On nontriviality of homotopy groups of the 2-sphere

S. O. Ivanov (joint with R. Mikhailov and J. Wu)

IMS, Singapore.
August 2015
• $\pi_n(S^2) \neq 0$.
• p-ALCS spectral sequence $E(X)$.
• Composition on $E(S^n)$ and the Leibniz’s rule.
• Conjecture about λ-filtration on $E(S^n)$.
• $\pi_n(S^2) \neq 0$.
• p-ALCS spectral sequence $E(X)$.
• Composition on $E(S^n)$ and the Leibniz’s rule.
• Conjecture about λ-filtration on $E(S^n)$.
- $\pi_n(S^2) \neq 0$.
- p-ALCS spectral sequence $E(X)$.
- Composition on $E(S^n)$ and the Leibniz’s rule.
- Conjecture about λ-filtration on $E(S^n)$.
\[\pi_n(S^2) \neq 0. \]

- p-ALCS spectral sequence $E(X)$.
- Composition on $E(S^n)$ and the Leibniz’s rule.
- Conjecture about λ-filtration on $E(S^n)$.
- $\pi_n(S^2) \neq 0$.
- p-ALCS spectral sequence $E(X)$.
- Composition on $E(S^m)$ and the Leibniz’s rule.
- Conjecture about λ-filtration on $E(S^m)$.
Known results

- The following theorem was proved Curtis using the lambda algebra analysing of Adams d- and e-invariants of the stabilization of either that element or its Hopf image.

Theorem (Curtis (1969))

\[
\begin{align*}
\pi_n(S^2) &\neq 0 \quad \text{if } n \neq 1 \mod 8, \ n \geq 3. \\
\pi_n(S^4) &\neq 0 \quad \text{if } n \geq 4.
\end{align*}
\]

- The same results on non-vanishing terms of the homotopy groups of spheres were obtained with the help of the composition method by M. Mimura, M. Mori and N. Oda in 1974.

- The following theorem was proved by M. Mahowald and M. Mori.

Theorem (1975)

\[
\pi_n(S^5) \neq 0 \quad \text{if } n \geq 5.
\]
Known results

- The following theorem was proved by Curtis using the lambda algebra analysing of Adams d- and e-invariants of the stabilization of either that element or its Hopf image.

<table>
<thead>
<tr>
<th>Theorem (Curtis (1969))</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(S^2) \neq 0$</td>
</tr>
<tr>
<td>$\pi_n(S^4) \neq 0$</td>
</tr>
</tbody>
</table>

- The same results on non-vanishing terms of the homotopy groups of spheres were obtained with the help of the composition method by M. Mimura, M. Mori and N. Oda in 1974.

- The following theorem was proved by M. Mahowald and M. Mori.

<table>
<thead>
<tr>
<th>Theorem (1975)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(S^5) \neq 0$</td>
</tr>
</tbody>
</table>
Known results

- The following theorem was proved by Curtis using the lambda algebra analysis of Adams d- and e-invariants of the stabilization of either that element or its Hopf image.

Theorem (Curtis (1969))

\[
\pi_n(S^2) \neq 0 \quad \text{if } n \not\equiv 1 \mod 8, \quad n \geq 3.
\]

\[
\pi_n(S^4) \neq 0 \quad \text{if } n \geq 4.
\]

- The same results on non-vanishing terms of the homotopy groups of spheres were obtained with the help of the composition method by M. Mimura, M. Mori, and N. Oda in 1974.

- The following theorem was proved by M. Mahowald and M. Mori.

Theorem (1975)

\[
\pi_n(S^5) \neq 0 \quad \text{if } n \geq 5.
\]
Known results

- The following theorem was proved by Curtis using the lambda algebra analysing of Adams d- and e-invariants of the stabilization of either that element or its Hopf image.

<table>
<thead>
<tr>
<th>Theorem (Curtis (1969))</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(S^2) \neq 0$ if $n \not\equiv 1 \mod 8$, $n \geq 3$.</td>
</tr>
<tr>
<td>$\pi_n(S^4) \neq 0$ if $n \geq 4$.</td>
</tr>
</tbody>
</table>

- The same results on non-vanishing terms of the homotopy groups of spheres were obtained with the help of the composition method by M. Mimura, M. Mori and N. Oda in 1974.

- The following theorem was proved by M. Mahowald and M. Mori.

<table>
<thead>
<tr>
<th>Theorem (1975)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi_n(S^5) \neq 0$ if $n \geq 5$.</td>
</tr>
</tbody>
</table>
Known results

- The following theorem was proved Curtis using the lambda algebra analysing of Adams d- and e-invariants of the stabilization of either that element or its Hopf image.

Theorem (Curtis (1969))

\[
\begin{align*}
\pi_n(S^2) &\neq 0 \quad \text{if } n \not\equiv 1 \mod 8, \ n \geq 3. \\
\pi_n(S^4) &\neq 0 \quad \text{if } n \geq 4.
\end{align*}
\]

- The same results on non-vanishing terms of the homotopy groups of spheres were obtained with the help of the composition method by M. Mimura, M. Mori and N. Oda in 1974.

- The following theorem was proved by M. Mahowald and M. Mori.

Theorem (1975)

\[
\pi_n(S^5) \neq 0 \quad \text{if } n \geq 5.
\]
Known results

- The following theorem was proved Curtis using the lambda algebra analysing of Adams d- and e-invariants of the stabilization of either that element or its Hopf image.

Theorem (Curtis (1969))

\[
\pi_n(S^2) \neq 0 \quad \text{if } n \neq 1 \mod 8, \ n \geq 3.
\]

\[
\pi_n(S^4) \neq 0 \quad \text{if } n \geq 4.
\]

- The same results on non-vanishing terms of the homotopy groups of spheres were obtained with the help of the composition method by M. Mimura, M. Mori and N. Oda in 1974.

- The following theorem was proved by M. Mahowald and M. Mori.

Theorem (1975)

\[
\pi_n(S^5) \neq 0 \quad \text{if } n \geq 5.
\]
Known results

Theorem (Curtis (1969))

\[\pi_n(S^2) \neq 0 \quad \text{if } n \not\equiv 1 \mod 8, \ n \geq 3. \]
\[\pi_n(S^4) \neq 0 \quad \text{if } n \geq 4. \]

Theorem (1975)

\[\pi_n(S^5) \neq 0 \quad \text{if } n \geq 5. \]

0 = \pi_4^S = \pi_{10}(S^6) = \pi_{11}(S^7) = \pi_{12}(S^8) = \ldots.
0 = \pi_5^S = \pi_{12}(S^7) = \pi_{13}(S^8) = \pi_{14}(S^9) = \ldots.

Question: is true that \(\pi_n(S^2) \neq 0 \) for all \(n \geq 2 \)?
Known results

Theorem (Curtis (1969))

<table>
<thead>
<tr>
<th>n</th>
<th>Condition</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>S^2</td>
<td>$n \not\equiv 1 \mod 8$, $n \geq 3$</td>
<td>$\pi_n(S^2) \neq 0$</td>
</tr>
<tr>
<td>S^4</td>
<td>$n \geq 4$</td>
<td>$\pi_n(S^4) \neq 0$</td>
</tr>
</tbody>
</table>

Theorem (1975)

$\pi_n(S^5) \neq 0$ if $n \geq 5$.

- $0 = \pi_4^S = \pi_{10}(S^6) = \pi_{11}(S^7) = \pi_{12}(S^8) = \ldots$
- $0 = \pi_5^S = \pi_{12}(S^7) = \pi_{13}(S^8) = \pi_{14}(S^9) = \ldots$

Question: Is true that $\pi_n(S^2) \neq 0$ for all $n \geq 2$?
Known results

Theorem (Curtis (1969))

\[\pi_n(S^2) \neq 0 \text{ if } n \not\equiv 1 \mod 8, \ n \geq 3. \]
\[\pi_n(S^4) \neq 0 \text{ if } n \geq 4. \]

Theorem (1975)

\[\pi_n(S^5) \neq 0 \text{ if } n \geq 5. \]

- \[0 = \pi_4^S = \pi_{10}(S^6) = \pi_{11}(S^7) = \pi_{12}(S^8) = \ldots. \]
- \[0 = \pi_5^S = \pi_{12}(S^7) = \pi_{13}(S^8) = \pi_{14}(S^9) = \ldots. \]

Question: is true that \(\pi_n(S^2) \neq 0 \) for all \(n \geq 2 \)?
Known results

Theorem (Curtis (1969))

\[\pi_n(S^2) \neq 0 \quad \text{if } n \not\equiv 1 \mod 8, \ n \geq 3. \]
\[\pi_n(S^4) \neq 0 \quad \text{if } n \geq 4. \]

Theorem (1975)

\[\pi_n(S^5) \neq 0 \quad \text{if } n \geq 5. \]

- \[0 = \pi_4^S = \pi_{10}(S^6) = \pi_{11}(S^7) = \pi_{12}(S^8) = \ldots. \]
- \[0 = \pi_5^S = \pi_{12}(S^7) = \pi_{13}(S^8) = \pi_{14}(S^9) = \ldots. \]

Question: is true that \(\pi_n(S^2) \neq 0 \) for all \(n \geq 2 \)?
The main theorem

\begin{align*}
\pi_n(S^2) \neq 0 \quad \text{for all } n \geq 2.
\end{align*}

After proving this result, we became aware of the paper of B. Gray “Unstable families related to the image of J” (1984).

Theorem 12 (e) of this article implies that \(\pi_{8k+1}(S^3) \neq 0 \).

Hence, this theorem was ’proved’ by B. Gray but was not stated.

