y$ in C,

$$F(f)([X_1, \ldots, X_n]_F) = [f(X_1), \ldots, f(X_n)]_F.$$
Lower central series

For an object X of \mathcal{D} let

$$\gamma^F_n(X) = [X, \ldots, X]_F \leq F(X)$$
Lower central series

For an object X of \mathcal{D} let

$$\gamma_n^F(X) = [X, \ldots, X]_F \leq F(X)$$

Suppose that F is reduced, i.e. that $F(0) = 0$. We then obtain a filtration

$$F(X) = \gamma_1^F(X) \geq \gamma_2^F(X) \geq \ldots$$

of $F(X)$
Lower central series

For an object X of \mathcal{D} let

$$\gamma^F_n(X) = [X, \ldots, X]_F \leq F(X)$$

Suppose that F is reduced, i.e. that $F(0) = 0$. We then obtain a filtration

$$F(X) = \gamma^F_1(X) \geq \gamma^F_2(X) \geq \ldots$$

of $F(X)$ which is an \textit{N-series}, that is,

$$[N_{k_1}, \ldots, N_{k_n}]_{Id_{\mathcal{D}}} \subset N_{k_1 + \ldots + k_n}$$

for $N_k = \gamma^F_k(X)$.
Lower central series

For an object X of \mathcal{D} let

$$\gamma^F_n(X) = [X, \ldots, X]_F \leq F(X)$$

Suppose that F is reduced, i.e. that $F(0) = 0$. We then obtain a filtration

$$F(X) = \gamma^F_1(X) \geq \gamma^F_2(X) \geq \ldots$$

of $F(X)$ which is an N-series, that is,

$$[N_{k_1}, \ldots, N_{k_n}]_{Id_D} \subset N_{k_1 + \ldots + k_n}$$

for $N_k = \gamma^F_k(X)$. In particular, taking $F = Id_D$ we obtain the (categorically defined) lower central series (c.l.c.s.) of X,

$$X = \gamma^{Id_D}_1(X) \geq \gamma^{Id_D}_2(X) \geq \ldots$$
Examples

1. If \(D \) is the category of groups, then the categorically defined lower central series coincides with the classical l.c.s.

2. If \(D \) is the category of loops, then the categorically defined lower central series coincides with the commutator-associator filtration introduced by Mostovoy.

3. If \(D \) is the category of \(\mathcal{P} \)-algebras \(\mathcal{P}\text{-Alg} \), then

\[
\gamma_{n}^{\text{Id_{\mathcal{P}\text{-Alg}}}}(X) = \sum_{k \geq n} \mu_{k}(X \otimes^{k} \otimes \mathcal{P}(k)).
\]

How to prove this?
Characterisation of the c.l.c.s.

Theorem. Let $\mathcal{X}(X): X = X_1 \geq X_2 \geq \ldots$ be a natural filtration of all objects X in \mathcal{D} by normal subobjects X_n of X.
Characterisation of the c.l.c.s.

Theorem. Let $X(X): X = X_1 \geq X_2 \geq \ldots$ be a natural filtration of all objects X in \mathcal{D} by normal subobjects X_n of X. Then $X(X)$ coincides with the c.l.c.s. of X for all X if and only if
Characterisation of the c.l.c.s.

Theorem. Let \(\mathcal{X}(X) : X = X_1 \geq X_2 \geq \ldots \) be a natural filtration of all objects \(X \) in \(\mathcal{D} \) by normal subobjects \(X_n \) of \(X \). Then \(\mathcal{X}(X) \) coincides with the c.l.c.s. of \(X \) for all \(X \) if and only if there exist

- multifunctors \(M_n : \mathcal{D}^n \to \mathcal{D} \)
- natural maps \(m_n : M_n(X, \ldots, X) \to X_n \)

such that the following two conditions are satisfied:
Characterisation of the c.l.c.s.

