Computability theory and uncountable structures

Noah Schweber

Sets and Computations, April 17 2015

Joint with Greg Igusa, Julia Knight and Antonio Montalbán
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Generically presentable structures</td>
</tr>
<tr>
<td>2</td>
<td>Computability in generic extensions</td>
</tr>
<tr>
<td>3</td>
<td>Versions of the reals</td>
</tr>
</tbody>
</table>
1. Generically presentable structures

2. Computability in generic extensions

3. Versions of the reals
Global behavior tends to be independent of the generic: if \mathbb{P} is reasonably homogeneous, then the theory of $V[G]$ does not depend on G. On the other hand, individual sets in generic extensions must vary wildly:

Theorem (Solovay)

Suppose G_0, G_1 are two mutually generics. Then $V[G_0] \cap V[G_1] = V$.

Proof. Take $\nu[G_0] \in (V[G_0] \cap V[G_1]) - V$ of minimal rank. Then $\nu[G_0] \subset V$.

If $\nu[G_0] = \mu[G_1]$, then this is forced by some $(p, q) \in \mathbb{P}^2$.

The set $\{x \in V : \exists r \leq p (r \models x \in \nu)\}$ is in V, and must equal $\nu[G_0]$.

□
Generically presentable structures

Solovay: if a set is in every generic extension by some forcing, it exists already.

Definition

A generically presentable structure up to \(\cong \) is a pair \((\nu, P)\) such that

\[
\models_P "\nu \text{ is a structure with domain } \omega" \quad \text{and} \quad \models_{P_2} "\nu[G_0] \cong \nu[G_1]".
\]

A copy of \((\nu, P)\) is a \(\mathcal{A} \in V \) with \(\models_P "\mathcal{A} \cong \nu". \) (Maybe \(\text{dom}(\mathcal{A}) \neq \omega. \))

Recently and independently introduced by Kaplan and Shelah.

Question

If \((\nu, P)\) is a generically presentable structure, what hypotheses ensure that it has a copy in \(V \)?
Looking at the forcing: positive results

Theorem (Knight, Montalbán, S.)

1. If \(A \) is generically presentable by a forcing not making \(\omega^2 \) countable, then \(A \) has a copy in \(V \).

2. If \(A \) is generically presentable by a forcing not making \(\omega^1 \) countable, then that copy is countable.

Independently proved by Kaplan and Shelah.

Proof. For (1), the age of the Morleyization of \(A \) lives in \(V \); by Delhomme-Pouzet-Sagi-Sauer, Fraisse limits of ages of size \(\aleph_1 \) exist.

For (2), Scott sentence is in \(L_{V \omega^1} \omega \) since \(\omega_{V[\mathbb{G}]} = \omega \), and existence of countable models is absolute. □
Theorem (Knight, Montalbán, S.)

1. If A is generically presentable by a forcing not making ω_2 countable, then A has a copy in V;

2. If A is generically presentable by a forcing not making ω_1 countable, then that copy is countable.
Looking at the forcing: positive results

Theorem (Knight, Montalbán, S.)

1. If A is generically presentable by a forcing not making ω_2 countable, then A has a copy in V;
2. If A is generically presentable by a forcing not making ω_1 countable, then that copy is countable.

Independently proved by Kaplan and Shelah.

Proof. For (1), the age of the Morleyization of A lives in V; by Delhomme-Pouzet-Sagi-Sauer, Fraïssé limits of ages of size \aleph_1 exist. For (2), Scott sentence is in $\mathcal{L}^{V}_{\omega_1 \omega}$ since $\omega_1^V = \omega_1^{V[G]}$, and existence of countable models is absolute. □
Counterexamples to Vaught’s conjecture

Corollary (Harrington)

Any counterexample to Vaught’s conjecture has models of size \aleph_1 with Scott rank arbitrarily high below ω_2.

Independently by Larson, and by Baldwin/S. Friedman/Koerwien/Laskowski.

Proof. Given $\alpha < \omega_2$, collapse ω_1 to ω, get $B \models T$ with $sr(B) > \alpha$. If B not generically presentable, can get perfect set of such models. So B is generically presentable, hence has a copy in V since ω_2^V is still uncountable. □

Remark

Hjorth showed that counterexamples need not have models of size \aleph_2.
Looking at the structure: positive results

Theorem (Knight, Montalbán, S.)