The method that we used to prove the theorem is different from the method of B. Gray.
The main theorem

Theorem (R. Mikhailov, J. Wu, - (2015))

\[\pi_n(S^2) \neq 0 \quad \text{for all} \quad n \geq 2. \]

- After proving this result, we became aware of the paper of B. Gray "Unstable families related to the image of J" (1984).
- Theorem 12 (e) of this article implies that \(\pi_{8k+1}(S^3) \neq 0 \).
- Hence, this theorem was ’proved’ by B. Gray but was not stated.
- The method that we used to prove the theorem is different from the method of B. Gray.
The main theorem

Theorem (R. Mikhailov, J. Wu, - (2015))

$$\pi_n(S^2) \neq 0 \text{ for all } n \geq 2.$$

- After proving this result, we became aware of the paper of B. Gray “Unstable families related to the image of J” (1984).
- Theorem 12 (e) of this article implies that $$\pi_{8k+1}(S^3) \neq 0.$$
- Hence, this theorem was 'proved' by B. Gray but was not stated.
- The method that we used to prove the theorem is different from the method of B. Gray.
The main theorem

Theorem (R. Mikhailov, J. Wu, - (2015))

\[\pi_n(S^2) \neq 0 \text{ for all } n \geq 2. \]

- After proving this result, we became aware of the paper of B. Gray “Unstable families related to the image of J” (1984).
- Theorem 12 (e) of this article implies that \(\pi_{8k+1}(S^3) \neq 0 \).
- Hence, this theorem was ‘proved’ by B. Gray but was not stated.
- The method that we used to prove the theorem is different from the method of B. Gray.
The main theorem

Theorem (R. Mikhailov, J. Wu, - (2015))

\[\pi_n(S^2) \neq 0 \quad \text{for all } n \geq 2. \]

- After proving this result, we became aware of the paper of B. Gray “Unstable families related to the image of \(J \)” (1984).
- Theorem 12 (e) of this article implies that \(\pi_{8k+1}(S^3) \neq 0 \).
- Hence, this theorem was ’proved’ by B. Gray but was not stated.
- The method that we used to prove the theorem is different from the method of B. Gray.
The main theorem

- We study \((p)\pi_n(S^3)\) for \(p \neq 2\).

Lemma

For an odd prime \(p\) and \(k \geq 2\)

\[(p)\pi_{2(p-1)k+1}(S^3) \neq 0.\]

- \((3)\pi_{4k+1}(S^3) \neq 0\)
- \((5)\pi_{8k+1}(S^3) \neq 0\)
- \(\mathbb{Z}/15 \hookrightarrow \pi_{8k+1}(S^3)\)

The main theorem

- We study \((p)\pi_n(S^3)\) for \(p \neq 2\).

Lemma

For an odd prime \(p\) and \(k \geq 2\)

\((p)\pi_{2(p-1)k+1}(S^3) \neq 0\).

- \((3)\pi_{4k+1}(S^3) \neq 0\)
- \((5)\pi_{8k+1}(S^3) \neq 0\)
- \(\mathbb{Z}/15 \hookrightarrow \pi_{8k+1}(S^3)\)

The main theorem

- We study \((p)\pi_n(S^3)\) for \(p \neq 2\).

Lemma

For an odd prime \(p\) and \(k \geq 2\)

\[(p)\pi_{2(p-1)k+1}(S^3) \neq 0.\]

- \((3)\pi_{4k+1}(S^3) \neq 0\)
- \((5)\pi_{8k+1}(S^3) \neq 0\)
- \(\mathbb{Z}/15 \hookrightarrow \pi_{8k+1}(S^3)\)

The main theorem

- We study \((p)\pi_n(S^3)\) for \(p \neq 2\).

Lemma

For an odd prime \(p\) and \(k \geq 2\)

\((p)\pi_{2(p-1)k+1}(S^3) \neq 0\).

- \((3)\pi_{4k+1}(S^3) \neq 0\)
- \((5)\pi_{8k+1}(S^3) \neq 0\)
- \(\mathbb{Z}/15 \hookrightarrow \pi_{8k+1}(S^3)\)

The main theorem

- We study \((p)\pi_n(S^3)\) for \(p \neq 2\).

Lemma

For an odd prime \(p\) and \(k \geq 2\)

\[(p)\pi_{2(p-1)k+1}(S^3) \neq 0.\]

- \((3)\pi_{4k+1}(S^3) \neq 0\)
- \((5)\pi_{8k+1}(S^3) \neq 0\)
- \(\mathbb{Z}/15 \hookrightarrow \pi_{8k+1}(S^3)\)

The main theorem

- We study \((p)\pi_n(S^3)\) for \(p \neq 2\).

Lemma

For an odd prime \(p\) and \(k \geq 2\)

\[(p)\pi_{2(p-1)k+1}(S^3) \neq 0.

- \((3)\pi_{4k+1}(S^3) \neq 0\)
- \((5)\pi_{8k+1}(S^3) \neq 0\)
- \(\mathbb{Z}/15 \hookrightarrow \pi_{8k+1}(S^3)\)

The main theorem

- We study \((p)\pi_n(S^3)\) for \(p \neq 2\).

Lemma

For an odd prime \(p\) and \(k \geq 2\)

\[
(p)\pi_{2(p-1)k+1}(S^3) \neq 0.
\]

- \((3)\pi_{4k+1}(S^3) \neq 0\)
- \((5)\pi_{8k+1}(S^3) \neq 0\)
- \(\mathbb{Z}/15 \hookrightarrow \pi_{8k+1}(S^3)\)

A **central series** of G is a sequence of normal subgroups
\[G \supseteq \ldots G_{n-1} \supseteq G_n \supseteq G_{n+1} \supseteq \ldots \]
such that $G_n/G_{n+1} \subseteq \text{Cent}(G/G_{n+1})$.

- A central series is **p-central series** if G_n/G_{n+1} is \mathbb{F}_p-vector space.
- The **lower central series** of G is given by
 \[G = \gamma_1 G \supseteq \gamma_2 G \supseteq \gamma_3 G \supseteq \ldots, \]
 where $\gamma_{n+1} G = [G, \gamma_n G]$.
- If $H \triangleleft G$, then $H^p = \langle \{ h^p \mid h \in H \} \rangle^G$.
- The **p-lower central series** of G:
 \[G = \gamma_1^{[p]} G \supseteq \gamma_2^{[p]} G \supseteq \gamma_3^{[p]} G \supseteq \ldots, \]
 where $\gamma_{n+1}^{[p]} G = [G, \gamma_n^{[p]} G] \cdot (\gamma_n^{[p]} G)^p$.
- The **p-accelerated lower central series (p-ALCS)** of G:
 \[G = \gamma_1^{[p]} G \supseteq \gamma_p^{[p]} G \supseteq \gamma_{p^2}^{[p]} G \supseteq \ldots, \]
A central series of G is a sequence of normal subgroups
$$G \supseteq \ldots G_{n-1} \supseteq G_n \supseteq G_{n+1} \supseteq \ldots$$
such that $G_n/G_{n+1} \subseteq \text{Cent}(G/G_{n+1})$.

A central series is p-central series if G_n/G_{n+1} is \mathbb{F}_p-vector space.

The lower central series of G is given by
$$G = \gamma_1 G \supseteq \gamma_2 G \supseteq \gamma_3 G \supseteq \ldots,$$
where $\gamma_{n+1} G = [G, \gamma_n G]$.

If $H \triangleleft G$, then $H^p = \langle \{h^p \mid h \in H\} \rangle^G$.

The p-lower central series of G:
$$G = \gamma_1^{[p]} G \supseteq \gamma_2^{[p]} G \supseteq \gamma_3^{[p]} G \supseteq \ldots,$$
where $\gamma_{n+1}^{[p]} G = [G, \gamma_n^{[p]} G] \cdot (\gamma_n^{[p]} G)^p$.

The p-accelerated lower central series (p-ALCS) of G:
$$G = \gamma_1^{[p]} G \supseteq \gamma_p^{[p]} G \supseteq \gamma_{p^2}^{[p]} G \supseteq \ldots,$$
A central series of G is a sequence of normal subgroups
\[G \supseteq \ldots G_{n-1} \supseteq G_n \supseteq G_{n+1} \supseteq \ldots \]
such that $G_n/G_{n+1} \subseteq \text{Cent}(G/G_{n+1})$.

A central series is p-central series if G_n/G_{n+1} is \mathbb{F}_p-vector space.

The lower central series of G is given by
\[G = \gamma_1 G \supseteq \gamma_2 G \supseteq \gamma_3 G \supseteq \ldots, \]
where $\gamma_{n+1} G = [G, \gamma_n G]$.

If $H \triangleleft G$, then $H^p = \langle \{ h^p \mid h \in H \} \rangle^G$.

The p-lower central series of G:
\[G = \gamma_1^{[p]} G \supseteq \gamma_2^{[p]} G \supseteq \gamma_3^{[p]} G \supseteq \ldots, \]
where $\gamma_{n+1}^{[p]} G = [G, \gamma_n^{[p]} G] \cdot (\gamma_n^{[p]} G)^p$.

The p-accelerated lower central series (p-ALCS) of G:
\[G = \gamma_1^{[p]} G \supseteq \gamma_{p}^{[p]} G \supseteq \gamma_{p^2}^{[p]} G \supseteq \ldots, \]
A central series of G is a sequence of normal subgroups

$$G \supseteq \ldots G_{n-1} \supseteq G_n \supseteq G_{n+1} \supseteq \ldots$$

such that $G_n/G_{n+1} \subseteq \operatorname{Cent}(G/G_{n+1})$.

A central series is p-central series if G_n/G_{n+1} is \mathbb{F}_p-vector space.

