Computable structure theory and Polish group actions.

Antonio Montalbán

U.C. Berkeley

April 2015

Singapore

(Joint work with Alexander Melnikov)
A generalization

What is the connection between the following two theorems?

(A) Thm [M. 14] A structure is uniformly computably categorical on a cone \(\iff\) it has a \(\Pi^0_2\) Scott Sentence.

(B) Thm [Effros 65] Let \(G\) be a Polish group acting continuously on a Polish space \(X\), and let \(x\) be a point in \(X\). The map \(g \mapsto g \cdot x: G \to X\) is open \(\iff\) the orbit of \(x\) is \(G\delta\).

Answer: (A) is a particular case of (B).
A generalization

What is the connection between the following two theorems?

(A) **Thm** [M. 14]

A structure is **uniformly computably categorical on a cone** \iff it has a Π^0_2 Scott Sentence.

(B) **Thm** [Effros 65]

Let G be a Polish group acting continuously on a Polish space X, and let x be a point in X. The map $g \mapsto g \cdot x : G \to X$ is open \iff the orbit of x is G^δ.

Answer: (A) is a particular case of (B).
A generalization

What is the connection between the following two theorems?

(A) Thm [M. 14]
A structure is uniformly computably categorical on a cone \(\iff\) it has a \(\Pi^0_2\) Scott Sentence.

(B) Thm [Effros 65]
Let \(G\) be a Polish group acting continuously on a Polish space \(\mathcal{X}\), and let \(x\) be a point in \(\mathcal{X}\).
The map \(g \mapsto g \cdot x: G \to \mathcal{X}\) is open \(\iff\) the orbit of \(x\) is \(G_\delta\).

Answer: (A) is a particular case of (B).
What is the connection between the following two theorems?

(A) **Thm** [M. 14]
A structure is uniformly computably categorical on a cone \iff it has a Π^2_1 Scott Sentence.

(B) **Thm** [Effros 65]
Let G be a Polish group acting continuously on a Polish space X, and let x be a point in X.
The map $g \mapsto g \cdot x : G \to X$ is open \iff the orbit of x is G_δ.

Answer: (A) is a particular case of (B).
The idea

Results from **computable structure theory** can be generalized to the setting of **Polish groups acting on Polish spaces**.
The idea

Results from **computable structure theory** can be generalized to the setting of **Polish groups acting on Polish spaces**.

The idea of looking at countable structures in the setting of Polish groups actions existed in descriptive set theory. [Becker, Gao, Hjorth, Kechris,...]
The idea

Results from computable structure theory can be generalized to the setting of Polish groups acting on Polish spaces.

The idea of looking at countable structures in the setting of Polish groups actions existed in descriptive set theory. [Becker, Gao, Hjorth, Kechris,...]

We analyze the following theorems:
The idea

Results from **computable structure theory** can be generalized to the setting of **Polish groups acting on Polish spaces**.

The idea of looking at countable structures in the setting of Polish groups actions existed in descriptive set theory. [Becker, Gao, Hjorth, Kechris,…]

We analyze the following theorems:

3. [McCoy 02] Proper finite dimension does not relativize.
4. [Knight et al. 90’s] No degree spectrum is the union of two cones.
5. [Goncharov 80’s] Δ^0_2- but not Δ^0_1-isomorphic structures have ∞ dim.
Part 1:

Background on Polish group actions.
The space of structures

Definition

Let $\text{Mod}(L)$ be the set of all L-structures with domain ω.

We give $\text{Mod}(L)$ the topology generated by the basic open sets $[\phi] = \{ A \in \text{Mod}(L) : A|\cdot = \phi \}$ where ϕ is an atomic ($L \cup \text{Constants } N$)-sentence and $\text{Constants } N = \{ 0, 1, 2, ... \}$.

Equivalently:

Let $D : \text{Mod}(L) \to 2^\omega$ map $A \in \text{Mod}(L)$ to its atomic diagram $D(A) \in 2^\omega$.

The topology of $\text{Mod}(L)$ is so that $\text{Mod}(L)$ is homeomorphic to its image.
The space of structures

Fix a computable vocabulary L.

Definition Let $\text{Mod}(L)$ be the set of all L-structures with domain ω. We give $\text{Mod}(L)$ the topology generated by the basic open sets $[\phi] = \{A \in \text{Mod}(L) : A| = \phi\}$ where ϕ is an atomic ($L \cup \text{Constants } N$)-sentence and $\text{Constants } N = \{0, 1, 2, \ldots\}$.

Equivalentely: Let $D : \text{Mod}(L) \to 2^\omega$ map $A \in \text{Mod}(L)$ to its atomic diagram $D(A) \in 2^\omega$. The topology of $\text{Mod}(L)$ is so that $\text{Mod}(L)$ is homeomorphic to its image.
The space of structures

Fix a computable vocabulary L.

Definition
Let $\text{Mod}(L)$ be the set of all L-structures with domain ω.

Equivalently:
Let $D : \text{Mod}(L) \to 2^\omega$ map $A \in \text{Mod}(L)$ to its atomic diagram $D(A) \in 2^\omega$.

The topology of $\text{Mod}(L)$ is so that $\text{Mod}(L)$ is homeomorphic to its image.
The space of structures

Fix a computable vocabulary L.

Definition

Let $\text{Mod}(L)$ be the set of all L-structures with domain ω. We give $\text{Mod}(L)$ the topology generated by the basic open sets

$$[\varphi] = \{ A \in \text{Mod}(L) : A \models \varphi \}$$

where φ is an atomic $(L \cup \text{Constants}_\mathbb{N})$-sentence and $\text{Constants}_\mathbb{N} = \{0, 1, 2, \ldots \}$.
The space of structures

Fix a computable vocabulary L.

Definition

Let $Mod(L)$ be the set of all L-structures with domain ω. We give $Mod(L)$ the topology generated by the basic open sets

$$[\varphi] = \{A \in Mod(L) : A \models \varphi\}$$

where φ is an atomic $(L \cup \text{Constants}_\mathbb{N})$-sentence and $\text{Constants}_\mathbb{N} = \{0, 1, 2, \ldots\}$.

Equivalently:

Let $D : Mod(L) \to 2^\omega$ map $A \in Mod(L)$ to its atomic diagram $D(A) \in 2^\omega$.

Antonio Montalbán (U.C. Berkeley)
Polish group actions
April 2015 5 / 22
The space of structures

Fix a computable vocabulary L.

Definition

Let $\text{Mod}(L)$ be the set of all L-structures with domain ω. We give $\text{Mod}(L)$ the **topology** generated by the basic open sets

$$[\varphi] = \{ A \in \text{Mod}(L) : A \models \varphi \}$$

where φ is an atomic $(L \cup \text{Constants}_\mathbb{N})$-sentence and $\text{Constants}_\mathbb{N} = \{0, 1, 2, \ldots\}$.