If \mathcal{A} is generically presentable and rigid (no nontrivial automorphisms), then \mathcal{A} has a copy in V.

Independently by Paul Larson.
Proof uses amalgamation argument — unique way to amalgamate is even better than lots of ways to amalgamate. Given $p \in \mathbb{P}$ presenting \mathcal{A}, look at portion \mathcal{A}_p of structure built by p; can glue these together in unique way, so inside V. □
Looking at the structure: positive results

Theorem (Knight, Montalbán, S.)

*If A is generically presentable and rigid (no nontrivial automorphisms), then A has a copy in V."

Independently by Paul Larson.

Proof uses amalgamation argument — unique way to amalgamate is even better than lots of ways to amalgamate. Given $p \in P$ presenting A, look at portion A_p of structure built by p; can glue these together in unique way, so inside V. □

Theorem (Zapletal, unpublished)

Generically presentable trees have copies.

Kaplan-Shelah, following Zapletal: study when generically presentable linear orders, models of superstable theories, already exist.
Theorem (Knight, Montalbán, S.)

If forcing with P makes ω^2 countable, then there is a structure A, generically presentable by P, which has no copy in the ground model. Independently by Kaplan-Shelah.

Uses construction of Laskowski and Shelah, and later Hjorth: theory with predicate U and no atomic models if $|U| = \aleph_2$, but countable atomic model in which U is set of indiscernibles. In generic extension, we can attach $(\omega^2, <)$ to indiscernibles of this model; resulting structure has a copy after making ω^2 countable but has no copy in ground model.
Looking at the forcing: negative results

Theorem (Knight, Montalbán, S.)

If forcing with \mathbb{P} makes ω_2 countable, then there is a structure \mathcal{A}, generically presentable by \mathbb{P}, which has no copy in the ground model.
Looking at the forcing: negative results

Theorem (Knight, Montalbán, S.)

If forcing with \(\mathbb{P} \) makes \(\omega_2 \) countable, then there is a structure \(\mathcal{A} \), generically presentable by \(\mathbb{P} \), which has no copy in the ground model.

Independently by Kaplan-Shelah

Uses construction of Laskowski and Shelah, and later Hjorth: theory with predicate \(U \) and no atomic models if \(|U| = \aleph_2 \), but countable atomic model in which \(U \) is set of indiscernibles. In generic extension, we can attach \((\omega_2, <)\) to indiscernibles of this model; resulting structure has a copy after making \(\omega_2 \) countable but has no copy in ground model.
Aside: generically presentable cardinalities

Definition

A generically presentable cardinality is a pair \((\nu, \mathbb{P})\) where \(\nu\) is a \(\mathbb{P}\)-name and \(\models_{\mathbb{P} \times \mathbb{P}} \nu[G_0] \equiv \nu[G_1].\) \((\nu, \mathbb{P})\) has no copy in \(V\) if for no \(A \in V\) do we have \(\models_{\mathbb{P}} A \equiv \nu.\)

Question

Is it consistent with ZF that there are generically presentable cardinalities with no copies?

Note that forcing over ZF-models can add new cardinalities (Ex: Truss ????)

Question (Zapletal)

Is it consistent with ZF that there is a generically presentable cardinality \((\nu, \mathbb{P})\) with no copy in \(V\), such that \(\nu\) is a name for a set of reals?
1. Generically presentable structures
2. Computability in generic extensions
3. Versions of the reals
Classical computable structure theory

We study the complexity of a structure by looking at its copies: for a countable structure S, a copy of S is a structure S' with domain ω isomorphic to S.

Throughout, structures have finite signature.

If \mathcal{A} is a countable structure, a copy of \mathcal{A} is a structure which is isomorphic to \mathcal{A} and has domain ω; we identify copies with the reals coding them.

Definition (Muchnik reducibility)

If \mathcal{A}, \mathcal{B} are structures, \mathcal{A} is *Muchnik reducible to* \mathcal{B} if (nonuniformly) every copy of \mathcal{B} computes a copy of \mathcal{A}; we write $\mathcal{A} \leq_w \mathcal{B}$.

Noah Schweber
Computability theory and uncountable structures
Classical computable structure theory

We study the complexity of a structure by looking at its copies: for a countable structure S, a copy of S is a structure S' with domain ω isomorphic to S.

Throughout, structures have finite signature.