The lower central series of G is given by

$$G = \gamma_1 G \supseteq \gamma_2 G \supseteq \gamma_3 G \supseteq \ldots,$$

where $\gamma_{n+1} G = [G, \gamma_n G]$.

If $H \lhd G$, then $H^p = \langle \{h^p \mid h \in H\} \rangle^G$.

The p-lower central series of G:

$$G = \gamma_1^{[p]} G \supseteq \gamma_2^{[p]} G \supseteq \gamma_3^{[p]} G \supseteq \ldots,$$

where $\gamma_{n+1}^{[p]} G = [G, \gamma_n^{[p]} G] \cdot (\gamma_n^{[p]} G)^p$.

The p-accelerated lower central series (p-ALCS) of G:

$$G = \gamma_1^{[p]} G \supseteq \gamma_p^{[p]} G \supseteq \gamma_{p^2}^{[p]} G \supseteq \ldots,$$
A central series of G is a sequence of normal subgroups

$$G \supseteq \ldots G_{n-1} \supseteq G_n \supseteq G_{n+1} \supseteq \ldots$$

such that $G_n/G_{n+1} \subseteq \text{Cent}(G/G_{n+1})$.

A central series is p-central series if G_n/G_{n+1} is \mathbb{F}_p-vector space.

The lower central series of G is given by

$$G = \gamma_1 G \supseteq \gamma_2 G \supseteq \gamma_3 G \supseteq \ldots,$$

where $\gamma_{n+1} G = [G, \gamma_n G]$.

If $H \lhd G$, then $H^p = \langle \{ h^p \mid h \in H \} \rangle^G$.

The p-lower central series of G:

$$G = \gamma_1^{[p]} G \supseteq \gamma_2^{[p]} G \supseteq \gamma_3^{[p]} G \supseteq \ldots,$$

where $\gamma_{n+1}^{[p]} G = [G, \gamma_n^{[p]} G] \cdot (\gamma_n^{[p]} G)^p$.

The p-accelerated lower central series (p-ALCS) of G:

$$G = \gamma_1^{[p]} G \supseteq \gamma_p^{[p]} G \supseteq \gamma_{p^2}^{[p]} G \supseteq \ldots,$$
A **central series** of G is a sequence of normal subgroups

$$G \supseteq \ldots \supseteq G_{n-1} \supseteq G_n \supseteq G_{n+1} \supseteq \ldots$$

such that $G_n/G_{n+1} \subseteq \text{Cent}(G/G_{n+1})$.

A central series is **p-central series** if G_n/G_{n+1} is \mathbb{F}_p-vector space.

The **lower central series** of G is given by

$$G = \gamma_1 G \supseteq \gamma_2 G \supseteq \gamma_3 G \supseteq \ldots,$$

where $\gamma_{n+1} G = [G, \gamma_n G]$.

If $H \triangleleft G$, then $H^p = \langle \{h^p \mid h \in H\} \rangle^G$.

The **p-lower central series** of G:

$$G = \gamma^{[p]}_1 G \supseteq \gamma^{[p]}_2 G \supseteq \gamma^{[p]}_3 G \supseteq \ldots,$$

where $\gamma^{[p]}_{n+1} G = [G, \gamma^{[p]}_n G] \cdot (\gamma^{[p]}_n G)^p$.

The **p-accelerated lower central series (p-ALCS)** of G:

$$G = \gamma^{[p]}_1 G \supseteq \gamma^{[p]}_p G \supseteq \gamma^{[p]}_{p^2} G \supseteq \ldots,$$
A **monad** on a category \mathcal{C} is a triple (\mathcal{M}, m, e), where $\mathcal{M} : \mathcal{C} \to \mathcal{C}$, $m : \mathcal{M}^2 \to \mathcal{M}$, $e : \text{id}_\mathcal{C} \to \mathcal{M}$, such that

$$
\begin{array}{ccc}
\mathcal{M}^3 & \xrightarrow{\mathcal{M}m} & \mathcal{M}^2 \\
\mathcal{M}m & \downarrow & m \\
\mathcal{M}^2 & \xrightarrow{m} & \mathcal{M}
\end{array}
\quad
\begin{array}{ccc}
\mathcal{M} & \xrightarrow{\mathcal{M}e} & \mathcal{M}^2 \quad \mathcal{M}e & \xleftarrow{\mathcal{M}e} & \mathcal{M} \\
m & \downarrow & m \\
\mathcal{M}^2 & \xleftarrow{m} & \mathcal{M}
\end{array}
$$

Kleisli composition:

$$
\otimes : \mathcal{C}(b, \mathcal{M}c) \times \mathcal{C}(a, \mathcal{M}b) \longrightarrow \mathcal{C}(a, \mathcal{M}c).
$$

$$
g \otimes f = m_c \circ \mathcal{M}g \circ f
$$

If (\mathcal{M}, m, e) is a monad on the homotopy category then

$$
\otimes : \pi_n(\mathcal{M}X) \times \pi_m(\mathcal{M}S^n) \longrightarrow \pi_m(\mathcal{M}X).
$$
A **monad** on a category \(\mathcal{C} \) is a triple \((\mathcal{M}, m, e)\), where

\[
\mathcal{M} : \mathcal{C} \to \mathcal{C}, \quad m : \mathcal{M}^2 \to \mathcal{M}, \quad e : \text{Id}_\mathcal{C} \to \mathcal{M}.
\]

such that

\[
\begin{array}{ccc}
\mathcal{M}^3 & \xrightarrow{m \circ \mathcal{M}} & \mathcal{M}^2 \\
\mathcal{M} \circ m & \downarrow & \mathcal{M} \\
\mathcal{M}^2 & \xrightarrow{m} & \mathcal{M}
\end{array}
\]

\[
\begin{array}{ccc}
\mathcal{M} & \xrightarrow{e \circ \mathcal{M}} & \mathcal{M}^2 \\
\mathcal{M} \circ e & \downarrow & \mathcal{M} \\
\mathcal{M}^2 & \xrightarrow{m} & \mathcal{M}
\end{array}
\]

Kleisli composition:

\[
\circ : \mathcal{C}(b, \mathcal{M}c) \times \mathcal{C}(a, \mathcal{M}b) \to \mathcal{C}(a, \mathcal{M}c).
\]

\[
g \circ f = m_c \circ \mathcal{M}g \circ f
\]

- If \((\mathcal{M}, m, e)\) is a monad on the homotopy category then

\[
\circ : \pi_n(\mathcal{M}X) \times \pi_m(\mathcal{M}S^n) \to \pi_m(\mathcal{M}X).
\]
A **monad** on a category \mathcal{C} is a triple (\mathcal{M}, m, e), where

$$
\mathcal{M} : \mathcal{C} \to \mathcal{C}, \quad m : \mathcal{M}^2 \to \mathcal{M}, \quad e : \text{id}_\mathcal{C} \to \mathcal{M}.
$$

such that

\[
\begin{array}{ccc}
\mathcal{M}^3 & \xrightarrow{\text{m} \circ \mathcal{M}} & \mathcal{M}^2 \\
\downarrow \text{m} \circ \mathcal{M} & & \downarrow \text{m} \\
\mathcal{M}^2 & \xrightarrow{\text{m}} & \mathcal{M} \\
\end{array}
\]

Kleisli composition:

$$
\circ : \mathcal{C}(b, \mathcal{M}c) \times \mathcal{C}(a, \mathcal{M}b) \to \mathcal{C}(a, \mathcal{M}c).
$$

$$
g \circ f = m_c \circ \mathcal{M}g \circ f
$$

If (\mathcal{M}, m, e) is a monad on the homotopy category then

$$
\circ : \pi_n(\mathcal{M}X) \times \pi_m(\mathcal{M}S^n) \to \pi_m(\mathcal{M}X).
$$
Consider the monad

\[F : \text{Sets}_\ast \longrightarrow \text{Sets}_\ast , \]

where \(FX \) is the group generated by \(X \) with the relation \(\ast = 1 \).

If \(X \) is a pointed simplicial set we define \(FX \) dimensionwise.

\[F : \text{sSets}_\ast \longrightarrow \text{sSets}_\ast . \]

\(FX \) is called Milnor’s construction of \(X \). \(|FX| \simeq \Omega \Sigma |X| \).

Similarly we define the monad

\[\mathcal{L} : \text{sSets}_\ast \longrightarrow \text{sSets}_\ast , \]

where \(\mathcal{L}X \) is the restricted Lie algebra over \(\mathbb{F}_p \) generated by \(X \) with the relation \(\ast = 0 \).

\[\bigoplus_i \gamma_i^{[p]} FX / \gamma_{i+1}^{[p]} FX \simeq \mathcal{L}X. \]
Consider the monad

\[F : \text{Sets}_\ast \longrightarrow \text{Sets}_\ast , \]

where \(FX \) is the group generated by \(X \) with the relation \(\ast = 1 \).

If \(X \) is a pointed simplicial set we define \(FX \) dimensionwise.

\[F : \text{sSets}_\ast \longrightarrow \text{sSets}_\ast . \]

\(FX \) is called Milnor’s construction of \(X \). \(|FX| \simeq \Omega \Sigma |X| \).

Similarly we define the monad

\[\mathcal{L} : \text{sSets}_\ast \longrightarrow \text{sSets}_\ast , \]

where \(\mathcal{L}X \) is the restricted Lie algebra over \(\mathbb{F}_p \) generated by \(X \) with the relation \(\ast = 0 \).

\[\bigoplus_i \gamma_i^{[p]} FX / \gamma_{i+1}^{[p]} FX \simeq \mathcal{L}X. \]
Consider the monad

\[F : \text{Sets}_* \longrightarrow \text{Sets}_*, \]

where \(FX \) is the group generated by \(X \) with the relation \(\ast = 1 \).