Equivalently:

Let $D : \text{Mod}(L) \to 2^\omega$ map $A \in \text{Mod}(L)$ to its **atomic diagram** $D(A) \in 2^\omega$. The topology of $\text{Mod}(L)$ is so that $\text{Mod}(L)$ is **homeomorphic** to its image.
\(\text{Mod}(L) \) is an effective Polish space

Definition

A topological space \(X \) is *Polish* if

It has a countable dense subset \(\{x_0, x_1, x_2, \ldots \} \), and it admits a complete metric \(d: X \times X \to \mathbb{R} \geq 0 \).

\(X \) is *effectively Polish* if also \(d \) is computable on \(\{x_0, x_1, \ldots \} \), i.e., the questions \(d(x_i, x_j) < q \) and \(d(x_i, x_j) \leq q \) are decidable.

Obs: For a computable vocabulary \(L \), \(\text{Mod}(L) \) is effectively Polish.

We represent points in \(X \) by fast Cauchy sequences from \(\{ x_0, x_1, \ldots \} \).

Def: A point is computable if the sequence is computable and fast approaching.

Fact: \(F: X \to Y \) is continuous \(\iff \) it is computable relative to some oracle.
Definition

A topological space \mathcal{X} is **Polish** if

- It has a countable dense subset $\{x_0, x_1, x_2, \ldots\}$, and

$\text{Mod}(L)$ is an effective Polish space
Mod(L) is an effective Polish space

Definition
A topological space X is \textit{Polish} if

- It has a countable dense subset $\{x_0, x_1, x_2, \ldots\}$, and
- it admits a complete metric $d : X \times X \to \mathbb{R}^{\geq 0}$.
Definition

A topological space \mathcal{X} is *Polish* if

- It has a countable dense subset $\{x_0, x_1, x_2, \ldots\}$, and
- it admits a complete metric $d : X \times X \rightarrow \mathbb{R}^{\geq 0}$.

\mathcal{X} is *effectively Polish* if also d is computable on $\{x_0, x_1, \ldots\}$,
Mod(L) is an effective Polish space

Definition

A topological space \mathcal{X} is **Polish** if

- It has a countable dense subset $\{x_0, x_1, x_2, \ldots\}$, and
- it admits a complete metric $d: X \times X \to \mathbb{R}_{\geq 0}$.

\mathcal{X} is **effectively Polish** if also d is computable on $\{x_0, x_1, \ldots\}$, i.e., the questions $d(x_i, x_j) < q$ and $d(x_i, x_j) \leq q$ are decidable.
Definition

A topological space \mathcal{X} is *Polish* if

- It has a countable dense subset $\{x_0, x_1, x_2, \ldots\}$, and
- it admits a complete metric $d : X \times X \to \mathbb{R}^{\geq 0}$.

\mathcal{X} is *effectively Polish* if also d is computable on $\{x_0, x_1, \ldots\}$, i.e., the questions $d(x_i, x_j) < q$ and $d(x_i, x_j) \leq q$ are decidable.

Obs: For a computable vocabulary L, $\text{Mod}(L)$ is a effectively Polish.
Definition

A topological space \mathcal{X} is *Polish* if
- It has a countable dense subset $\{x_0, x_1, x_2, \ldots\}$, and
- it admits a complete metric $d : \mathcal{X} \times \mathcal{X} \to \mathbb{R}_{\geq 0}$.

\mathcal{X} is *effectively Polish* if also d is computable on $\{x_0, x_1, \ldots\}$, i.e., the questions $d(x_i, x_j) < q$ and $d(x_i, x_j) \leq q$ are decidable.

Obs: For a computable vocabulary L, $\text{Mod}(L)$ is a effectively Polish.

We represent *points* in \mathcal{X} by fast Cauchy sequences from $\{x_0, x_1, \ldots\}$.
Definition
A topological space \mathcal{X} is \textit{Polish} if
- it has a countable dense subset $\{x_0, x_1, x_2, \ldots\}$, and
- it admits a complete metric $d : X \times X \to \mathbb{R}^{\geq 0}$.

\mathcal{X} is \textit{effectively Polish} if also d is computable on $\{x_0, x_1, \ldots\}$, i.e., the questions $d(x_i, x_j) < q$ and $d(x_i, x_j) \leq q$ are decidable.

\textbf{Obs:} For a computable vocabulary L, $\text{Mod}(L)$ is an effectively Polish space.

We represent \textit{points} in \mathcal{X} by fast Cauchy sequences from $\{x_0, x_1, \ldots\}$.

\textbf{Def:} A \textit{point is computable} if the sequence is computable and fast approaching.
Mod(L) is an effective Polish space

Definition

A topological space \mathcal{X} is **Polish** if
- It has a countable dense subset $\{x_0, x_1, x_2, \ldots\}$, and
- it admits a complete metric $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{\geq 0}$.

\mathcal{X} is **effectively Polish** if also d is computable on $\{x_0, x_1, \ldots\}$, i.e., the questions $d(x_i, x_j) < q$ and $d(x_i, x_j) \leq q$ are decidable.

Obs: For a computable vocabulary L, $\text{Mod}(L)$ is a effectively Polish.

We represent *points* in \mathcal{X} by fast Cauchy sequences from $\{x_0, x_1, \ldots\}$.

Def: A *point is computable* if the sequence is computable and fast approaching.

Fact: $F: \mathcal{X} \to \mathcal{Y}$ is continuous \iff it is *computable* relative to some oracle.
The permutation group of ω

Definition

Let S_∞ be the permutation group of ω. (I.e., the group of all bijections $\omega \rightarrow \omega$.)
The permutation group of ω

Definition

Let S_∞ be the permutation group of ω. (I.e., the group of all bijections $\omega \rightarrow \omega$.)

With the topology inherited from ω^ω, S_∞ is an **effective Polish group**.
The permutation group of ω

Definition

Let S_∞ be the permutation group of ω. (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^ω, S_∞ is an **effective Polish group**, i.e., it’s an effective Polish space where the group operations are computable.
The permutation group of ω

Definition

Let S_∞ be the permutation group of ω. (I.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^ω, S_∞ is an **effective Polish group**, i.e., it’s an effective Polish space where the group operations are computable.

Definition

S_∞ acts on $\text{Mod}(L)$ in an obvious way.
The permutation group of ω

Definition
Let S_∞ be the permutation group of ω. (i.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^ω, S_∞ is an *effective Polish group*, i.e., it’s an effective Polish space where the group operations are computable.

Definition

S_∞ *acts* on $\text{Mod}(L)$ in an obvious way.

For $A \in \text{Mod}(L)$, $f \in S_\infty$, $f \cdot A$ is the structure B such that

$$(n_1, \ldots, n_k) \in R^A \iff (f(n_1), \ldots, f(n_k)) \in R^B.$$
The permutation group of ω

Definition

Let S_∞ be the permutation group of ω. (i.e., the group of all bijections $\omega \to \omega$.)