If \mathcal{A} is a countable structure, a copy of \mathcal{A} is a structure which is isomorphic to \mathcal{A} and has domain ω; we identify copies with the reals coding them.

Definition (Muchnik reducibility)

If \mathcal{A}, \mathcal{B} are structures, \mathcal{A} is *Muchnik reducible to* \mathcal{B} if (nonuniformly) every copy of \mathcal{B} computes a copy of \mathcal{A}; we write $\mathcal{A} \leq_w \mathcal{B}$.

- \mathcal{A} is computably presentable $\implies \mathcal{A} \leq_w \mathcal{B}$
- For $X \subseteq \mathcal{A}$ finite, the substructure generated by X is $\leq_w \mathcal{A}$
- $\mathcal{L}, \mathcal{L}_0, \mathcal{L}_1$ linear orders $\implies \mathcal{L} \leq_w \mathcal{L}_0 + 1 + \mathcal{L} + 1 + \mathcal{L}_1$
- If $\mathcal{L} \prec \hat{\mathcal{L}}$ are linear orders, need not have $\mathcal{L} \leq_w \hat{\mathcal{L}}$ (Harrison order)
Uncountable computable structure theory

For \mathcal{A} uncountable, \mathcal{A} has no copies whatsoever, so \leq_w is not useful. There are many ways one might generalize computability structure theory to uncountable settings. Today: want notion which agrees with \leq_w on countable structures, and is generally not contingent on set-theoretic axioms.
Uncountable computable structure theory

For \mathcal{A} uncountable, \mathcal{A} has no copies whatsoever, so \leq_w is not useful. There are many ways one might generalize computability structure theory to uncountable settings.

Today: want notion which agrees with \leq_w on countable structures, and is generally not contingent on set-theoretic axioms.

We ask, “what would the complexity of \mathcal{A} be if \mathcal{A} were countable?”

Definition (Generic Muchnik reducibility (S.))

For \mathcal{A}, \mathcal{B} structures of arbitrary cardinality, we write $\mathcal{A} \leq^*_w \mathcal{B}$ if $\mathcal{A} \leq_w \mathcal{B}$ in every generic extension of the universe in which both are countable.

Can similarly study other computability-theoretic reductions between uncountable structures.
Absoluteness

Definition (Generic Muchnik reducibility (S.))

For \mathcal{A}, \mathcal{B} structures of arbitrary cardinality, $\mathcal{A} \leq^* \mathcal{B}$ if $\mathcal{A} \leq_w \mathcal{B}$ in every generic extension in which both are countable.
Absoluteness

Definition (Generic Muchnik reducibility (S.))
For \mathcal{A}, \mathcal{B} structures of arbitrary cardinality, $\mathcal{A} \leq^* \mathcal{B}$ if $\mathcal{A} \leq_w \mathcal{B}$ in every generic extension in which both are countable.

Theorem (Shoenfield Absoluteness)
If φ is Π^1_2 with parameters from \mathbb{R}, we have:

$$V[G] \models \varphi \iff V \models \varphi.$$

Corollary
- We can replace “every generic extension” by “some generic extension” in definition of generic Muchnik reducibility.
- For \mathcal{A}, \mathcal{B} countable, $\mathcal{A} \leq^* \mathcal{B} \iff \mathcal{A} \leq_w \mathcal{B}$.
Back to generic presentability

Theorem (Knight, Montalbán, S.)

If \mathcal{A} is generically presentable, and is generically Muchnik reducible to a structure $\mathcal{B} \in V$ with $|\mathcal{B}| \leq \aleph_1$, then \mathcal{A} has a copy in V.

Proof.
In $V[G]$ with $\omega = |\omega_1^V| < |\omega_2^V|$, let $B \cong \mathcal{B}$ with domain ω.
Let $V[G][H]$ be further extension in which \mathcal{A} has a copy.
$\exists e$ such that $V[G][H] \models \Phi^B_e \cong \mathcal{A}$.
In $V[G]$, Φ^B_e satisfies Scott sentence of \mathcal{A}.
Existence of countable models of $\mathcal{L}_{\omega_1 \omega}$-sentences is absolute.
So \mathcal{A} has a copy in $V[G]$, and hence in V.

Proposition (Knight, Montalbán, S.)

Counterexample to “Shoenfield for structures” is $\leq^*_w (\omega_2, <)$.