If \(X \) is a pointed simplicial set we define \(FX \) dimensionwise.

\[F : \text{sSets}_* \longrightarrow \text{sSets}_*. \]

\(FX \) is called Milnor’s construction of \(X \). \(|FX| \simeq \Omega \Sigma |X|\).

Similarly we define the monad

\[\mathcal{L} : \text{sSets}_* \longrightarrow \text{sSets}_*, \]

where \(\mathcal{L}X \) is the restricted Lie algebra over \(\mathbb{F}_p \) generated by \(X \) with the relation \(\ast = 0 \).

\[\bigoplus_i \gamma_i[p] FX / \gamma_{i+1}[p] FX \simeq \mathcal{L}X. \]
Consider the monad

$$F : \text{Sets}_* \longrightarrow \text{Sets}_*,$$

where FX is the group generated by X with the relation $\ast = 1$.

If X is a pointed simplicial set we define FX dimensionwise.

$$F : \text{sSets}_* \longrightarrow \text{sSets}_*.$$

FX is called Milnor’s construction of X. $|FX| \simeq \Omega\Sigma|X|$.

Similarly we define the monad

$$\mathcal{L} : \text{sSets}_* \longrightarrow \text{sSets}_*,$$

where $\mathcal{L}X$ is the restricted Lie algebra over \mathbb{F}_p generated by X with the relation $\ast = 0$.

$$\bigoplus_i \gamma_i^{[p]} FX/\gamma_{i+1}^{[p]} FX \simeq \mathcal{L}X.$$
p-ALCS-spectral sequence

- Consider the monad

$$F : \text{Sets}_\ast \rightarrow \text{Sets}_\ast,$$

where FX is the group generated by X with the relation $\ast = 1$.

- If X is a pointed simplicial set we define FX dimensionwise.

$$F : \text{sSets}_\ast \rightarrow \text{sSets}_\ast.$$

- FX is called **Milnor's construction** of X. $|FX| \simeq \Omega \Sigma |X|$.

- Similarly we define the monad

$$\mathcal{L} : \text{sSets}_\ast \rightarrow \text{sSets}_\ast,$$

where $\mathcal{L}X$ is the restricted Lie algebra over \mathbb{F}_p generated by X with the relation $\ast = 0$.

$$\bigoplus_i \gamma_i^{[p]} FX / \gamma_{i+1}^{[p]} FX \cong \mathcal{L}X.$$
Consider the monad

$$F : \text{Sets}_\ast \longrightarrow \text{Sets}_\ast,$$

where FX is the group generated by X with the relation $\ast = 1$.

If X is a pointed simplicial set we define FX dimensionwise.

$$F : \text{sSets}_\ast \longrightarrow \text{sSets}_\ast.$$

FX is called Milnor’s construction of X. $|FX| \simeq \Omega \Sigma |X|$. Similarly we define the monad

$$\mathcal{L} : \text{sSets}_\ast \longrightarrow \text{sSets}_\ast,$$

where $\mathcal{L}X$ is the restricted Lie algebra over \mathbb{F}_p generated by X with the relation $\ast = 0$.

$$\bigoplus_i \gamma_i^{[p]} FX / \gamma_{i+1}^{[p]} FX \simeq \mathcal{L}X.$$
For a simplicial set X we denote
\[\pi_i(X, p) = \pi_i(X) / (\text{torsion prime to } p). \]

If X is a reduced simplicial set, then there is a spectral sequence called mod p accelerated lower spectral sequence of X:

\[E(X) \Rightarrow \pi_*(\Sigma X, p), \quad E^1(X) = \pi_* \left(\frac{\gamma_{p^*[p]} F X}{\gamma_{p^{*+1}} F X} \right). \]

\[E^1(S^{2n}) = \pi_* (L_{p^*} S^{2n}), \quad E(S^{2n}) \Rightarrow \pi_*(S^{2n+1}, p). \]

There is a natural suspension homomorphism on the level of the spectral sequences: $\sigma : E(X) \rightarrow E(\Sigma X)$.
For a simplicial set X we denote
$$\pi_i(X, p) = \pi_i(X)/(\text{torsion prime to } p).$$

If X is a reduced simplicial set, then there is a spectral sequence called mod p accelerated lower spectral sequence of X:

$$E(X) \Rightarrow \pi_*(\Sigma X, p), \quad E^1(X) = \pi_* \left(\frac{\gamma_p^*[p] FX}{\gamma_p^{p+1} [p] FX} \right).$$

$$E^1(S^{2n}) = \pi_* (\mathcal{L}_p S^{2n}), \quad E(S^{2n}) \Rightarrow \pi_*(S^{2n+1}, p).$$

There is a natural suspension homomorphism on the level of the spectral sequences: $\sigma : E(X) \longrightarrow E(\Sigma X)$.
For a simplicial set X we denote

$$\pi_i(X, p) = \pi_i(X) / \text{torsion prime to } p.$$

If X is a reduced simplicial set, then there is a spectral sequence called mod p accelerated lower spectral sequence of X:

$$E(X) \Rightarrow \pi_* (\Sigma X, p), \quad E^1(X) = \pi_* \left(\frac{\gamma_p[X]}{\gamma_{p+1}} FX \right).$$

$$E^1(S^{2n}) = \pi_* (L_{p^*} S^{2n}), \quad E(S^{2n}) \Rightarrow \pi_* (S^{2n+1}, p).$$

There is a natural suspension homomorphism on the level of the spectral sequences: $\sigma : E(X) \longrightarrow E(\Sigma X)$.
For a simplicial set X we denote
$$\pi_i(X, p) = \pi_i(X)/(\text{torsion prime to } p).$$

If X is a reduced simplicial set, then there is a spectral sequence called mod p accelerated lower spectral sequence of X:

$$E(X) \Rightarrow \pi_*(\Sigma X, p), \quad E^1(X) = \pi_* \left(\frac{\gamma_p^*[p]FX}{\gamma_p^{[p]}FX} \right).$$

$$E^1(S^{2n}) = \pi_* (L_p^* S^{2n}), \quad E(S^{2n}) \Rightarrow \pi_*(S^{2n+1}, p).$$

There is a natural suspension homomorphism on the level of the spectral sequences: $\sigma : E(X) \longrightarrow E(\Sigma X)$.
For a simplicial set X we denote

$$\pi_i(X, p) = \pi_i(X)/(\text{torsion prime to } p).$$

If X is a reduced simplicial set, then there is a spectral sequence called mod p accelerated lower spectral sequence of X:

$$E(X) \Rightarrow \pi_*(\Sigma X, p), \quad E^1(X) = \pi_* \left(\frac{\gamma_{[p]} F_X}{\gamma_{[p]}^{+1} F_X} \right).$$

$$E^1(S^{2n}) = \pi_* (\mathcal{L}_{p^*} S^{2n}), \quad E(S^{2n}) \Rightarrow \pi_*(S^{2n+1}, p).$$

There is a natural suspension homomorphism on the level of the spectral sequences: $\sigma : E(X) \longrightarrow E(\Sigma X)$.
For a simplicial set X we denote
\[\pi_i(X, p) = \pi_i(X)/(\text{torsion prime to } p). \]

If X is a reduced simplicial set, then there is a spectral sequence called mod p accelerated lower spectral sequence of X:

\[E(X) \Rightarrow \pi_*(\Sigma X, p), \quad E^1(X) = \pi_* \left(\frac{\gamma^{[p]}_p FX}{\gamma^{[p]}_p p^{*+1} FX} \right). \]

\[E^1(S^{2n}) = \pi_*(\mathcal{L}_p^* S^{2n}), \quad E(S^{2n}) \Rightarrow \pi_*(S^{2n+1}, p). \]

There is a natural suspension homomorphism on the level of the spectral sequences: $\sigma: E(X) \longrightarrow E(\Sigma X)$.

\[p-\text{ALCS-spectral sequence} \]
Kleisli composition and Leibniz’s rule

- The structure of a monad on \mathcal{L} induces the composition

\[\circlearrowleft: \pi_n(\mathcal{L}^p_i S^k) \times \pi_m(\mathcal{L}^p_j S^m) \rightarrow \pi_m(\mathcal{L}^{p+i} S^k) \]

- If we define $E(S^*) = \bigoplus E(S^n)$, then we get

\[\circlearrowleft: E^1(S^*) \times E^1(S^*) \rightarrow E^1(S^*) \]

Theorem (R. Mikhailov, J. Wu, - (2015))

Then the Kleisli composition \circlearrowleft induces a well-defined map

\[\circlearrowleft: E^r(S^*) \times E^r(S^*) \rightarrow E^r(S^*) \]

and for elements $a, b \in E^r(S^*)$ the following derivation-like rule holds

\[d^r(a \circlearrowleft \sigma b) = \pm d^r a \circlearrowleft b + a \circlearrowleft d^r \sigma b. \]
The structure of a monad on L induces the composition

$$\odot : \pi_n(L_{p^i} S^k) \times \pi_m(L_{p^j} S^m) \rightarrow \pi_m(L_{p^{i+j}} S^k)$$

If we define $E(S^*) = \bigoplus E(S^n)$, then we get

$$\odot : E^1(S^*) \times E^1(S^*) \rightarrow E^1(S^*).$$

Theorem (R. Mikhailov, J. Wu, - (2015))

Then the Kleisli composition \odot induces a well-defined map

$$\odot : E^r(S^*) \times E^r(S^*) \rightarrow E^r(S^*),$$

and for elements $a, b \in E^r(S^*)$ the following derivation-like rule holds

$$d^r(a \odot \sigma b) = \pm d^r a \odot b + a \odot d^r \sigma b.$$
Kleisli composition and Leibniz’s rule