With the topology inherited from ω^ω, S_∞ is an **effective Polish group**, i.e., it’s an effective Polish space where the group operations are computable.

Definition

S_∞ acts on $\text{Mod}(L)$ in an obvious way.

For $A \in \text{Mod}(L)$, $f \in S_\infty$, $f \cdot A$ is the structure B such that

$$(n_1, \ldots, n_k) \in R^A \iff (f(n_1), \ldots, f(n_k)) \in R^B.$$

Obs: This action, $: S_\infty \times \text{Mod}(L) \to \text{Mod}(L)$, is computable.
Effective Polish group actions

Throughout the rest of the talk

- G is an effective Polish group,
- X is an effective Polish space, and
- G acts on X computably.

Definition

For $x, y \in X$, we let $x \equiv y \iff (\exists g \in G) g \cdot x = y$.

We let the G-orbit of x be $\{y \in X : y \equiv x\} = G \cdot x$.

Note: In the case of S_∞ acting on $\text{Mod}(L)$, $A \equiv B \iff A \sim B$.
Effective Polish group actions

Throughout the rest of the talk

- \(\mathcal{G} \) is an effective Polish group,
- \(\mathcal{X} \) is an effective Polish space, and
- \(\mathcal{G} \) acts on \(\mathcal{X} \) computably.

Definition

For \(x, y \in \mathcal{X} \), we let \(x \equiv y \iff (\exists g \in \mathcal{G}) \; g \cdot x = y \).
Effective Polish group actions

Throughout the rest of the talk

- \mathcal{G} is an effective Polish group,
- \mathcal{X} is an effective Polish space, and
- \mathcal{G} acts on \mathcal{X} computably.

Definition

For $x, y \in \mathcal{X}$, we let $x \equiv y \iff (\exists g \in \mathcal{G}) \ g \cdot x = y$.
We let the \mathcal{G}-orbit of x be $\{y \in \mathcal{X}: y \equiv x\}$.
Effective Polish group actions

Throughout the rest of the talk

- \(G \) is an effective Polish group,
- \(X \) is an effective Polish space, and
- \(G \) acts on \(X \) computably.

Definition

For \(x, y \in X \), we let \(x \equiv y \iff (\exists g \in G) \ g \cdot x = y \).

We let the \(G \)-orbit of \(x \) be \(\{ y \in X : y \equiv x \} = G \cdot x \).
Effective Polish group actions

Throughout the rest of the talk

- G is an effective Polish group,
- X is an effective Polish space, and
- G acts on X computably.

Definition

For $x, y \in X$, we let $x \equiv y \iff (\exists g \in G) \ g \cdot x = y$.
We let the G-orbit of x be $\{y \in X : y \equiv x\} = G \cdot x$.

Note: In the case of S_∞ acting on $Mod(L)$, $A \equiv B \iff A \cong B$.
Other examples of computable Polish group actions

The following are examples of computable Polish group actions:

- GL_n acting on \mathbb{R}^n.
- Any computable Polish group acting on itself by conjugation.
- $Hom^+[0, 1]$ acting on $C[0, 1]$ by right composition (using sup norm).
Part 2:
Theorems from computable structure theory.
Theorem (((2) [Scott 65; Lopez-Escobar 65; Goncharov 75; M. 14])

For a structure \mathcal{A}, the following are equivalent:

1. The set $\{ \mathcal{B} \in \text{Mod}(L) : \mathcal{B} \cong \mathcal{A} \}$ is Σ^0_3.
2. \mathcal{A} is computably categorical on a cone.
3. \mathcal{A} has a Scott family of \exists-formulas with parameters.
4. \mathcal{A} has a Σ^∞_3 Scott sentence.
Computable categoricity

Definition A structure \mathcal{A} is *computably categorical (c.c.)* if

every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A}.

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12]) There is no nice characterization of computably categorical structures.

The set of indices of computably categorical structures is Π^0_1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.
Computable categoricity

Definition A structure \mathcal{A} is *computably categorical (c.c.)* if every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A}.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12]) There is no nice characterization of computably categorical structures. The set of indices of computably categorical structures is Π^1_1-complete. Nice characterizations exist if we relativize to all oracles on a cone.
Computable categoricity

Definition A structure \mathcal{A} is *computably categorical (c.c.*) if every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A}.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
Computable categoricity

Definition A structure \mathcal{A} is *computably categorical (c.c.)* if every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A}.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12]) There is no nice characterization of computably categorical structures. The set of indices of computably categorical structures is Π^1_1-complete. Nice characterizations exist if we relativize to all oracles on a cone.
Computable categoricity

Definition A structure \mathcal{A} is *computably categorical (c.c.)* if every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A}.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov, La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \iff it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12]) There is no nice characterization of computably categorical structures. The set of indices of computably categorical structures is Π_1^1-complete. Nice characterizations exist if we relativize to all oracles on a cone.
Computable categoricity

Definition A structure \mathcal{A} is *computably categorical (c.c.)* if every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A}.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \iff it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].
- A torsion-free abelian group is c.c. \iff it has finite rank [Nurtazin 74].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12]) There is no nice characterization of computably categorical structures. The set of indices of computably categorical structures is Π^0_1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.
Definition A structure \mathcal{A} is *computably categorical (c.c.)* if every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A}.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \iff it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].
- A torsion-free abelian group is c.c. \iff it has finite rank [Nurtazin 74].
- A computable p-group is c.c. \iff it can be written in one of the following forms: (i) $(\mathbb{Z}(p^\infty))^\ell \oplus G$ for $\ell \in \omega \cup \{\infty\}$ and G finite, or (ii) $(\mathbb{Z}(p^\infty))^n \oplus (\mathbb{Z}_{p^k})^\infty \oplus G$ where G is finite, and $n, k \in \omega$ [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12]) There is no nice characterization of computably categorical structures. The set of indices of computably categorical structures is Π^1_1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.
Computable categoricity

Definition A structure \(\mathcal{A} \) is *computably categorical (c.c.)* if every computable \(\mathcal{B} \) isomorphic to \(\mathcal{A} \) is computably isomorphic to \(\mathcal{A} \).