Proof. Theory of Laskowski-Shelah has computable atomic model. □
Some examples, I/III: Real and complex numbers

Consider the following uncountable structures:

\[\mathcal{C} = (\mathbb{C}; +, \times), \quad \mathcal{W} = (\omega, \mathcal{P}(\omega); \text{Succ}, \in), \quad \mathcal{R} = (\mathbb{R}; +, \times) \]
Consider the following uncountable structures:

\[C = (\mathbb{C}; +, \times) \], \quad \mathcal{W} = (\omega, \mathcal{P}(\omega); \text{Succ}, \in), \quad \mathcal{R} = (\mathbb{R}; +, \times) \]

Observation

\(C \) is “generically computably presentable:” \(C \) has a computable copy in every generic extension in which it is countable.
Some examples, I/III: Real and complex numbers

Consider the following uncountable structures:

\[\mathbb{C} = (\mathbb{C}; +, \times), \quad \mathbb{W} = (\omega, \mathcal{P}(\omega); \text{Succ}, \in), \quad \mathbb{R} = (\mathbb{R}; +, \times) \]

Observation

\(\mathbb{C} \) is “generically computably presentable:” \(\mathbb{C} \) has a computable copy in every generic extension in which it is countable.

Observation

Every countable structure is generically Muchnik reducible to \(\mathbb{W} \) and to \(\mathbb{R} \).
Some examples, I/III: Real and complex numbers

Consider the following uncountable structures:

\[\mathcal{C} = (\mathbb{C}; +, \times), \quad \mathcal{W} = (\omega, \mathcal{P}(\omega); \text{Succ}, \in), \quad \mathcal{R} = (\mathbb{R}; +, \times) \]

Observation

\[\mathcal{C} \text{ is \textit{"generically computably presentable:}" } \mathcal{C} \text{ has a computable copy in every generic extension in which it is countable.} \]

Observation

\[\text{Every countable structure is generically Muchnik reducible to } \mathcal{W} \text{ and to } \mathcal{R}. \]

Theorem (Igusa, Knight)

\[\mathcal{W} \text{ is strictly less complicated than } \mathcal{R}: \mathcal{W} <^* \mathcal{R}. \]

Some examples, II/III: ω_1
Some examples, II/III: ω_1

Proposition

For A countable:

$$A \preceq^* (\omega_1, <) \iff \exists \text{ countable ordinal } \alpha \text{ with } A \preceq^* (\alpha, <).$$

Proof. Suppose $A \preceq^* (\omega_1, <)$. Let $V[G]$ be generic extension in which ω_1 is countable. Then we have

$$V[G] \models "A \preceq_w (\alpha, <) \text{ for some countable ordinal } \alpha."$$

This is a Σ^1_2 sentence with a real parameter (since A is countable), so already true in V. □

Question

What families of countable structures are captured by some single uncountable structure?
Some examples, III/III: ω_1 and \mathbb{R}

Proposition (Richter)

If a real X is computable in every copy of a linear order \mathcal{L}, then X is computable.

Corollary

$(\omega_1, <) \not\preceq^*_{w} \mathcal{W}$.

Proposition (Ash, Knight)

If X' computes a copy of a linear order \mathcal{L}, then X computes a copy of $\omega \cdot \mathcal{L}$.

Corollary

$(\omega_1, <) \prec^*_{w} \mathcal{W}$.
1 Generically presentable structures

2 Computability in generic extensions

3 Versions of the reals

Noah Schweber
Computability theory and uncountable structures
Versions of the reals

\[\mathcal{W} = (\omega \sqcup 2^\omega; \text{Succ}, \in), \quad \mathcal{B} = (\omega \sqcup \omega^\omega; \text{Succ}, \circ) \]

\[\mathcal{R} = (\mathbb{R}; +, \times) \]

\[\mathcal{R}^* = \omega_1\text{-saturated real closed field realizing all types in } \mathcal{V} \]

\[\mathcal{R}_f = (\mathbb{R}; +, \times, f), \quad \mathcal{R}^+ = (\mathbb{R}; +) \]
Versions of the reals

\[\mathcal{W} = (\omega \sqcup 2^\omega; \text{Succ}, \in), \quad \mathcal{B} = (\omega \sqcup \omega^\omega; \text{Succ}, \circ) \]

\[\mathcal{R} = (\mathbb{R}; +, \times) \]

\[\mathcal{R}^* = \omega_1\text{-saturated real closed field realizing all types in } V \]

\[\mathcal{R}_f = (\mathbb{R}; +, \times, f), \quad \mathcal{R}^+ = (\mathbb{R}; +) \]