- The structure of a monad on \(\mathcal{L} \) induces the composition

\[
\odot : \pi_n(\mathcal{L}_{p^i} S^k) \times \pi_m(\mathcal{L}_{p^j} S^n) \rightarrow \pi_m(\mathcal{L}_{p^{i+j}} S^k)
\]

- If we define \(E(S^*) = \bigoplus E(S^n) \), then we get

\[
\odot : E^1(S^*) \times E^1(S^*) \rightarrow E^1(S^*) .
\]

Theorem (R. Mikhailov, J. Wu, - (2015))

Then the Kleisli composition \(\odot \) induces a well-defined map

\[
\odot : E^r(S^*) \times E^r(S^*) \rightarrow E^r(S^*),
\]

and for elements \(a, b \in E^r(S^*) \) the following derivation-like rule holds

\[
d^r(a \odot \sigma b) = \pm d^r a \odot b + a \odot d^r \sigma b.
\]
The structure of a monad on \mathcal{L} induces the composition

$$\odot : \pi_n(\mathcal{L}^i p S^k) \times \pi_m(\mathcal{L}^j p S^m) \longrightarrow \pi_m(\mathcal{L}^i p_{i+j} S^k)$$

If we define $E(S^*) = \bigoplus E(S^n)$, then we get

$$\odot : E^1(S^*) \times E^1(S^*) \longrightarrow E^1(S^*).$$

Theorem (R. Mikhailov, J. Wu, - (2015))

Then the Kleisli composition \odot induces a well-defined map

$$\odot : E^r(S^*) \times E^r(S^*) \longrightarrow E^r(S^*)$$

and for elements $a, b \in E^r(S^*)$ the following derivation-like rule holds

$$d^r(a \odot \sigma b) = \pm d^r a \odot b + a \odot d^r \sigma b.$$
Lambda algebra

- Let \(p \) be a fixed odd prime.
- \([p] \Lambda = \Lambda\) is an \(\mathbb{F}_p\)-algebra.
- Generators: \(\lambda_1, \lambda_2, \lambda_3, \ldots, \) and \(\mu_0, \mu_1, \mu_2, \ldots \).
- \(a(k, j) := (-1)^j (p-1)^{(k-j)-1} (k-j)/j, \quad b(k, j) := (-1)^j (p-1)^{(k-j)} (k-j)/j \in \mathbb{F}_p. \)
- Relations:
 \[
 \lambda_i \lambda_{pi+k} = \sum_{j=0}^{k-1} \binom{k-1}{j} \frac{a(k, j)}{p^j} \lambda_{i+k-j} \lambda_{pi+j},
 \]
 \[
 \lambda_i \mu_{pi+k} = \sum_{j=0}^{k-1} \binom{k-1}{j} \frac{a(k, j)}{p^j} \lambda_{i+k-j} \mu_{pi+j} + \sum_{j=0}^{k-1} \binom{k-1}{j} \frac{b(k, j)}{p^j} \mu_{i+k-j} \lambda_{pi+j},
 \]
 \[
 \mu_i \lambda_{pi+k+1} = \sum_{j=0}^{k-1} \binom{k-1}{j} \frac{a(k, j)}{p^j} \mu_{i+k-j} \lambda_{pi+j+1},
 \]
 \[
 \mu_i \mu_{pi+k+1} = \sum_{j=0}^{k-1} \binom{k-1}{j} \frac{a(k, j)}{p^j} \mu_{i+k-j} \mu_{pi+j+1}.
 \]
- \(\nu_i \in \{ \lambda_i, \mu_i \}. \)
- A monomial \(\nu_{i_1} \ldots \nu_{i_l} \) is admissible if \(i_{k+1} \leq pi_k - 1 \) whenever \(\nu_{i_k} = \lambda_{i_k} \) and if \(i_{k+1} \leq pi_k \) whenever \(\nu_{i_k} = \mu_{i_k} \).
- The set of admissible monomials is a basis of \(\Lambda \).
Let p be a fixed odd prime.

$[p] \Lambda = \Lambda$ is an \mathbb{F}_p-algebra.

Generators: $\lambda_1, \lambda_2, \lambda_3, \ldots$, and $\mu_0, \mu_1, \mu_2, \ldots$.

$a(k, j) := (-1)^{j+1} \binom{p-1}{k-j}^{-1}$, $b(k, j) := (-1)^j \binom{p-1}{k-j}^{-1} \in \mathbb{F}_p$.

Relations:

\[
\lambda_i \lambda_{pi+k} = \sum_{j=0}^{\left\lfloor \frac{k}{p} - \frac{k+1}{p} \right\rfloor} a(k, j) \lambda_{i+k-j} \lambda_{pi+j},
\]

\[
\lambda_i \mu_{pi+k} = \sum_{j=0}^{\left\lfloor \frac{k}{p} - \frac{k+1}{p} \right\rfloor} a(k, j) \lambda_{i+k-j} \mu_{pi+j} + \sum_{j=0}^{\left\lfloor \frac{k}{p} \right\rfloor} b(k, j) \mu_{i+k-j} \lambda_{pi+j},
\]

\[
\mu_i \lambda_{pi+k+1} = \sum_{j=0}^{\left\lfloor \frac{k}{p} - \frac{k+1}{p} \right\rfloor} a(k, j) \mu_{i+k-j} \lambda_{pi+j+1},
\]

\[
\mu_i \mu_{pi+k+1} = \sum_{j=0}^{\left\lfloor \frac{k}{p} - \frac{k+1}{p} \right\rfloor} a(k, j) \mu_{i+k-j} \mu_{pi+j+1}.
\]

$\nu_i \in \{\lambda_i, \mu_i\}$.

A monomial $\nu_{i_1} \ldots \nu_{i_l}$ is admissible if $i_{k+1} \leq pi_k - 1$ whenever $\nu_{i_k} = \lambda_{i_k}$ and if $i_{k+1} \leq pi_k$ whenever $\nu_{i_k} = \mu_{i_k}$.

The set of admissible monomials is a basis of Λ.
Let p be a fixed odd prime.

$[p] \Lambda = \Lambda$ is an \mathbb{F}_p-algebra.

Generators: $\lambda_1, \lambda_2, \lambda_3, \ldots$, and $\mu_0, \mu_1, \mu_2, \ldots$.

$a(k, j) := (-1)^j \binom{(p-1)(k-j)-1}{j}$, \quad $b(k, j) := (-1)^j \binom{(p-1)(k-j)}{j} \in \mathbb{F}_p$.

Relations:

$\lambda_i \lambda_{pi+k} = \sum_{j=0}^{\left\lfloor \frac{k+1}{p} \right\rfloor} a(k, j) \lambda_{i+k-j} \lambda_{pi+j}$,

$\lambda_i \mu_{pi+k} = \sum_{j=0}^{\left\lfloor \frac{k+1}{p} \right\rfloor} a(k, j) \lambda_{i+k-j} \mu_{pi+j} + \sum_{j=0}^{\left\lfloor \frac{k}{p} \right\rfloor} b(k, j) \mu_{i+k-j} \lambda_{pi+j}$,

$\mu_i \lambda_{pi+k+1} = \sum_{j=0}^{\left\lfloor \frac{k+1}{p} \right\rfloor} a(k, j) \mu_{i+k-j} \lambda_{pi+j+1}$,

$\mu_i \mu_{pi+k+1} = \sum_{j=0}^{\left\lfloor \frac{k+1}{p} \right\rfloor} a(k, j) \mu_{i+k-j} \mu_{pi+j+1}$.

$\nu_i \in \{\lambda_i, \mu_i\}$.

A monomial $\nu_{i_1} \ldots \nu_{i_l}$ is admissible if $i_{k+1} \leq pi_k - 1$ whenever $\nu_{i_k} = \lambda_{i_k}$ and if $i_{k+1} \leq pi_k$ whenever $\nu_{i_k} = \mu_{i_k}$.

The set of admissible monomials is a basis of Λ.

Sergei O. Ivanov
Homotopy groups of the 2-sphere
Let p be a fixed odd prime.

$[p] \Lambda = \Lambda$ is an \mathbb{F}_p-algebra.

Generators: $\lambda_1, \lambda_2, \lambda_3, \ldots$, and $\mu_0, \mu_1, \mu_2, \ldots$

\[
a(k, j) := (-1)^{j+1} \binom{(p-1)(k-j)-1}{j}, \quad b(k, j) := (-1)^j \binom{(p-1)(k-j)}{j} \in \mathbb{F}_p.
\]

Relations:

\[
\begin{align*}
\lambda_i \lambda_{pi+k} &= \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{i+k-j} \lambda_{pi+j}, \\
\lambda_i \mu_{pi+k} &= \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{i+k-j} \mu_{pi+j} + \sum_{j=0}^{[k-\frac{k}{p}]} b(k, j) \mu_{i+k-j} \lambda_{pi+j}, \\
\mu_i \lambda_{pi+k+1} &= \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \mu_{i+k-j} \lambda_{pi+j+1}, \\
\mu_i \mu_{pi+k+1} &= \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \mu_{i+k-j} \mu_{pi+j+1}.
\end{align*}
\]

$\nu_i \in \{\lambda_i, \mu_i\}$.

A monomial $\nu_{i_1} \ldots \nu_{i_l}$ is **admissible** if $i_{k+1} \leq pi_k - 1$ whenever $\nu_{i_k} = \lambda_{i_k}$ and if $i_{k+1} \leq pi_k$ whenever $\nu_{i_k} = \mu_{i_k}$.

The set of admissible monomials is a basis of Λ.
Let p be a fixed **odd** prime.