- A linear ordering is c.c. \(\iff \) it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \(\iff \) it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \(\iff \) it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \(\iff \) it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].
- A torsion-free abelian group is c.c. \(\iff \) it has finite rank [Nurtazin 74].
- A computable p-group is c.c. \(\iff \) it can be written in one of the following forms: (i) \((\Bbb{Z}(p^{\infty}))^\ell \oplus G \) for \(\ell \in \omega \cup \{\infty\} \) and \(G \) finite, or (ii) \((\Bbb{Z}(p^{\infty}))^n \oplus (\Bbb{Z}(p^k)^\infty \oplus G \) where \(G \) is finite, and \(n, k \in \omega \) [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures.
Computable categoricity

Definition A structure \mathcal{A} is *computably categorical (c.c.)* if every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A}.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \iff it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].
- A torsion-free abelian group is c.c. \iff it has finite rank [Nurtazin 74].
- A computable p-group is c.c. \iff it can be written in one of the following forms: (i) $(\mathbb{Z}(p^\infty))^\ell \oplus G$ for $\ell \in \omega \cup \{\infty\}$ and G finite, or (ii) $(\mathbb{Z}(p^\infty))^n \oplus (\mathbb{Z}(p^k)^\infty \oplus G$ where G is finite, and $n, k \in \omega$ [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures. The set of indices of computably categorical structures is Π^1_1-complete.
Computable categoricity

Definition A structure \mathcal{A} is *computably categorical (c.c.)* if every computable \mathcal{B} isomorphic to \mathcal{A} is computably isomorphic to \mathcal{A}.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \iff it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].
- A torsion-free abelian group is c.c. \iff it has finite rank [Nurtazin 74].
- A computable p-group is c.c. \iff it can be written in one of the following forms: (i) $(\mathbb{Z}(p^\infty))^\ell \oplus G$ for $\ell \in \omega \cup \{\infty\}$ and G finite, or (ii) $(\mathbb{Z}(p^\infty))^n \oplus (\mathbb{Z}(p^k)^\infty \oplus G$ where G is finite, and $n, k \in \omega$ [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures. The set of indices of computably categorical structures is Π^1_1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.
Computable categoricity

Definition A structure \mathcal{A} is **computably categorical (c.c.) on a cone** if, there is a $C \in 2^\omega$ such that for very $Z \geq_T C$, every Z-computable \mathcal{B} isomorphic to \mathcal{A} is Z-computably isomorphic to \mathcal{A}.

- A linear ordering is c.c. \iff it has finitely many adjacencies [Dzgoev, Goncharov 80].
- A Boolean algebras is c.c. \iff it has finitely many atoms [Goncharov][La Roche 78].
- A ordered abelian group is c.c. \iff it has finite rank [Goncharov, Lempp, and Solomon 03].
- A tree of finite height is c.c. \iff it is of finite type [Lempp, McCoy, R. Miller, Solomon 05].
- A torsion-free abelian group is c.c. \iff it has finite rank [Nurtazin 74].
- A computable p-group is c.c. \iff it can be written in one of the following forms: (i) $(\mathbb{Z}(p^{-\infty}))^\ell \oplus G$ for $\ell \in \omega \cup \{\infty\}$ and G finite, or (ii) $(\mathbb{Z}(p^{-\infty}))^n \oplus (\mathbb{Z}(p^k)^\infty \oplus G$ where G is finite, and $n, k \in \omega$ [Goncharov 80][Smith81].

Theorem ([Downey, Kach, Lempp, Lewis, Montalbán, Turetsky 12])

There is no nice characterization of computably categorical structures. The set of indices of computably categorical structures is Π^1_1-complete.

Nice characterizations exist if we relativize to all oracles on a cone.
Categoricity on group actions

Recall: A computable structure $\mathcal{A} \in \text{Mod}(L)$ is \textit{computably categorical} if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_\infty$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Antonio Montalbán (U.C. Berkeley)
Categoricity on group actions

Recall: A computable structure $\mathcal{A} \in \text{Mod}(L)$ is \textit{computably categorical} if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_\infty$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have a computable Polish group action of G on \mathcal{X}.

- x^2 and $\sin(4\pi x)$ are computably categorical.
- One can build computable functions that are not.

Definition: A point $x \in \mathcal{X}$ is computably categorical on a cone if there is a $C \in 2^\omega$ such that for every $Z \geq T^C$, for every Z-computable $y \equiv x$, there is a Z-computable $g \in G$ with $g \cdot x = y$.
Categoricity on group actions

Recall: A computable structure $\mathcal{A} \in \text{Mod}(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_\infty$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have an computable Polish group action of G on X.

Definition: A point $x \in X$ is *computably categorical* if for every computable $y \equiv x$, there is a computable $g \in G$ with $g \cdot x = y$.

Example
- x^2 and $\sin(4\pi x)$ are computably categorical.
- One can build computable functions that are not.

Definition: A point $x \in X$ is *computably categorical on a cone* if there is a $C \in 2^\omega$ such that for every $Z \geq T_C$, for every Z-computable $y \equiv x$, there is a Z-computable $g \in G$ with $g \cdot x = y$.
Categoricity on group actions

Recall: A computable structure $\mathcal{A} \in \text{Mod}(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_\omega$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have a computable Polish group action of \mathcal{G} on \mathcal{X}.

Definition: A point $x \in \mathcal{X}$ is *computably categorical* if for every computable $y \equiv x$, there is a computable $g \in \mathcal{G}$ with $g \cdot x = y$.

Example: Work out $\text{Hom}^+[0,1]$ acting on $C[0,1]$ by right composition.

- x^2 and $\sin(4\pi x)$ are computably categorical.
- One can build computable functions that are not.

Definition: A point $x \in \mathcal{X}$ is *computably categorical* on a cone if there is a $C \in 2^\omega$ such that for every $Z \supseteq T_C$, for every Z-computable $y \equiv x$, there is a Z-computable $g \in \mathcal{G}$ with $g \cdot x = y$.
Recall: A computable structure $\mathcal{A} \in \text{Mod}(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_\infty$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have a computable Polish group action of \mathcal{G} on \mathcal{X}.

Definition: A point $x \in \mathcal{X}$ is *computably categorical* if for every computable $y \equiv x$, there is a computable $g \in \mathcal{G}$ with $g \cdot x = y$.

Example: Work out $\text{Hom}^+[0,1]$ acting on $C[0,1]$ by right composition.
- x^2 and $\sin(4\pi x)$ are computably categorical.
Categoricity on group actions

Recall: A computable structure $\mathcal{A} \in \text{Mod}(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_\infty$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have an computable Polish group action of G on \mathcal{X}.

Definition: A point $x \in \mathcal{X}$ is *computably categorical* if for every computable $y \equiv x$, there is a computable $g \in G$ with $g \cdot x = y$.

Example: Work out $\text{Hom}^+[0, 1]$ acting on $C[0, 1]$ by right composition.
- x^2 and $\sin(4\pi x)$ are computably categorical.
- One can build computable functions that are not.
Categoricity on group actions

Recall: A computable structure $\mathcal{A} \in \text{Mod}(L)$ is *computably categorical* if for every computable $\mathcal{B} \cong \mathcal{A}$, there is a computable $g \in S_\infty$ with $g \cdot \mathcal{A} = \mathcal{B}$.

Recall that we have a computable Polish group action of \mathcal{G} on \mathcal{X}.

Definition: A point $x \in \mathcal{X}$ is *computably categorical* if for every computable $y \equiv x$, there is a computable $g \in \mathcal{G}$ with $g \cdot x = y$.

Example: Work out $\text{Hom}^+[0,1]$ acting on $C[0,1]$ by right composition.
- x^2 and $\sin(4\pi x)$ are computably categorical.
- One can build computable functions that are not.