There seem to be two levels of complexity:

\[\mathcal{W} \equiv^*_w \mathcal{B} <^*_w \mathcal{R}^+ \equiv^*_w \mathcal{R} \equiv^*_w \mathcal{R}_f \quad (f \text{ analytic}) \]
Simple reductions

Proposition (Igusa, Knight)

\[\mathcal{R}^* \succeq^w B \succeq^w \mathcal{W}. \]

Proposition (Igusa, Knight)

\[\mathcal{W} \equiv^w \mathcal{R}^*. \]
Simple reductions

Proposition (Igusa, Knight)

\[\mathcal{R}^* \succeq_w \mathcal{B} \succeq_w \mathcal{W}. \]

Proposition (Igusa, Knight)

\[\mathcal{W} \equiv_w \mathcal{R}. \]

Theorem (Macintyre-Marker)

If \(S \) *is a Scott set and* \(T \in S \) *is a consistent theory, any enumeration of* \(S \) *computes the complete diagram of a recursively saturated model of* \(T \) *realizing exactly the types in* \(S \).

Proof of Prop. After collapse, \(\mathcal{W} \) is still a Scott set, and each ground real — including \(\text{Th}(\mathcal{R}) \) — appears in \(\mathcal{W} \); apply Macintyre-Marker. □
\[\mathbb{R}^* \prec_w \mathbb{R}, \text{I/II} \]

Definition

If \(K \) is a real closed field:

- \(K \) is **Archimedean** if every element of \(K \) is below some \(q \in \mathbb{Q} \).
- The **residue field** \(\text{Res}(K) \) of \(K \) be the quotient of the finite elements by the infinitesimal elements.
- A **residue field section** of \(K \) is a subfield of \(K \) isomorphic to \(\text{Res}(K) \).
- \(FT(K) \) ("finite transcendental") is the set of finite elements not infinitesimally close to an algebraic element.
Definition

If K is a real closed field:

- K is *Archimedean* if every element of K is below some $q \in \mathbb{Q}$.
- The *residue field* $\text{Res}(K)$ of K be the quotient of the finite elements by the infinitesimal elements.
- A *residue field section* of K is a subfield of K isomorphic to $\text{Res}(K)$.
- $\text{FT}(K)$ ("finite transcendental") is the set of finite elements not infinitesimally close to an algebraic element.

Lemma

If K is a real closed field with domain ω, then:

- If $\text{Res}(K)$ has a $\Sigma^0_2(K)$ copy, then $\text{FT}(K)$ is $\Sigma^0_2(K)$.
- . . . And so K has a residue field section which is $\Sigma^0_2(K)$.
Lemma

If K is a real closed field with domain ω, then:

- If $\text{Res}(K)$ has a $\Sigma_2^0(K)$ copy, then $\text{FT}(K)$ is $\Sigma_2^0(K)$. . . .
- . . . And so K has a residue field section which is $\Sigma_2^0(K)$.
Lemma

If K is a real closed field with domain ω, then:

- If $\text{Res}(K)$ has a $\Sigma^0_2(K)$ copy, then $\text{FT}(K)$ is $\Sigma^0_2(K)$.
- . . . And so K has a residue field section which is $\Sigma^0_2(K)$.

Theorem (Igusa, Knight)

- (Reduction) If $\text{Res}(K) \leq^*_w K$, then $\text{FT}(K)$ is Σ^c_2-definable in K.
- (Undefinability) If K is a recursively saturated real closed field, the set $\text{FT}(K)$ is not Σ^c_2-definable in K.

Since “recursively saturated” is absolute, this gives:

Theorem (Igusa, Knight.)

$\mathcal{R}^* <^*_w \mathcal{R}$.
Expansions of \(\mathcal{R}, \text{I/II} \)

What happens if we add expressive power to \(\mathbb{R} \)?

Definition

A function \(f : \mathbb{R} \to \mathbb{R} \) is *trivial* if, in any \(V[G] \) where \(\mathbb{R} \) is countable, we have: Any copy \(\mathcal{A} \) of \(\mathcal{R} = (\mathbb{R}^V; +, \times) \) with domain \(\omega \) computes a copy \(\mathcal{B} \) of \(\mathcal{R}_f = (\mathbb{R}^V; +, \times, f) \) with \(\mathcal{B} \upharpoonright \{+, \times\} = \mathcal{A} \).