Theorem. Let $\mathcal{X}(X) : X = X_1 \supseteq X_2 \supseteq \ldots$ be a natural filtration of all objects X in \mathcal{D} by normal subobjects X_n of X. Then $\mathcal{X}(X)$ coincides with the c.l.c.s. of X for all X if and only if there exist
- multifunctors $M_n : D^n \to D$
- natural maps $m_n : M_n(X, \ldots, X) \to X_n$

such that the following two conditions are satisfied:

1. Factorisations $\overline{m_n}$ exist and are cokernels rendering the following diagrams commutative:

$$
\begin{array}{c}
M_n(X, \ldots, X) \xrightarrow{m_n} X_n \\
\downarrow t_1 \quad \downarrow q_n
\end{array}
$$

$$
\begin{array}{c}
(T_1 M_n)(X, \ldots, X) \xrightarrow{\overline{m_n}} X_n/X_{n+1}
\end{array}
$$
2. The images of the maps

\[m_k : M_k(X, \ldots, X) \to X_k \hookrightarrow X_n, \]

\(k \geq n \), jointly generate \(X_n \) as a normal subobject of \(X \).
2. The images of the maps

$$m_k : M_k(X, \ldots, X) \to X_k \hookrightarrow X_n,$$

$$k \geq n,$$ jointly generate $$X_n$$ as a normal subobject of $$X$$. Application:

Proof of the identity $$\gamma_n^{\text{Id}_D}(X) = \gamma_n(X)$$ in $$\mathcal{D} = \text{Groups}$$:
2. The images of the maps

\[m_k : M_k(X, \ldots, X) \to X_k \hookrightarrow X_n, \]

\(k \geq n \), jointly generate \(X_n \) as a normal subobject of \(X \).

Application:

Proof of the identity \(\gamma^{\text{Id}_D}(X) = \gamma_n(X) \) in \(D = \text{Groups} \):

take

- \(M_n(X_1, \ldots, X_n) \) to be the free group generated by the set \(X_1 \times \ldots \times X_n \) modulo the normal subgroup generated by the tuples \((x_1, \ldots, x_n) \) where one of the \(x_k \)'s is trivial

- \(m_n \) to send a basis element \((x_1, \ldots, x_n) \in X^n \) to \([x_1, \ldots, x_n]\).
Lower central series of the group ring functor

Let $F : \text{Groups} \to \text{Ab}$ be the functor sending a group G to its group ring $\mathbb{Z}[G]$. Then

$$\gamma_n^F(G) = I^n(G)$$

where $I^n(G)$ is the n-th power of the augmentation ideal of $\mathbb{Z}[G]$.
Polynomialization of functors

For any functor $F : C \to D$ as before let

$$T_n F = F / \gamma_n(F) \quad \text{and} \quad t_n : F \longrightarrow T_n F .$$

Then the functor $T_n F$ is polynomial of degree $\leq n$ and t_n is initial among all natural transformations from F to polynomial functors of degree $\leq n$.
Nilpotency

Define an object X of \mathcal{D} to be n-step nilpotent if
\[γ^{ld_\mathcal{D}}_{n+1}(X) = 0. \]

“Polynomiality subsumes nilpotency”

1. Global statement: All objects of \mathcal{D} are n-step nilpotent iff the identity functor of \mathcal{D} is polynomial of degree $\leq n$. For arbitrary \mathcal{D}, the “n-step nilization” functor $X \mapsto Nil_n(X) = X/γ^{ld_\mathcal{D}}_{n+1}(X)$ equals $T_n ld_\mathcal{D}$.

1. Local statement: A single object X of \mathcal{D} is n-step nilpotent iff its “commutator map”
\[S_{2}^{ld_\mathcal{D}} : ld_\mathcal{D}(X|X) \rightarrow X + X \xrightarrow{\nabla^2} X \]
is polynomial of degree $\leq n - 1$ in both (equivalently any of the two) variables, which by definition means that $S_{2}^{ld_\mathcal{D}}$ factors through the bi-polynomialization
\[t_{n-1,n-1} : cr_2 ld_\mathcal{D}(X, X) \longrightarrow T_{n-1,n-1}(cr_2 ld_\mathcal{D})(X, X). \]
Example: 2-step nilpotency in groups