Definition: A point $x \in \mathcal{X}$ is *computably categorical on a cone* if there is a $C \in 2^\omega$ such that for every $Z \supseteq_T C$, for every Z-computable $y \equiv x$, there is a Z-computable $g \in \mathcal{G}$ with $g \cdot x = y$.
Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14])

For a structure A, the following are equivalent:

1. A is computably categorical on a cone.
2. A has a Scott family of \exists-formulas with parameters.
3. A has a Σ^0_3 Scott sentence.
4. The set $\{B \in \text{Mod}(L) : B \cong A\}$ is Σ^0_3.

Question: If we have a computable Polish action of G on X, do we have that $x \in X$ is computably categorical on a cone \iff its orbit is Σ^0_3.
Theorem (2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14])

For a structure A, the following are equivalent:

1. A is computably categorical on a cone.
2. A has a Scott family of \exists-formulas with parameters.
3. A has a Σ^m_3 Scott sentence.
4. The set $\{B \in \text{Mod}(L) : B \cong A\}$ is Σ^0_3.

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples.
Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14])

For a structure A, the following are equivalent:

1. A is computably categorical on a cone.
2. A has a Scott family of \exists-formulas with parameters.
3. A has a Σ^in_3 Scott sentence.
4. The set $\{B \in \text{Mod}(L) : B \cong A\}$ is Σ^0_3.

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples.

(1) \iff (2) is due to [Goncharov 75].
Theorem (2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14])

For a structure \mathcal{A}, the following are equivalent:

1. \mathcal{A} is computably categorical on a cone.
2. \mathcal{A} has a Scott family of \exists-formulas with parameters.
3. \mathcal{A} has a Σ^i_3 Scott sentence.
4. The set $\{B \in \text{Mod}(L) : B \cong \mathcal{A}\}$ is Σ^0_3.

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples.
(1) \iff (2) is due to [Goncharov 75].
(3) A Scott sentence one that determines \mathcal{A} up to isomorphism, within $\text{Mod}(L)$.
Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14])

For a structure \mathcal{A}, the following are equivalent:

1. \mathcal{A} is computably categorical on a cone.
2. \mathcal{A} has a Scott family of \exists-formulas with parameters.
3. \mathcal{A} has a Σ^0_3 Scott sentence.
4. The set $\{\mathcal{B} \in \text{Mod}(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ^0_3.

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples.

(1) \iff (2) is due to [Goncharov 75].

(3) A Scott sentence one that determines \mathcal{A} up to isomorphism, within $\text{Mod}(L)$.

(2) \implies (3) is due to [Scott 65]
Theorem (2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14])

For a structure \mathcal{A}, the following are equivalent:

1. \mathcal{A} is computably categorical on a cone.
2. \mathcal{A} has a Scott family of \exists-formulas with parameters.
3. \mathcal{A} has a Σ^in_3 Scott sentence.
4. The set $\{\mathcal{B} \in \text{Mod}(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ^0_3.

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples.
(1) \iff (2) is due to [Goncharov 75].
(3) A Scott sentence one that determines \mathcal{A} up to isomorphism, within $\text{Mod}(L)$.
(2) \implies (3) is due to [Scott 65]
(2) \iff (3) [M. 14] uses sharp version of the type-omitting theorem for $L_{\omega_1,\omega}$.
Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14])

For a structure \mathcal{A}, the following are equivalent:

1. \mathcal{A} is computably categorical on a cone.
2. \mathcal{A} has a Scott family of \exists-formulas with parameters.
3. \mathcal{A} has a Σ^in_3 Scott sentence.
4. The set $\{\mathcal{B} \in \text{Mod}(L) : \mathcal{B} \cong \mathcal{A}\}$ is Σ^0_3.

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples.
(1) \iff (2) is due to [Goncharov 75].
(3) A Scott sentence one that determines \mathcal{A} up to isomorphism, within $\text{Mod}(L)$.
(2) \implies (3) is due to [Scott 65]
(2) \iff (3) [M. 14] uses sharp version of the type-omitting theorem for $L_{\omega_1,\omega}$.
(3) \iff (4) is due to [Lopez-Escobar 65].
Theorem ((2) [Lopez-Escobar 65; Scott 65; Goncharov 75; M. 14])

For a structure A, the following are equivalent:

1. A is computably categorical on a cone.
2. A has a Scott family of \exists-formulas with parameters.
3. A has a Σ^m_3 Scott sentence.
4. The set $\{B \in \text{Mod}(L) : B \cong A\}$ is Σ^0_3.

(2) A Scott family is a set of formulas defining the automorphism orbits of all the tuples.
(1) \iff (2) is due to [Goncharov 75].
(3) A Scott sentence one that determines A up to isomorphism, within $\text{Mod}(L)$.
(2) \implies (3) is due to [Scott 65]
(2) \iff (3) [M. 14] uses sharp version of the type-omitting theorem for $L_{\omega_1,\omega}$.
(3) \iff (4) is due to [Lopez-Escobar 65].

Question: If we have a computable Polish action of G on X, do we have that $x \in X$ is computably categorical on a cone \iff its orbit is Σ^0_3.
A simpler question

Theorem ((1) [Lopez-Escobar 65; Scott 65; Goncharov 75; Ventsov 93; M. 14])

For a structure A, the following are equivalent:

1. A is uniformly computably categorical on a cone.
2. A has a Scott family without parameters.
3. A has a Π^1_2 Scott sentence.
4. The set $\{B \in \text{Mod}(L) : B \cong A\}$ is Π^0_2.

Definition: A point $x \in X$ is uniformly computably categorical if there is a computable operator Φ that, given a fast Cauchy sequence for $y \equiv x$, outputs $g \in G$ with $g \cdot x = y$.

Question: If we have a computable Polish action of G on X, do we have that $x \in X$ is uniformly computably categorical on a cone \iff its orbit is G^δ.
A simpler question

Theorem (1) [Lopez-Escobar 65; Scott 65; Goncharov 75; Ventsov 93; M. 14]

For a structure A, the following are equivalent:

1. A is uniformly computably categorical on a cone.
2. A has a Scott family without parameters.
3. A has a Π^1_2 Scott sentence.
4. The set $\{B \in \text{Mod}(L) : B \cong A\}$ is Π^0_2.

Definition: A point $x \in X$ is uniformly computably categorical if there is a computable operator Φ that, given a fast Cauchy sequence for $y \equiv x$, outputs $g \in G$ with $g \cdot x = y$.
A simpler question

Theorem (1) [Lopez-Escobar 65; Scott 65; Goncharov 75; Ventsov 93; M. 14])

For a structure \mathcal{A}, the following are equivalent:

1. \mathcal{A} is uniformly computably categorical on a cone.
2. \mathcal{A} has a Scott family without parameters.
3. \mathcal{A} has a Π^1_2 Scott sentence.
4. The set $\{ \mathcal{B} \in \text{Mod}(L) : \mathcal{B} \cong \mathcal{A} \}$ is Π^0_2.