This is stronger than \(\mathcal{R} \equiv^*_w \mathcal{R}_f \).
What happens if we add expressive power to \mathbb{R}?

Definition

A function $f : \mathbb{R} \to \mathbb{R}$ is *trivial* if, in any $V[G]$ where \mathbb{R} is countable, we have: Any copy \mathcal{A} of $\mathcal{R} = (\mathbb{R}^V; +, \times)$ with domain ω computes a copy \mathcal{B} of $\mathcal{R}_f = (\mathbb{R}^V; +, \times, f)$ with $\mathcal{B} \upharpoonright \{+, \times\} = \mathcal{A}$.

This is stronger than $\mathcal{R} \equiv^*_w \mathcal{R}_f$.

Proposition

A function f is trivial iff it is piecewise algebraic.

Proof. Right-to-left is immediate. For left-to-right, build (in $V[G]$) a sufficiently generic copy of $\mathcal{R} = (\mathbb{R}; +, \times)$ by forcing with $\mathcal{R}^{\prec \omega}$. Can diagonalize against Φ_e unless “$f(x) = y$” determined by finitely many $\{+, \times\}$-atomic formulas. □
Interlude: O-minimality and bases

Definition
An ordered structure \mathcal{A} is o-minimal if every definable subset of \mathcal{A} is a union of finitely many intervals.

Theorem (Macintyre)

The structure $\mathcal{R}_{exp} = (\mathbb{R}; +, \times, \exp)$ is o-minimal

Definition

A *basis* for \mathcal{R}_{exp} is a set $U \subset \mathbb{R}$ such that
- Every real is definable over some tuple from U.
- No element of U is definable over any disjoint tuple from U.

A tuple is *independent* if it can be extended to a basis.
Expansions of \mathcal{R}, II/II

Definition
We let $\text{IND}_n(\mathcal{R}_{\text{exp}})$ be the set of independent n-tuples of \mathbb{R}.

Lemma
The sets $\text{IND}_n(\mathcal{R}_{\text{exp}})$ of independent n-tuples are $\Delta^c_2, \text{Th}(\mathcal{R}_{\text{exp}})$ in any copy of \mathcal{R}.

Proof. \vec{a} is independent iff there is an assignment of open boxes around \vec{a} to formulas such that the formula holds of \vec{a} iff it holds in whole box. □

Theorem (Igusa, Knight, S.)
\mathcal{R}_{exp} is generically Muchnik equivalent to \mathcal{R}.

Proof. We use lemma to get Δ^0_2-approximation to a basis for \mathcal{R}_f, and build the “term” model generated by this basis. □
Since $|\mathbb{R}^\mathbb{R}| > \mathbb{R}$, there are functions in V which add information.

Question

Is there a “reasonably definable” f which adds information?

Question

Is there a continuous function f adds information?

Conjecture (Igusa, Knight, S.)

Martin-Lof Brownian motion adds information.
Further versions of the reals

Theorem (Igusa, Knight, S.)

\[R_f \equiv^*_w R \text{ for } f \text{ analytic.} \]

Uses Wilkie: \(R \) adjoined with analytic functions on compact intervals is \(o \)-minimal.

Theorem (Igusa, Knight, S.)

The field \((\mathbb{R}; +, \times)\) is generically Muchnik reducible to the group \((\mathbb{R}; +)\).

Theorem (Igusa, Knight, S.)

For \(\langle a_i : i \in \omega \rangle \in \mathbb{R}^V \), the expansion \((\mathbb{R}; +, \times, a_0, a_1, ...)\) is generically Muchnik reducible to \(R \).

Proof. In each case, we show that the independence relation over the larger language is \(\Sigma^c_2 \) in the smaller language.

Noah Schweber

Computability theory and uncountable structures
Thanks!

- Baldwin, S.-D. Friedman, Koerwien, Laskowski. “Three red herrings around Vaught’s conjecture.” submitted, on Baldwin’s webpage
- Knight, Igusa, S. In preparation.
- Kaplan, Shelah. “Forcing a countable structure to belong to the ground model.” on arXiv
- Knight, Montalbán, S. “Computable structures in generic extensions.” submitted, on arXiv