$[p] \Lambda = \Lambda$ is an \mathbb{F}_p-algebra.

Generators: $\lambda_1, \lambda_2, \lambda_3, \ldots$, and $\mu_0, \mu_1, \mu_2, \ldots$

$a(k, j) := (-1)^{j+1} \binom{p-1}{k-j}^{-1}, \quad b(k, j) := (-1)^j \binom{p-1}{k-j} \in \mathbb{F}_p$.

Relations:

\[
\lambda_i \lambda_{pi+k} = \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{i+k-j} \lambda_{pi+j},
\]

\[
\lambda_i \mu_{pi+k} = \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{i+k-j} \mu_{pi+j} + \sum_{j=0}^{[k-\frac{k}{p}]} b(k, j) \mu_{i+k-j} \lambda_{pi+j},
\]

\[
\mu_i \lambda_{pi+k+1} = \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \mu_{i+k-j} \lambda_{pi+j+1},
\]

\[
\mu_i \mu_{pi+k+1} = \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \mu_{i+k-j} \mu_{pi+j+1}.
\]

$\nu_i \in \{\lambda_i, \mu_i\}$.

A monomial $\nu_{i_1} \ldots \nu_{i_l}$ is **admissible** if $i_{k+1} \leq pi_k - 1$ whenever $\nu_{i_k} = \lambda_{i_k}$ and if $i_{k+1} \leq pi_k$ whenever $\nu_{i_k} = \mu_{i_k}$.

The set of admissible monomials is a basis of Λ.
Let p be a fixed odd prime.

$[p]\Lambda = \Lambda$ is an \mathbb{F}_p-algebra.

Generators: $\lambda_1, \lambda_2, \lambda_3, \ldots$, and $\mu_0, \mu_1, \mu_2, \ldots$.

$a(k, j) := (-1)^{j+1}(p-1)(k-j-1), \quad b(k, j) := (-1)^j\binom{p-1}{j}(k-j) \in \mathbb{F}_p$.

Relations:

$\lambda_i \lambda_{pi+k} = \sum_{j=0}^{\left\lfloor \frac{k-\frac{k+1}{p}}{p} \right\rfloor} a(k, j) \lambda_{i+k-j} \lambda_{pi+j}$,

$\lambda_i \mu_{pi+k} = \sum_{j=0}^{\left\lfloor \frac{k-\frac{k+1}{p}}{p} \right\rfloor} a(k, j) \lambda_{i+k-j} \mu_{pi+j} + \sum_{j=0}^{\left\lfloor \frac{k-\frac{k}{p}}{p} \right\rfloor} b(k, j) \mu_{i+k-j} \lambda_{pi+j}$,

$\mu_i \lambda_{pi+k+1} = \sum_{j=0}^{\left\lfloor \frac{k-\frac{k+1}{p}}{p} \right\rfloor} a(k, j) \mu_{i+k-j} \lambda_{pi+j+1}$,

$\mu_i \mu_{pi+k+1} = \sum_{j=0}^{\left\lfloor \frac{k-\frac{k+1}{p}}{p} \right\rfloor} a(k, j) \mu_{i+k-j} \mu_{pi+j+1}$.

$\nu_i \in \{\lambda_i, \mu_i\}$.

A monomial $\nu_{i_1} \ldots \nu_{i_l}$ is admissible if $i_{k+1} \leq p i_k - 1$ whenever $\nu_{i_k} = \lambda_{i_k}$ and if $i_{k+1} \leq p i_k$ whenever $\nu_{i_k} = \mu_{i_k}$.

The set of admissible monomials is a basis of Λ.

$
$
Let p be a fixed odd prime.

$[p] \Lambda = \Lambda$ is an \mathbb{F}_p-algebra.

Generators: $\lambda_1, \lambda_2, \lambda_3, \ldots$, and $\mu_0, \mu_1, \mu_2, \ldots$

$a(k, j) := (-1)^{j+1} \binom{(p-1)(k-j)-1}{j}, \quad b(k, j) := (-1)^j \binom{(p-1)(k-j)}{j} \in \mathbb{F}_p$.

Relations:

\[
\lambda_i \lambda_{p_i + k} = \sum_{j=0}^{\left\lfloor \frac{k-\frac{k+1}{p}}{p} \right\rfloor} a(k, j) \lambda_{i+k-j} \lambda_{p_i+j},
\]

\[
\lambda_i \mu_{p_i + k} = \sum_{j=0}^{\left\lfloor \frac{k-\frac{k+1}{p}}{p} \right\rfloor} a(k, j) \lambda_{i+k-j} \mu_{p_i+j} + \sum_{j=0}^{\left\lfloor k-\frac{k}{p} \right\rfloor} b(k, j) \mu_{i+k-j} \lambda_{p_i+j},
\]

\[
\mu_i \lambda_{p_i + k + 1} = \sum_{j=0}^{\left\lfloor \frac{k-\frac{k+1}{p}}{p} \right\rfloor} a(k, j) \mu_{i+k-j} \lambda_{p_i+j+1},
\]

\[
\mu_i \mu_{p_i + k + 1} = \sum_{j=0}^{\left\lfloor \frac{k-\frac{k+1}{p}}{p} \right\rfloor} a(k, j) \mu_{i+k-j} \mu_{p_i+j+1}.
\]

$\nu_i \in \{\lambda_i, \mu_i\}$.

A monomial $\nu_{i_1} \ldots \nu_{i_l}$ is **admissible** if $i_{k+1} \leq p i_k - 1$ whenever $\nu_{i_k} = \lambda_{i_k}$ and if $i_{k+1} \leq p i_k$ whenever $\nu_{i_k} = \mu_{i_k}$.

The set of admissible monomials is a basis of Λ.
Let p be a fixed **odd** prime.

$[p] \Lambda = \Lambda$ is an \mathbb{F}_p-algebra.

Generators: $\lambda_1, \lambda_2, \lambda_3, \ldots$, and $\mu_0, \mu_1, \mu_2, \ldots$.

$a(k, j) := (-1)^{j+1}(p^{-1}(k-j)-1), \quad b(k, j) := (-1)^{j}(p^{-1}(k-j)) \in \mathbb{F}_p$.

Relations:

\[
\begin{align*}
\lambda_i \lambda_{pi+k} &= \sum_{j=0}^{\left\lfloor \frac{k-k+1}{p} \right\rfloor} a(k, j) \lambda_{i+k-j} \lambda_{pi+j}, \\
\lambda_i \mu_{pi+k} &= \sum_{j=0}^{\left\lfloor \frac{k-k+1}{p} \right\rfloor} a(k, j) \lambda_{i+k-j} \mu_{pi+j} + \sum_{j=0}^{\left\lfloor \frac{k-k}{p} \right\rfloor} b(k, j) \mu_{i+k-j} \lambda_{pi+j}, \\
\mu_i \lambda_{pi+k+1} &= \sum_{j=0}^{\left\lfloor \frac{k-k+1}{p} \right\rfloor} a(k, j) \mu_{i+k-j} \lambda_{pi+j+1}, \\
\mu_i \mu_{pi+k+1} &= \sum_{j=0}^{\left\lfloor \frac{k-k+1}{p} \right\rfloor} a(k, j) \mu_{i+k-j} \mu_{pi+j+1}.
\end{align*}
\]

$\nu_i \in \{\lambda_i, \mu_i\}$.

A monomial $\nu_{i_1} \ldots \nu_{i_l}$ is **admissible** if $i_{k+1} \leq pi_k - 1$ whenever $\nu_{i_k} = \lambda_{i_k}$ and if $i_{k+1} \leq pi_k$ whenever $\nu_{i_k} = \mu_{i_k}$.

The set of admissible monomials is a basis of Λ.
Let p be a fixed odd prime.

$[p] \Lambda = \Lambda$ is an \mathbb{F}_p-algebra.

Generators: $\lambda_1, \lambda_2, \lambda_3, \ldots$, and $\mu_0, \mu_1, \mu_2, \ldots$

$a(k, j) := (-1)^{j+1} \binom{p-1}{k-j}^{-1}, \quad b(k, j) := (-1)^j \binom{p-1}{k-j} \in \mathbb{F}_p$.

Relations:

$\lambda_i \lambda_{pi+k} = \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{i+k-j} \lambda_{pi+j}$,

$\lambda_i \mu_{pi+k} = \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{i+k-j} \mu_{pi+j} + \sum_{j=0}^{[k-\frac{k}{p}]} b(k, j) \mu_{i+k-j} \lambda_{pi+j}$,

$\mu_i \lambda_{pi+k+1} = \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \mu_{i+k-j} \lambda_{pi+j+1}$,

$\mu_i \mu_{pi+k+1} = \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \mu_{i+k-j} \mu_{pi+j+1}$.

$\nu_i \in \{ \lambda_i, \mu_i \}$.

A monomial $\nu_{i_1} \ldots \nu_{i_l}$ is admissible if $i_{k+1} \leq pi_k - 1$ whenever $\nu_{i_k} = \lambda_{i_k}$ and if $i_{k+1} \leq pi_k$ whenever $\nu_{i_k} = \mu_{i_k}$.

The set of admissible monomials is a basis of Λ.