Definition: A point $x \in \mathcal{X}$ is *uniformly computably categorical* if there is a computable operator Φ that, given a fast Cauchy sequence for $y \equiv x$, outputs $g \in \mathcal{G}$ with $g \cdot x = y$.

Question: If we have a computable Polish action of \mathcal{G} on \mathcal{X}, do we have that $x \in \mathcal{X}$ is uniformly computably categorical on a cone \iff its orbit is G_δ.
Definition: A point $x \in X$ is **uniformly computably categorical** if there is a computable operator Φ that, given a fast Cauchy sequence for $y \equiv x$, outputs $g \in G$ with $g \cdot x = y$.

Lemma $x \in X$ is uniformly computably categorical \iff the map $g \mapsto g \cdot x : G \to X$ is effectively open.

Theorem [Effross 65] For a point $x \in X$, TFAE:

1. The G-orbit of x is G-δ.
2. The map $f \mapsto f \cdot x : G \to X$ is open.

Corollary (1) For a structure A, TFAE:

1. A has a Π^0_2 Scott sentence.
2. A is uniformly computably categorical on a cone.
Uniformly computable categoricity

Definition: A point \(x \in \mathcal{X} \) is *uniformly computably categorical* if there is a computable operator \(\Phi \) that, given a fast Cauchy sequence for \(y \equiv x \), outputs \(g \in \mathcal{G} \) with \(g \cdot x = y \).

Lemma \(x \in \mathcal{X} \) is uniformly computably categorical \(\iff \) the map \(g \mapsto g \cdot x : \mathcal{G} \to \mathcal{X} \) is effectively open.

Theorem [Effross 65] For a point \(x \in \mathcal{X} \), TFAE:

1. The \(\mathcal{G} \)-orbit of \(x \) is \(\mathcal{G} \delta \).
2. The map \(f \mapsto f \cdot x : \mathcal{G} \to \mathcal{X} \) is open.

Corollary (1) For a structure \(\mathcal{A} \), TFAE:

1. \(\mathcal{A} \) has a \(\Pi_1 \) Scott sentence.
2. \(\mathcal{A} \) is uniformly computably categorical on a cone.
Uniformly computable categoricity

Definition: A point $x \in \mathcal{X}$ is *uniformly computably categorical* if there is a computable operator Φ that,

given a fast Cauchy sequence for $y \equiv x$, outputs $g \in \mathcal{G}$ with $g \cdot x = y$.

Lemma $x \in \mathcal{X}$ is uniformly computably categorical on a cone \iff the map $g \mapsto g \cdot x : \mathcal{G} \to \mathcal{X}$ is open.

Theorem [Effros 65] For a point $x \in \mathcal{X}$, TFAE:

1. The \mathcal{G}-orbit of x is \mathcal{G}-δ.
2. The map $f \mapsto f \cdot x : \mathcal{G} \to \mathcal{X}$ is open.

Corollary (1) For a structure \mathcal{A}, TFAE:

1. \mathcal{A} has a Π_1^2 Scott sentence.
2. \mathcal{A} is uniformly computably categorical on a cone.
Definition: A point \(x \in \mathcal{X} \) is *uniformly computably categorical* if there is a computable operator \(\Phi \) that, given a fast Cauchy sequence for \(y \equiv x \), outputs \(g \in \mathcal{G} \) with \(g \cdot x = y \).

Lemma \(x \in \mathcal{X} \) is uniformly computably categorical on a cone \(\iff \) the map \(g \mapsto g \cdot x : \mathcal{G} \to \mathcal{X} \) is effectively open.

Theorem [Effross 65] For a point \(x \in \mathcal{X} \), TFAE:

1. The \(\mathcal{G} \)-orbit of \(x \) is \(G_\delta \).
2. the map \(f \mapsto f \cdot x : G \to \mathcal{X} \) is open.
Uniformly computable categoricity

Definition: A point \(x \in \mathcal{X} \) is *uniformly computably categorical* if there is a computable operator \(\Phi \) that, given a fast Cauchy sequence for \(y \equiv x \), outputs \(g \in \mathcal{G} \) with \(g \cdot x = y \).

Lemma \(x \in \mathcal{X} \) is uniformly computably categorical on a cone \(\iff \) the map \(g \mapsto g \cdot x : \mathcal{G} \to \mathcal{X} \) is open.

Theorem [Effross 65] For a point \(x \in \mathcal{X} \), TFAE:

1. The \(\mathcal{G} \)-orbit of \(x \) is \(G_\delta \).
2. The map \(f \mapsto f \cdot x : \mathcal{G} \to \mathcal{X} \) is open.

Corollary (1) For a structure \(\mathcal{A} \), TFAE:

1. \(\mathcal{A} \) has a \(\Pi^1_2 \) Scott sentence.
2. \(\mathcal{A} \) is uniformly computably categorical on a cone.
Theorem (2) [L-E 65; G. 75; M. 14] For a structure \mathcal{A}, TFAE:

1. \mathcal{A} is computably categorical on a cone.
2. \mathcal{A} has a Σ_3^in Scott sentence.
Theorem (2) [L-E 65; G. 75; M. 14] For a structure \mathcal{A}, TFAE:

1. \mathcal{A} is computably categorical on a cone.
2. \mathcal{A} has a Σ_3^n Scott sentence.

Recall: $x \in X$ is computably categorical \iff for computable $y \equiv x$ there is computable $g \in G$ with $g \cdot x = y$.
Theorem (2) [L-E 65; G. 75; M. 14] For a structure \mathcal{A}, TFAE:

1. \mathcal{A} is computably categorical on a cone.
2. \mathcal{A} has a Σ^0_3 Scott sentence.

Recall: $x \in X$ is computably categorical \iff for computable $y \equiv x$ there is computable $g \in G$ with $g \cdot x = y$.

Recall: [Lopez-Escobar 65]: \mathcal{A} has a Σ^0_3 Scott sentence $\iff \{ \mathcal{B} \in \text{Mod}(L) : \mathcal{B} \cong \mathcal{A} \}$ is $F_{\sigma\delta}$.
Back to Theorem 2

Theorem (2) [L-E 65; G. 75; M. 14] For a structure \mathcal{A}, TFAE:

1. \mathcal{A} is computably categorical on a cone.
2. \mathcal{A} has a Σ^in_3 Scott sentence.

Recall: $x \in X$ is computably categorical \iff for computable $y \equiv x$ there is computable $g \in G$ with $g \cdot x = y$.

Recall: [Lopez-Escobar 65]: \mathcal{A} has a Σ^in_3 Scott sentence $\iff \{\mathcal{B} \in \text{Mod}(L) : \mathcal{B} \cong \mathcal{A}\}$ is $F_{\sigma\delta}$.