Let $\mathcal{D} = Gr$ and $n = 2$. Here

$$cr_2 ld_{Gr}(X, X) = \text{Free}(|X^*| \times |X^*|)$$

$S_{ld_{Gr}}^2 : (x, y) \mapsto [x, y]$

$t_{1,1} : (x, y) \mapsto (xX') \otimes (yY')$

$$T_{1,1}(cr_2 ld_{Gr})(X, X) = X_{ab} \otimes_{\mathbb{Z}} X_{ab}$$

Hence $S_{ld_{Gr}}^2$ is polynomial of degree ≤ 1 in both variables iff the classical commutator map $c : X \times X \to X$, $(x, y) \mapsto [x, y]$, is bi-additive, which indeed is a well-known characterization of the fact that X is 2-nilpotent.
Polynomial functors and nilpotency

Suppose that $F : C \to D$ is polynomial of degree $\leq n$. Then:

1. F takes values in the full subcategory $\text{Nil}_n(D)$ of n-step nilpotent objects in D.

2. If C is semi-abelian and F preserves coequalizers of reflexive parallel pairs then F factors through the n-step nilization functor $\text{Nil}_n : C \to \text{Nil}_n(C)$. Hence F factors as

$$
\begin{array}{ccc}
C & \xrightarrow{F} & D \\
\downarrow \text{Nil}_n & & \uparrow \\
\text{Nil}_n(C) & \cong & \text{Nil}_n(D)
\end{array}
$$

Abbreviating “pre” for “pseudo-right exact” we obtain an equivalence of functor categories

$$
\text{Pol}_{\leq n}(C, D)_{\text{pre}} \cong \text{Pol}_{\leq n}(\text{Nil}_n(C), \text{Nil}_n(D))_{\text{pre}}.
$$
Associated graded object of an N-series

Let $\mathcal{N} : X = N_1 \geq N_2 \geq \ldots$ be an N-series of an object X of \mathcal{D}. Then each N_n is normal in X, and the quotient

$$\text{Gr}^\mathcal{N}_n(X) = N_n/N_{n+1}$$

is abelian,

so

$$\text{Gr}^\mathcal{N}(X) = \bigoplus_{n \geq 1} \text{Gr}^\mathcal{N}_n(X)$$

is a graded object in $\text{Ab}(\mathcal{D})$.
Associated graded object of an N-series

Let $\mathcal{N}: X = N_1 \geq N_2 \geq \ldots$ be an N-series of an object X of \mathcal{D}. Then each N_n is normal in X, and the quotient

$$\text{Gr}^\mathcal{N}(X) = N_n/N_{n+1}$$

is abelian,

so

$$\text{Gr}^\mathcal{N}(X) = \bigoplus_{n \geq 1} \text{Gr}_{n}^\mathcal{N}(X)$$

is a graded object in $\text{Ab}(\mathcal{D})$.

QUESTION: Does $\text{Gr}^\mathcal{N}(X)$ carry a natural global multilinear “multiplicative” structure relating its various components?
YES!!!!
MAIN THEOREM. Let $\mathcal{N} : X = N_1 \geq N_2 \geq \ldots$ be an N-series of an object X of \mathcal{D}. Then $\text{Gr}^\mathcal{N}(X)$ has a natural structure of graded algebra over
MAIN THEOREM. Let $\mathcal{N}: X = N_1 \geq N_2 \geq \ldots$ be an N-series of an object X of \mathcal{D}. Then $\text{Gr}^\mathcal{N}(X)$ has a natural structure of graded algebra over

- a multilinear functor operad $\text{LinOp}(\mathcal{D})$ on $\text{Ab}(\mathcal{D})$ whose underlying functors are $T_1(cr_n \text{Id}_\mathcal{D})$ (which in fact preserve all colimits in all variables, in particular are right-exact), for general semi-abelian categories \mathcal{D};
MAIN THEOREM. Let \(\mathcal{N} : X = N_1 \geq N_2 \geq \ldots \) be an \(N \)-series of an object \(X \) of \(\mathcal{D} \). Then \(\text{Gr}^{\mathcal{N}}(X) \) has a natural structure of graded algebra over