Sergei O. Ivanov
Homotopy groups of the 2-sphere
Lambda algebra

- Λ is a dg-algebra.
- The differential $\partial : \Lambda \to \Lambda$ is given by
 \[
 \partial \lambda_k = \sum_{j=1}^{k-\frac{k+1}{p}} a(k,j) \lambda_{k-j} \lambda_j,
\]
 \[
 \partial \mu_k = \sum_{j=0}^{k-\frac{k+1}{p}} a(k,j) \lambda_{k-j} \mu_j + \sum_{j=1}^{k-\frac{k}{p}} b(k,j) \mu_{k-j} \lambda_j.
\]
- $\deg(\lambda_i) = 2(p-1)i - 1$, $\deg(\mu_j) = 2(p-1)j$.
- The **unstable lambda algebra** $\Lambda(n)$ is the dg-subalgebra generated by $\nu_{i_1} \ldots \nu_{i_l}$, where $i_1 \leq n$.
- $\Lambda \lambda = \sum \Lambda \lambda_i$.
- λ-filtration on Λ is the filtration of powers of the left ideal $\Lambda \lambda$:
 \[
 \Lambda \supset \Lambda \lambda \supset (\Lambda \lambda)^2 \supset (\Lambda \lambda)^3 \supset \ldots
\]
- The ideals $(\Lambda \lambda)^i(n) = (\Lambda \lambda)^i \cap \Lambda(n)$ induce a filtration on $\Lambda(n)$.
Lambda algebra

- Λ is a dg-algebra.
 - The differential $\partial : \Lambda \rightarrow \Lambda$ is given by
 \[
 \partial \lambda_k = \sum_{j=1}^{\left\lfloor \frac{k}{p} - \frac{k+1}{p} \right\rfloor} a(k, j) \lambda_{k-j} \lambda_j,
 \]
 \[
 \partial \mu_k = \sum_{j=0}^{\left\lfloor \frac{k}{p} - \frac{k+1}{p} \right\rfloor} a(k, j) \lambda_{k-j} \mu_j + \sum_{j=1}^{\left\lfloor \frac{k}{p} \right\rfloor} b(k, j) \mu_{k-j} \lambda_j.
 \]
 - $\deg(\lambda_i) = 2(p - 1)i - 1$, $\deg(\mu_j) = 2(p - 1)j$.
 - The **unstable lambda algebra** $\Lambda(n)$ is the dg-subalgebra generated by $\nu_{i_1} \ldots \nu_{i_l}$, where $i_1 \leq n$.
 - $\Lambda \lambda = \sum \Lambda \lambda_i$.
 - λ-filtration on Λ is the filtration of powers of the left ideal $\Lambda \lambda :$
 \[
 \Lambda \supset \Lambda \lambda \supset (\Lambda \lambda)^2 \supset (\Lambda \lambda)^3 \supset \ldots
 \]
 - The ideals $(\Lambda \lambda)^i(n) = (\Lambda \lambda)^i \cap \Lambda(n)$ induce a filtration on $\Lambda(n)$.
Lambda algebra

- \(\Lambda \) is a dg-algebra.

- The differential \(\partial : \Lambda \to \Lambda \) is given by
 \[
 \partial \lambda_k = \sum_{j=1}^{[\frac{k}{\lambda}+1]} \alpha(k, j) \lambda_{k-j} \lambda_j,
 \]
 \[
 \partial \mu_k = \sum_{j=0}^{[\frac{k}{\lambda}+1]} \alpha(k, j) \lambda_{k-j} \mu_j + \sum_{j=1}^{[\frac{k}{\lambda}]} \beta(k, j) \mu_{k-j} \lambda_j.
 \]

- \(\text{deg}(\lambda_i) = 2(p-1)i - 1 \), \(\text{deg}(\mu_j) = 2(p-1)j \).

- The unstable lambda algebra \(\Lambda(n) \) is the dg-subalgebra generated by \(\nu_{i_1} \ldots \nu_{i_l} \), where \(i_1 \leq n \).

- \(\Lambda \lambda = \sum \Lambda \lambda_i \).

- \(\lambda \)-filtration on \(\Lambda \) is the filtration of powers of the left ideal \(\Lambda \lambda \):
 \[
 \Lambda \supset \Lambda \lambda \supset (\Lambda \lambda)^2 \supset (\Lambda \lambda)^3 \supset \ldots
 \]

- The ideals \((\Lambda \lambda)^i(n) = (\Lambda \lambda)^i \cap \Lambda(n) \) induce a filtration on \(\Lambda(n) \).
Lambda algebra

- Λ is a dg-algebra.
- The differential $\partial : \Lambda \to \Lambda$ is given by
 \[
 \partial \lambda_k = \sum_{j=1}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{k-j} \lambda_j,
 \]
 \[
 \partial \mu_k = \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{k-j} \mu_j + \sum_{j=1}^{[k-\frac{k}{p}]} b(k, j) \mu_{k-j} \lambda_j.
 \]
- $\deg(\lambda_i) = 2(p-1)i - 1$, $\deg(\mu_j) = 2(p-1)j$.
- The unstable lambda algebra $\Lambda(n)$ is the dg-subalgebra generated by $\nu_{i_1} \ldots \nu_{i_l}$, where $i_1 \leq n$.
- $\Lambda\lambda = \sum \Lambda \lambda_i$.
- λ-filtration on Λ is the filtration of powers of the left ideal $\Lambda\lambda$:
 \[
 \Lambda \subset \Lambda\lambda \subset (\Lambda\lambda)^2 \subset (\Lambda\lambda)^3 \subset \ldots
 \]
- The ideals $(\Lambda\lambda)^i(n) = (\Lambda\lambda)^i \cap \Lambda(n)$ induce a filtration on $\Lambda(n)$.

Sergei O. Ivanov
Homotopy groups of the 2-sphere
Lambda algebra

- Λ is a dg-algebra.
- The differential $\partial : \Lambda \to \Lambda$ is given by
 \[
 \partial \lambda_k = \sum_{j=1}^{[\frac{k-\frac{k+1}{p}}]} a(k, j) \lambda_{k-j} \lambda_j,
 \]
 \[
 \partial \mu_k = \sum_{j=0}^{[\frac{k-\frac{k+1}{p}}]} a(k, j) \lambda_{k-j} \mu_j + \sum_{j=1}^{[\frac{k}{p}]} b(k, j) \mu_{k-j} \lambda_j.
 \]
- $\deg(\lambda_i) = 2(p-1)i - 1$, $\deg(\mu_j) = 2(p-1)j$.
- The **unstable lambda algebra** $\Lambda(n)$ is the dg-subalgebra generated by $\nu_{i_1} \ldots \nu_{i_l}$, where $i_1 \leq n$.
- $\Lambda \lambda = \sum \Lambda \lambda_i$.
- λ-filtration on Λ is the filtration of powers of the left ideal $\Lambda \lambda$:
 \[
 \Lambda \supset \Lambda \lambda \supset (\Lambda \lambda)^2 \supset (\Lambda \lambda)^3 \supset \ldots
 \]
- The ideals $(\Lambda \lambda)^i(n) = (\Lambda \lambda)^i \cap \Lambda(n)$ induce a filtration on $\Lambda(n)$.
Lambda algebra

- Λ is a dg-algebra.
- The differential $\partial : \Lambda \to \Lambda$ is given by
 $$\partial \lambda_k = \sum_{j=1}^{k-\frac{k+1}{p}} a(k, j) \lambda_{k-j} \lambda_j,$$
 $$\partial \mu_k = \sum_{j=0}^{k-\frac{k+1}{p}} a(k, j) \lambda_{k-j} \mu_j + \sum_{j=1}^{k-\frac{k}{p}} b(k, j) \mu_{k-j} \lambda_j.$$
- $\deg(\lambda_i) = 2(p-1)i - 1$, $\deg(\mu_j) = 2(p-1)j$.
- The **unstable lambda algebra** $\Lambda(n)$ is the dg-subalgebra generated by $\nu_{i_1} \ldots \nu_{i_l}$, where $i_1 \leq n$.
- $\Lambda \lambda = \sum \Lambda \lambda_i$.
- λ-filtration on Λ is the filtration of powers of the left ideal $\Lambda \lambda :$
 $$\Lambda \subset \Lambda \lambda \subset (\Lambda \lambda)^2 \subset (\Lambda \lambda)^3 \subset \ldots$$
- The ideals $(\Lambda \lambda)^i(n) = (\Lambda \lambda)^i \cap \Lambda(n)$ induce a filtration on $\Lambda(n)$.
 Lambda algebra

• \(\Lambda \) is a dg-algebra.

• The differential \(\partial : \Lambda \to \Lambda \) is given by
 \[
 \partial \lambda_k = \sum_{j=1}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{k-j} \lambda_j,
 \]
 \[
 \partial \mu_k = \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{k-j} \mu_j + \sum_{j=1}^{\left[\frac{k}{p}\right]} b(k, j) \mu_{k-j} \lambda_j.
 \]

• \(\deg(\lambda_i) = 2(p-1)i - 1 \), \(\deg(\mu_j) = 2(p-1)j \).

• The \textbf{unstable lambda algebra} \(\Lambda(n) \) is the dg-subalgebra generated by \(\nu_{i_1} \ldots \nu_{i_l} \), where \(i_1 \leq n \).

• \(\Lambda \lambda = \sum \Lambda \lambda_i \).