Theorem [Melnikov, M.] For a point $x \in X$, TFAE:

1. x is computably categorical on a cone.
2. The G-orbit of x is $G_{\delta\sigma}$.
Theorem 3 – Knight’s group 90’s

Recall: Given a structure \mathcal{A}:

$$DgSp(\mathcal{A}) = \{Z \in 2^\omega : Z \text{ computes a copy of } \mathcal{A}\}.$$
Recall: Given a structure \mathcal{A}:
$$DgSp(\mathcal{A}) = \{ Z \in 2^\omega : Z \text{ computes a copy of } \mathcal{A} \}.$$

Theorem Each of the following is a degree spectra of some structure:
- upper cones: $\{ Z \in 2^\omega : Z \geq_T C \}$ for some $C \in 2^\omega$ [Van der Waerden 30]
- non-zero degrees: $\{ Z \in 2^\omega : Z \not\equiv_T \emptyset \}$ [Slaman 98; Wehner 98]
- non-Δ^0_2 degrees: $\{ Z \in 2^\omega : Z \not\leq_T 0' \}$ [Kalimullin 08]
- the hyperimmune degrees [Csima, Kalimullin 10]
- non-hyp-degrees: $\{ Z \in 2^\omega : Z \not\in \text{hyp} \}$ [Greenberg, Montalbán, Slaman 12]

Theorem [Knight et al. 90’s] The degree spectrum of a structure is never a non-trivial union of countably many upper cones.
Theorem 3 – Knight’s group 90’s

Recall: Given a structure \mathcal{A}:

$$DgSp(\mathcal{A}) = \{ Z \in 2^\omega : Z \text{ computes a copy of } \mathcal{A} \}.$$

Theorem Each of the following is a degree spectra of some structure:

- upper cones: \{ $Z \in 2^\omega : Z \geq_T C$ \} for some $C \in 2^\omega$ [Van der Waerden 30]
- non-zero degrees: \{ $Z \in 2^\omega : Z \not\equiv_T \emptyset$ \} [Slaman 98; Wehner 98]
- non-Δ^0_2 degrees: \{ $Z \in 2^\omega : Z \not\leq_T \emptyset'$ \} [Kalimullin 08]
- the hyperimmune degrees [Csima, Kalimullin 10]
- non-hyp-degrees: \{ $Z \in 2^\omega : Z \not\in \text{hyp}$ \} [Greenberg, Montalbán, Slaman 12]

Theorem [Knight et al. 90’s] The degree spectrum of a structure is never a non-trivial union of countably many upper cones.
Theorem 3 – Knight’s group 90’s

Recall: Given a structure \mathcal{A}:

$$DgSp(\mathcal{A}) = \{ Z \in 2^\omega : Z \text{ computes a copy of } \mathcal{A} \}.$$

Theorem Each of the following is a degree spectra of some structure:

- upper cones: $\{ Z \in 2^\omega : Z \geq_T C \}$ for some $C \in 2^\omega$ [Van der Waerden 30]
- non-zero degrees: $\{ Z \in 2^\omega : Z \not\equiv_T \emptyset \}$ [Slaman 98; Wehner 98]
- non-Δ^0_2 degrees: $\{ Z \in 2^\omega : Z \not\leq_T T' \}$ [Kalimullin 08]
- the hyperimmune degrees [Csima, Kalimullin 10]
- non-hyp-degrees: $\{ Z \in 2^\omega : Z \not\in \text{hyp} \}$ [Greenberg, Montalbán, Slaman 12]
Recall: Given a structure A:

$$DgSp(A) = \{ Z \in 2^\omega : Z \text{ computes a copy of } A \}.$$

Theorem Each of the following is a degree spectra of some structure:

- upper cones: $\{ Z \in 2^\omega : Z \geq_T C \}$ for some $C \in 2^\omega$ [Van der Waerden 30]
- non-zero degrees: $\{ Z \in 2^\omega : Z \not\equiv_T \emptyset \}$ [Slaman 98; Wehner 98]
- non-Δ^0_2 degrees: $\{ Z \in 2^\omega : Z \not\leq_T 0' \}$ [Kalimullin 08]
- the hyperimmune degrees [Csima, Kalimullin 10]
Theorem 3 – Knight’s group 90’s

Recall: Given a structure \mathcal{A}:

$DgSp(\mathcal{A}) = \{ Z \in 2^\omega : Z$ computes a copy of $\mathcal{A} \}$.

Theorem Each of the following is a degree spectra of some structure:

- upper cones: $\{ Z \in 2^\omega : Z \geq_T C \}$ for some $C \in 2^\omega$ [Van der Waerden 30]
- non-zero degrees: $\{ Z \in 2^\omega : Z \not\equiv_T \emptyset \}$ [Slaman 98; Wehner 98]
- non-Δ^0_2 degrees: $\{ Z \in 2^\omega : Z \not\leq_T 0' \}$ [Kalimullin 08]
- the hyperimmune degrees [Csima, Kalimullin 10]
- non-hyp-degrees: $\{ Z \in 2^\omega : Z \not\in hyp \}$ [Greenberg, Montalbán, Slaman 12]
Recall: Given a structure \mathcal{A}:
$$DgSp(\mathcal{A}) = \{ Z \in 2^{\omega} : Z \text{ computes a copy of } \mathcal{A} \}.$$

Theorem Each of the following is a degree spectra of some structure:
- upper cones: $\{ Z \in 2^{\omega} : Z \geq_T C \}$ for some $C \in 2^{\omega}$ [Van der Waerden 30]
- non-zero degrees: $\{ Z \in 2^{\omega} : Z \not\equiv_T \emptyset \}$ [Slaman 98; Wehner 98]
- non-Δ^0_2 degrees: $\{ Z \in 2^{\omega} : Z \not\leq_T 0' \}$ [Kalimullin 08]
- the hyperimmune degrees [Csima, Kalimullin 10]
- non-hyp-degrees: $\{ Z \in 2^{\omega} : Z \not\in \text{hyp} \}$ [Greenberg, Montalbán, Slaman 12]
- ...
Recall: Given a structure \mathcal{A}:

$$DgSp(\mathcal{A}) = \{ Z \in 2^\omega : Z \text{ computes a copy of } \mathcal{A} \}.$$

Theorem Each of the following is a degree spectra of some structure:
- upper cones: $\{ Z \in 2^\omega : Z \geq_T C \}$ for some $C \in 2^\omega$ [Van der Waerden 30]
- non-zero degrees: $\{ Z \in 2^\omega : Z \not\equiv_T \emptyset \}$ [Slaman 98; Wehner 98]
- non-Δ^0_2 degrees: $\{ Z \in 2^\omega : Z \not\leq_T 0' \}$ [Kalimullin 08]
- the hyperimmune degrees [Csima, Kalimullin 10]
- non-hyp-degrees: $\{ Z \in 2^\omega : Z \not\in hypoth \}$ [Greenberg, Montalbán, Slaman 12]
- ...