- a multilinear functor operad \(\text{LinOp}(\mathcal{D}) \) on \(\text{Ab}(\mathcal{D}) \) whose underlying functors are \(T_1(cr_n \text{Id}_\mathcal{D}) \) (which in fact preserve all colimits in all variables, in particular are right-exact), for general semi-abelian categories \(\mathcal{D} \);

- an operad in abelian groups \(\text{AbOp}(\mathcal{D}) \) if \(\mathcal{D} \) is a (semi-abelian) algebraic category, that is the category of models of an algebraic theory in the sense of Lawvere;
MAIN THEOREM. Let $\mathcal{N}: X = N_1 \geq N_2 \geq \ldots$ be an \mathcal{N}-series of an object X of \mathcal{D}. Then $\text{Gr}^\mathcal{N}(X)$ has a natural structure of graded algebra over

- a multilinear functor operad $\text{LinOp}(\mathcal{D})$ on $\text{Ab}(\mathcal{D})$ whose underlying functors are $T_{\underline{1}}(cr_n \text{id}_\mathcal{D})$ (which in fact preserve all colimits in all variables, in particular are right-exact), for general semi-abelian categories \mathcal{D};

- an operad in abelian groups $\text{AbOp}(\mathcal{D})$ if \mathcal{D} is a (semi-abelian) algebraic category, that is the category of models of an algebraic theory in the sense of Lawvere; here

$$\text{AbOp}(\mathcal{D})(n) = cr_n(U_{\text{Ab}} \circ \text{Gr}^{\gamma_n} \circ L)(1, \ldots, 1)$$

where $U_{\text{Ab}}: \text{Ab}(\mathcal{D}) \to \text{Ab}$ is the forgetful functor and $L: \text{FinSet} \to \mathcal{D}$ is the functor assigning to the finite set $k = \{1, \ldots, k\} \cong 1^+ k$ the canonical free object of rank k.
Examples

1. If \mathcal{D} is the category of groups, then $\text{AbOp}(\mathcal{D}) \otimes \mathbb{Q}$ is the Lie operad.
Examples

1. If \mathcal{D} is the category of groups, then $\text{AbOp}(\mathcal{D}) \otimes \mathbb{Q}$ is the Lie operad.

2. If \mathcal{D} is the category of loops, then $\text{AbOp}(\mathcal{D}) \otimes \mathbb{Q}$ is the Sabinin operad.
Examples

1. If \mathcal{D} is the category of groups, then $\text{AbOp}(\mathcal{D}) \otimes \mathbb{Q}$ is the Lie operad.

2. If \mathcal{D} is the category of loops, then $\text{AbOp}(\mathcal{D}) \otimes \mathbb{Q}$ is the Sabinin operad.

3. If \mathcal{D} is the category of \mathcal{P}-algebras then $\text{AbOp}(\mathcal{D}) = \mathcal{P}$.
Work in progress

Let \mathcal{D} be a semi-abelian algebraic category. A set operad $\mathcal{P}_{\mathcal{D}}$ is defined by $\mathcal{P}_{\mathcal{D}}(n) = \mathcal{D}(L(1), L(n))$ and operadic composition induced by composition in the category \mathcal{D}.
Work in progress

Let \mathcal{D} be a semi-abelian algebraic category. A set operad $\mathcal{P}_\mathcal{D}$ is defined by $\mathcal{P}_\mathcal{D}(n) = \mathcal{D}(L(1), L(n))$ and operadic composition induced by composition in the category \mathcal{D}.