• \textbf{\(\lambda \)-filtration} on \(\Lambda \) is the filtration of powers of the left ideal \(\Lambda \lambda \):
 \[
 \Lambda \supset \Lambda \lambda \supset (\Lambda \lambda)^2 \supset (\Lambda \lambda)^3 \supset \ldots
 \]

• The ideals \((\Lambda \lambda)^i(n) = (\Lambda \lambda)^i \cap \Lambda(n) \) induce a filtration on \(\Lambda(n) \).
Lambda algebra

- \(\Lambda \) is a dg-algebra.
- The differential \(\partial : \Lambda \to \Lambda \) is given by
 \[
 \partial \lambda_k = \sum_{j=1}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{k-j} \lambda_j,
 \]
 \[
 \partial \mu_k = \sum_{j=0}^{[k-\frac{k+1}{p}]} a(k, j) \lambda_{k-j} \mu_j + \sum_{j=1}^{[\frac{k}{p}]} b(k, j) \mu_{k-j} \lambda_j.
 \]
- \(\deg(\lambda_i) = 2(p-1)i - 1 \), \(\deg(\mu_j) = 2(p-1)j \).
- The **unstable lambda algebra** \(\Lambda(n) \) is the dg-subalgebra generated by \(\nu_{i_1} \ldots \nu_{i_l} \), where \(i_1 \leq n \).
- \(\Lambda \lambda = \sum \Lambda \lambda_i \).
- **\(\lambda \)-filtration** on \(\Lambda \) is the filtration of powers of the left ideal \(\Lambda \lambda \):
 \[
 \Lambda \supset \Lambda \lambda \supset (\Lambda \lambda)^2 \supset (\Lambda \lambda)^3 \supset \ldots
 \]
- The ideals \((\Lambda \lambda)^i(n) = (\Lambda \lambda)^i \cap \Lambda(n) \) induce a filtration on \(\Lambda(n) \).
Lambda algebra and λ-filtration

- There is an isomorphism
 \[E^1(S^{2n}) \cong \Lambda(n) \]
 and
 \[E^1(S^{2n}) \xrightarrow{\sigma^2} E^1(S^{2n+2}) \]
 \[\Lambda(n) \xrightarrow{c} \Lambda(n + 1) \]
- The Kleisli composition corresponds to the product in Λ.
- The λ-filtration on $E^r = E^r(S^{2n})$ is induced by the λ-filtration on $\Lambda(n)$.
 \[E^r = F^0_\lambda E^r \supseteq F^1_\lambda E^r \supseteq F^2_\lambda E^r \supseteq \ldots \]
- Conjecture: $d^r(F^i_\lambda E^r) \subseteq F^{i+1}_\lambda E^r$.

Lemma

The conjecture about λ-filtration implies that
\[\alpha_k(3) \circ \alpha_1(2(p - 1)k + 2) \neq 0 \in \pi_{2(p-1)(k+1)+1}(S^3). \]
Lambda algebra and \(\lambda \)-filtration

- There is an isomorphism
 \[
 E^1(S^{2n}) \cong \Lambda(n)
 \]
 and
 \[
 E^1(S^{2n}) \xrightarrow{\sigma^2} E^1(S^{2n+2})
 \]
 \[
 \Lambda(n) \xrightarrow{c} \Lambda(n + 1)
 \]

- The Kleisli composition corresponds to the product in \(\Lambda \).
- The \(\lambda \)-filtration on \(E^r = E^r(S^{2n}) \) is induced by the \(\lambda \)-filtration on \(\Lambda(n) \).
 \[
 E^r = F^0_\lambda E^r \supseteq F^1_\lambda E^r \supseteq F^2_\lambda E^r \supseteq \ldots
 \]
- Conjecture: \(d^r(F^i_\lambda E^r) \subseteq F^{i+1}_\lambda E^r \).

Lemma

The conjecture about \(\lambda \)-filtration implies that

\[
\alpha_k(3) \circ \alpha_1(2(p - 1)k + 2) \neq 0 \in \pi_{2(p-1)(k+1)+1}(S^3).
\]
There is an isomorphism

$$E^1(S^{2n}) \cong \Lambda(n)$$

and

$$E^1(S^{2n}) \xrightarrow{\sigma^2} E^1(S^{2n+2})$$

$$\cong \quad \cong$$

$$\Lambda(n) \xrightarrow{c} \Lambda(n+1)$$

The Kleisli composition corresponds to the product in Λ.

The λ-filtration on $E^r = E^r(S^{2n})$ is induced by the λ-filtration on $\Lambda(n)$.

$$E^r = F^0_{\lambda} E^r \supseteq F^1_{\lambda} E^r \supseteq F^2_{\lambda} E^r \supseteq \ldots$$

Conjecture: $d^r(F^i_{\lambda} E^r) \subseteq F^{i+1}_{\lambda} E^r$.

Lemma

The conjecture about λ-filtration implies that

$$\alpha_k(3) \circ \alpha_1(2(p-1)k + 2) \neq 0 \in \pi_{2(p-1)(k+1)+1}(S^3).$$
Lambda algebra and \(\lambda \)-filtration

- There is an isomorphism
 \[E^1(S^{2n}) \cong \Lambda(n) \]
 and
 \[
 \begin{array}{ccc}
 E^1(S^{2n}) & \xrightarrow{\sigma^2} & E^1(S^{2n+2}) \\
 \downarrow{\cong} & & \downarrow{\cong} \\
 \Lambda(n) & \xrightarrow{\subset} & \Lambda(n + 1)
 \end{array}
 \]

- The Kleisli composition corresponds to the product in \(\Lambda \).

- The **\(\lambda \)-filtration** on \(E^r = E^r(S^{2n}) \) is induced by the \(\lambda \)-filtration on \(\Lambda(n) \).
 \[
 E^r = F^0_\lambda E^r \supseteq F^1_\lambda E^r \supseteq F^2_\lambda E^r \supseteq \ldots
 \]

- Conjecture: \(d^r(F^i_\lambda E^r) \subseteq F^{i+1}_\lambda E^r \).

Lemma

The conjecture about \(\lambda \)-filtration implies that
\[
\alpha_k(3) \circ \alpha_1(2(p - 1)k + 2) \neq 0 \in \pi_{2(p-1)(k+1)+1}(S^3).
\]
There is an isomorphism

\[E^1(S^{2n}) \cong \Lambda(n) \]

and

\[
\begin{array}{ccc}
E^1(S^{2n}) & \xrightarrow{\sigma^2} & E^1(S^{2n+2}) \\
\downarrow \cong & & \downarrow \cong \\
\Lambda(n) & \xrightarrow{c} & \Lambda(n+1)
\end{array}
\]

- The Kleisli composition corresponds to the product in \(\Lambda \).
- The \(\lambda \)-filtration on \(E^r = E^r(S^{2n}) \) is induced by the \(\lambda \)-filtration on \(\Lambda(n) \).

\[
E^r = F_0^\lambda E^r \supseteq F_1^\lambda E^r \supseteq F_2^\lambda E^r \supseteq \ldots
\]

- **Conjecture:** \(d^r(F_i^\lambda E^r) \subseteq F_{i+1}^\lambda E^r \).

Lemma

The conjecture about \(\lambda \)-filtration implies that

\[
\alpha_k(3) \circ \alpha_1(2(p-1)k + 2) \neq 0 \in \pi_{2(p-1)(k+1)+1}(S^3).
\]
There is an isomorphism

\[E^1(S^{2n}) \cong \Lambda(n) \]

and

\[E^1(S^{2n}) \xrightarrow{\sigma^2} E^1(S^{2n+2}) \]

\[\cong \]

\[\Lambda(n) \xrightarrow{\subset} \Lambda(n+1) \]

The Kleisli composition corresponds to the product in \(\Lambda \).

The \(\lambda \)-filtration on \(E^r = E^r(S^{2n}) \) is induced by the \(\lambda \)-filtration on \(\Lambda(n) \).

\[E^r = F^0_\lambda E^r \supseteq F^1_\lambda E^r \supseteq F^2_\lambda E^r \supseteq \ldots \]

Conjecture: \(d^r(F^i_\lambda E^r) \subseteq F^{i+1}_\lambda E^r \).

Lemma

The conjecture about \(\lambda \)-filtration implies that

\[\alpha_k(3) \circ \alpha_1(2(p-1)k + 2) \neq 0 \in \pi_{2(p-1)(k+1)+1}(S^3). \]
Lemma

The conjecture about λ-filtration implies that

$$\alpha_k(3) \circ \alpha_1(2(p - 1)k + 2) \neq 0 \in \pi_{2(p-1)(k+1)+1}(S^3).$$

- There is a very good analysis of cycles $Z(\Lambda) = \text{Ker}(\partial)$ of Λ in the following article:

- Theorem 6.1 of [4] implies $Z(\Lambda) \subseteq \Lambda\lambda$.

- Hence $E^r = F^1\lambda E^r$.
Lemma

The conjecture about λ-filtration implies that
\[
\alpha_k(3) \circ \alpha_1(2(p - 1)k + 2) \neq 0 \in \pi_{2(p-1)(k+1)+1}(S^3).
\]

- There is a very good analysis of cycles $Z(\Lambda) = \text{Ker}(\partial)$ of Λ in the following article:

- Theorem 6.1 of [4] implies $Z(\Lambda) \subseteq \Lambda \lambda$.
- Hence $E^r = F^1_\lambda E^r$.
Lemma

The conjecture about \(\lambda \)-filtration implies that

\[
\alpha_k(3) \circ \alpha_1(2(p - 1)k + 2) \neq 0 \in \pi_{2(p-1)(k+1)+1}(S^3).
\]

- There is a very good analysis of cycles \(Z(\Lambda) = \text{Ker}(\partial) \) of \(\Lambda \) in the following article:

- Theorem 6.1 of [4] implies \(Z(\Lambda) \subseteq \Lambda \lambda \).

- Hence \(E^r = F^1_{\lambda} E^r \).
Lemma

The conjecture about λ-filtration implies that

$$\alpha_k(3) \circ \alpha_1(2(p - 1)k + 2) \neq 0 \in \pi_{2(p-1)(k+1)+1}(S^3).$$

- There is a very good analysis of cycles $Z(\Lambda) = \text{Ker}(\partial)$ of Λ in the following article:

- Theorem 6.1 of [4] implies $Z(\Lambda) \subseteq \Lambda\lambda$.

- Hence $E^r = F^1_\lambda E^r$.
Thank you!