Theorem [Knight et al. 90's] The degree spectrum of a structure is never a non-trivial union of countably many upper cones.
Theorem 3 – Knight’s group 90’s

Recall: Given a structure A:

$$DgSp(A) = \{ Z \in 2^\omega : Z \text{ computes a copy of } A \}.$$

Theorem [Knight et al. 90’s] The degree spectrum of a structure is never a non-trivial union of countably many upper cones.
Theorem 3 – Knight’s group 90’s

Recall: Given a structure \mathcal{A}:
\[DgSp(\mathcal{A}) = \{ Z \in 2^\omega : Z \text{ computes a copy of } \mathcal{A} \}. \]

Theorem [Knight et al. 90’s] The degree spectrum of a structure is never a non-trivial union of countably many upper cones.

Recall that we have an computable Polish group action of \mathcal{G} on \mathcal{X}.

Definition For $x \in \mathcal{X}$ we define the *degree spectrum of X* be
\[DgSp_\mathcal{G}(x) = \{ Z \in 2^\omega : Z \text{ computes a point } y \equiv x \}. \]
Theorem 3 – Knight’s group 90’s

Recall: Given a structure \(A \):
\[
DgSp(A) = \{ Z \in \omega^\omega : Z \text{ computes a copy of } A \}.
\]

Theorem [Knight et al. 90’s] The degree spectrum of a structure

is never a non-trivial union of countably many upper cones.

Recall that we have a computable Polish group action of \(G \) on \(X \).

Definition For \(x \in X \) we define the *degree spectrum of \(X \)* be
\[
DgSp_G(x) = \{ Z \in \omega^\omega : Z \text{ computes a point } y \equiv x \}.
\]

In the general setting of Polish group actions:

Theorem [Melnikov, M.] The degree spectrum of a point

is never a non-trivial union of two upper cones.
Definition A structure \mathcal{A} has *computable dimension* n if
Definition A structure \mathcal{A} has *computable dimension* n if the set \(\{ \mathcal{B} \cong \mathcal{A} : \mathcal{B} \text{ computable} \} \) splits into $n \cong^c$-equivalence classes, where $\mathcal{B} \cong^c \mathcal{C}$ if there is a computable isomorphism between them.
Theorem 4 – Computable dimension.

Definition A structure \mathcal{A} has *computable dimension* n if the set $\{\mathcal{B} \cong \mathcal{A} : \mathcal{B} \text{ computable}\}$ splits into $n \cong^c$-equivalence classes, where $\mathcal{B} \cong^c \mathcal{C}$ if there is a computable isomorphism between them.

Theorem [Goncharov 80] For every $n \in \{1, 2, 3, \ldots, \infty\}$, there is a computable structure with computable dimension n.
Theorem 4 – Computable dimension.

Definition A structure \(\mathcal{A} \) has *computable dimension* \(n \) if the set \(\{ \mathcal{B} \cong \mathcal{A} : \mathcal{B} \text{ computable} \} \) splits into \(n \cong^c \)-equivalence classes, where \(\mathcal{B} \cong^c \mathcal{C} \) if there is a computable isomorphism between them.

Theorem [Goncharov 80] For every \(n \in \{ 1, 2, 3, \ldots, \infty \} \), there is a computable structure with computable dimension \(n \).

Theorem Any structure in the following classes has computable dimension either 1 or \(\omega \):

- Boolean Algebras [Goncharov 73]
- Linear Ordering [Remmel 81][Goncharov and Dzgoev 80]
- Real algebraically closed fields [Nurtazin [1974]]
- Archimedean ordered group [Goncharov, Lempp and Solomon 2000]
Proper finite computable dimension doesn’t relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.
Proper finite computable dimension doesn’t relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.

Recall that we have a computable Polish group action of G on X.
Proper finite computable dimension doesn’t relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.

Recall that we have an computable Polish group action of G on X.

Definition A computable point x has *computable dimension* n if
Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.

Recall that we have an computable Polish group action of \(G \) on \(X \).

Definition A computable point \(x \) has **computable dimension** \(n \) if the set \(\{ y \equiv x : y \text{ computable} \} \) splits into \(n \equiv^c \)-orbits, where \(z \equiv^c w \) if there is a computable \(g \in G \) with \(g \cdot z = w \).
Proper finite computable dimension doesn’t relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.

Recall that we have a computable Polish group action of G on X.

Definition A computable point x has *computable dimension* n if the set $\{ y \equiv x : y \text{ computable} \}$ splits into $n \equiv^c$-orbits,

where $z \equiv^c w$ if there is a computable $g \in G$ with $g \cdot z = w$.

In the general setting of Polish group actions:

Theorem [Melnikov, M.] If a point $x \in X$ has finite dimension on a cone it is computably categorical on a cone.
Proper finite computable dimension doesn’t relativize

Theorem [McCoy 02] If a structure has finite dimension on a cone it is computably categorical on a cone.

Recall that we have a computable Polish group action of G on X.

Definition A computable point x has *computable dimension* n if the set $\{ y \equiv x : y \text{ computable} \}$ splits into $n \equiv^c$-orbits, where $z \equiv^c w$ if there is a computable $g \in G$ with $g \cdot z = w$.

In the general setting of Polish group actions:

Theorem [Melnikov, M.] If a point $x \in X$ has finite dimension on a cone it is computably categorical on a cone.

Proof: Show that if a structure has finite dimension on a cone, its orbits is Σ^0_3.
Theorem 5 – Goncharov

Theorem ([Goncharov 80’s])

If a computable structure has two computable copies which are Δ^0_2-isomorphic but not computably isomorphic, then the structure has infinite computable dimension.
Theorem 5 – Goncharov

Theorem ([Goncharov 80’s])

If a computable structure has two computable copies which are Δ^0_2-isomorphic but not computably isomorphic, then the structure has infinite computable dimension.

Recall that we have an computable Polish group action of \mathcal{G} on \mathcal{X}.
Theorem 5 – Goncharov

Theorem ([Goncharov 80’s])

If a computable structure has two computable copies which are Δ^0_2-isomorphic but not computably isomorphic, then the structure has infinite computable dimension.

Recall that we have a computable Polish group action of \mathcal{G} on \mathcal{X}.

Def: y and z are NH-equivalent if there is *non-high, c.e.* $g \in \mathcal{G}$ with $g \cdot y = z$.
Theorem ([Goncharov 80’s])

If a computable structure has two computable copies
which are Δ^0_2-isomorphic but not computably isomorphic,
then the structure has infinite computable dimension.

Recall that we have a computable Polish group action of \mathcal{G} on \mathcal{X}.

Def: y and z are NH-equivalent if there is *non-high, c.e.* $g \in \mathcal{G}$ with $g \cdot y = z$.

Theorem ([Melnikov, M.])

If in the orbit of a point there are two computable points
which are NH-equivalent but not computably equivalent,
then the point has infinite computable dimension.