For \mathbb{K} a field of characteristic 0, the set operad $\mathcal{P}_\mathcal{D}$ gives rise to an operad in \mathbb{K}-vector spaces $\mathbb{K}[\mathcal{P}_\mathcal{D}]$, by taking $\mathbb{K}[\mathcal{P}_\mathcal{D}](n)$ to be the vector space with basis $\mathcal{P}_\mathcal{D}(n)$.
Work in progress

Let \mathcal{D} be a semi-abelian algebraic category. A set operad $\mathcal{P}_\mathcal{D}$ is defined by $\mathcal{P}_\mathcal{D}(n) = \mathcal{D}(L(1), L(n))$ and operadic composition induced by composition in the category \mathcal{D}.

For \mathbb{K} a field of characteristic 0, the set operad $\mathcal{P}_\mathcal{D}$ gives rise to an operad in \mathbb{K}-vector spaces $\mathbb{K}[\mathcal{P}_\mathcal{D}]$, by taking $\mathbb{K}[\mathcal{P}_\mathcal{D}](n)$ to be the vector space with basis $\mathcal{P}_\mathcal{D}(n)$.

For an object X of \mathcal{C} the vector space $\mathbb{K}[|X|]$ with basis $|X|$ has the structure of an algebra over $\mathbb{K}[\mathcal{P}_\mathcal{D}]$; e.g. if $\mathcal{D} = Gr$, this is the structure of group algebra (including the antipode). Let $\mathbb{K}[X]$ be this “object algebra” of X.
Work in progress

Let \mathcal{D} be a semi-abelian algebraic category. A set operad $\mathcal{P}_\mathcal{D}$ is defined by $\mathcal{P}_\mathcal{D}(n) = \mathcal{D}(L(1), L(n))$ and operadic composition induced by composition in the category \mathcal{D}.

For K a field of characteristic 0, the set operad $\mathcal{P}_\mathcal{D}$ gives rise to an operad in K-vector spaces $K[\mathcal{P}_\mathcal{D}]$, by taking $K[\mathcal{P}_\mathcal{D}](n)$ to be the vector space with basis $\mathcal{P}_\mathcal{D}(n)$.

For an object X of \mathcal{C} the vector space $K[|X|]$ with basis $|X|$ has the structure of an algebra over $K[\mathcal{P}_\mathcal{D}]$; e.g. if $\mathcal{D} = \text{Gr}$, this is the structure of group algebra (including the antipode). Let $K[X]$ be this “object algebra” of X.

$K[|X|]$ also is a cocommutative and coassociative coalgebra defined by putting $\Delta(x) = x \otimes x$ for $x \in |X|$.
Work in progress

Let \mathcal{D} be a semi-abelian algebraic category. A set operad $\mathcal{P}_{\mathcal{D}}$ is defined by $\mathcal{P}_{\mathcal{D}}(n) = \mathcal{D}(L(1), L(n))$ and operadic composition induced by composition in the category \mathcal{D}.

For \mathbb{K} a field of characteristic 0, the set operad $\mathcal{P}_{\mathcal{D}}$ gives rise to an operad in \mathbb{K}-vector spaces $\mathbb{K}[\mathcal{P}_{\mathcal{D}}]$, by taking $\mathbb{K}[\mathcal{P}_{\mathcal{D}}](n)$ to be the vector space with basis $\mathcal{P}_{\mathcal{D}}(n)$.

For an object X of \mathcal{C} the vector space $\mathbb{K}[|X|]$ with basis $|X|$ has the structure of an algebra over $\mathbb{K}[\mathcal{P}_{\mathcal{D}}]$; e.g. if $\mathcal{D} = Gr$, this is the structure of group algebra (including the antipode). Let $\mathbb{K}[X]$ be this “object algebra” of X.

$\mathbb{K}[|X|]$ also is a cocommutative and coassociative coalgebra defined by putting $\Delta(x) = x \otimes x$ for $x \in |X|$. Thus $\mathbb{K}[X]$ is a (generalized) bialgebra which we call the “object bialgebra” of X.
Conjectures

1. Primitives conjecture. The triple

\[
\left(K[P_D], Com_K, \text{AbOp}(\mathcal{D}) \otimes K \right)
\]

is a good triple of operads in the sense of Loday. This in particular means that the subspace of primitive elements of the graded object bialgebras \(\text{Gr}(K[X]) \) has a canonical structure of an algebra over \(\text{AbOp}(\mathcal{D}) \otimes K \).
Conjectures

1. Primitives conjecture. The triple
\[
\left(\mathbb{K}[\mathcal{P}_D], \text{Com}_\mathbb{K}, \text{AbOp}(\mathcal{D}) \otimes \mathbb{K} \right)
\]
is a good triple of operads in the sense of Loday. This in particular means that the subspace of primitive elements of the graded object bialgebras \(\text{Gr}(\mathbb{K}[X]) \) has a canonical structure of an algebra over \(\text{AbOp}(\mathcal{D}) \otimes \mathbb{K} \).

2. Conjectural generalized Jennings theorem. The \(n \)-th dimension subobject \(D_{n,\mathbb{K}}(X) = X \cap (1_X + l^n_\mathbb{K}(X)) \) is
\[
D_{n,\mathbb{K}}(X) = \sqrt{\gamma_n(X)},
\]
for suitably (already) defined notions of augmentation filtration \(l^n_\mathbb{K}(X) \) of \(\mathbb{K}[X] \) and of isolator \(\sqrt{S} \) of \(S \leq X \).
Conjectures

1. Primitives conjecture. The triple

\[(\mathbb{K}[\mathcal{P}_D], \text{Com}_\mathbb{K}, \text{AbOp}(\mathcal{D}) \otimes \mathbb{K})\]

is a good triple of operads in the sense of Loday.

This in particular means that the subspace of primitive elements of the graded object bialgebras $\text{Gr}(\mathbb{K}[X])$ has a canonical structure of an algebra over $\text{AbOp}(\mathcal{D}) \otimes \mathbb{K}$.

2. Conjectural generalized Jennings theorem. The n-th dimension subobject $D_n,\mathbb{K}(X) = X \cap (1_X + I^n_\mathbb{K}(X))$ is

$$D_n,\mathbb{K}(X) = \sqrt{\gamma_n(X)},$$

for suitably (already) defined notions of augmentation filtration $I^n_\mathbb{K}(X)$ of $\mathbb{K}[X]$ and of isolator \sqrt{S} of $S \leq X$.

3. Conjectural generalized Quillen theorem. There is a natural isomorphism of graded $\mathbb{K}[\mathcal{P}_D]$-algebras

$$\text{Gr}(\mathbb{K}[X]) \cong \text{U}(\text{Gr}^{\gamma}(X) \otimes \mathbb{K}).$$
Conjectures-II

Suppose that \mathcal{D} is

- n-step nilpotent, which by definition means that the identity functor of \mathcal{D} is polynomial of degree $\leq n$, or equivalently, that all objects of \mathcal{D} are n-step nilpotent;
- n-radicable, which by definition means that the abelian group $\text{End}_{\mathcal{D}}(L(1)^{ab})$ is a $\mathbb{Z}[\frac{1}{2}, \ldots, \frac{1}{n}]$-module.

Then there is a (canonical?) equivalence of categories

$$\mathcal{D} \cong \text{Alg}(\text{AbOp}(\mathcal{D}))$$

This equivalence would also induce a generalized Baker-Campbell-Hausdorff formula (actually, one for each $n \geq 1$), expressing operations of arity n in \mathcal{D} in terms of the operations given by the operad $\text{AbOp}(\mathcal{D})$.
APPROACH

Use the theory of polynomial functors from \mathcal{D} to Ab which encodes them by kind of a “DNA”; the latter involves intricate both algebraic and combinatorical structures (e.g. non-linear pseudo-Mackey functors).

So far, this program is completely achieved only for $n = 2$ and all \mathcal{D} [H., Vespa; Defourneau];

for all $n \geq 2$, the necessary polynomial functor theory is achieved only for $\mathcal{D} = \text{Groups}$ and $\mathcal{D} = \text{Loops}$ (actually, also for $\mathcal{D} = \text{free finitely generated free algebras over a set-operad}$) [H., Pirashvili, Vespa].