Poisson Approximation for Two Scan Statistics with Rates of Convergence

Xiao Fang

(Joint work with David Siegmund)

National University of Singapore

May 28, 2015
Outline

- The first scan statistic
- The second scan statistic
- Other scan statistics
A statistical testing problem

Let \(\{X_1, \ldots, X_n\} \) be an independent sequence of random variables. We want to test the hypothesis

\[
H_0 : X_1, \ldots, X_n \sim F_{\theta_0}(\cdot)
\]

against the alternative

\[
H_1 : \text{for some } i < j, X_{i+1}, \ldots, X_j \sim F_{\theta_1}(\cdot) \\
X_1, \ldots, X_i, X_{j+1}, \ldots, X_n \sim F_{\theta_0}(\cdot)
\]

- \(i \) and \(j \) are called change-points. They are not specified in the alternative hypothesis.
- \(\theta_0 \) may be given, or may need to be estimated.
- \(\theta_1 \) may be given, or may be a nuisance parameter.
The first scan statistic

- If $j - i = t$ is given and $F_{\theta_0}(\cdot)$ and $F_{\theta_1}(\cdot)$ have different mean values, a natural statistic is

$$M_{n;t} = \max_{1 \leq i \leq n-t-1} T_i, \quad T_i = X_i + \cdots + X_{i+t-1}.$$

- We are interested in its p-value: Assume $X_1, \ldots, X_n \sim F_{\theta_0}(\cdot)$,

$$P(M_{n;t} \geq b) = P(\max_{1 \leq i \leq n-t+1} T_i \geq b)$$

$$=?$$
Known results

- Let $Y_i = I(T_i \geq b)$.
- $\{\max_{1 \leq i \leq n-t+1} T_i \geq b\} = \{\sum_{i=1}^{n-t+1} Y_i \geq 1\}$.
- Dembo and Karlin (1992) proved that if t is fixed and $b, n \to \infty$ plus mild conditions on $F_{\theta_0}(\cdot)$, then

$$P(M_{n,t} \geq b) = P\left(\sum_{i=1}^{n-t+1} Y_i \geq 1 \right) \to 1 - e^{-\lambda}$$

where $\lambda = (n - t + 1)E(Y_1)$.
- Mild conditions on $F_{\theta_0}(\cdot)$ ensures that

$$P(Y_{i+1} = 1 | Y_i = 1) \to 0.$$
If $X_i \sim \text{Bernoulli}(p)$ and b is an integer, Arratia, Gordon and Waterman (1990) prove that

$$|P(M_n; t \geq b) - (1 - e^{-\lambda})| \leq C(e^{-ct} + \frac{t}{n})(\lambda \wedge 1) \quad (1)$$

where $\lambda = (n - t + 1)P(T_1 = b)(\frac{b}{t} - p)$.

Haiman (2007) derived more accurate approximations using the distribution function of

$$Z_k := \max\{T_1, \ldots, T_{kt+1}\} \text{ for } k = 1 \text{ and } 2.$$

The distribution functions of Z_k for $k = 1$ and 2 are only known for Bernoulli and Poisson random variables.

Our objective is to extend (1) to other random variables.
Preparation for the main result:

- Let $\mu_0 = E(X_1)$. We assume $b = at$ where $a > \mu_0$.

\[
P(\max_{1 \leq i \leq n-t+1} T_i \geq b) = P(\max_{1 \leq i \leq n-t+1} \frac{X_i + \cdots + X_{i+t-1}}{t} \geq a).
\]

- We assume the distribution of X_1 can be imbedded in an exponential family of distributions

\[
dF_\theta(x) = e^{\theta x - \Psi(\theta)} dF(x), \quad \theta \in \Theta. \tag{2}
\]

It is known that F_θ has mean $\Psi'(\theta)$ and variance $\Psi''(\theta)$.

Assume $\theta_0 = 0$, i.e., $X_1 \sim F$ and there exists $\theta_a \in \Theta^o$ such that $\Psi'(\theta_a) = a$.

- Example: $X_1 \sim N(0, 1)$, $\Psi(\theta) = \frac{\theta^2}{2}$, $\theta_a = a$, $F_{\theta_a} \sim N(a, 1)$.
Assumption (2) is used in two places:

1. To obtain an accurate approximation to the marginal probability $P(T_1 \geq at)$ by change of measure.

2. Local limit theorem Diaconis and Freedman (1988):

\[d_{TV}(\mathcal{L}(X_1, \ldots, X_m | T_1 = at), \mathcal{L}(X_1^a, \ldots, X_m^a)) \leq \frac{Cm}{t} \]

where X_1^a, \ldots, X_m^a are i.i.d. and $X_1^a \sim F_{\theta_a}$.

Let $D_k = \sum_{i=1}^{k} (X_i^a - X_i)$. Let $\sigma_a^2 = \psi''(\theta_a)$.
Theorem

Under the assumption (2), for some constant C depending only on the exponential family (2), μ_0, and a, we have

$$|P(M_{n,t} \geq at) - (1 - e^{-\lambda})| \leq C \left(\frac{(\log t)^2}{t} + \frac{(\log t \wedge \log(n - t))}{n - t} \right)(\lambda \wedge 1),$$

where if X_1 is nonlattice plus mild conditions,

$$\lambda = \frac{(n - t + 1)e^{-[a\theta_a - \psi(\theta_a)]t}}{\theta_a \sigma_a (2\pi t)^{1/2}} \exp[-\sum_{k=1}^{\infty} \frac{1}{k} E(e^{-\theta_a D_k^+})],$$

and if X_1 is integer-valued with span 1,

$$\lambda = \frac{(n - t + 1)e^{-(a\theta_a - \psi(\theta_a))t} e^{-\theta_a([at] - at)}}{(1 - e^{-\theta_a}) \sigma_a (2\pi t)^{1/2}} \exp[-\sum_{k=1}^{\infty} \frac{1}{k} E(e^{-\theta_a D_k^+})].$$
Remarks:

- We don’t have an explicit expression for the constant C.
- The relative error $\to 0$ if $t, n - t \to \infty$.
- Let $g(x) = Ee^{ixD_1}$ and $\xi(x) = \log\{1/[1 - g(x)]\}$.

Woodroofe (1979) proved that for the nonlattice case,

$$
\sum_{k=1}^{\infty} \frac{1}{k} E(e^{-\theta_a D_k^+}) = - \log[(a - \mu_0)\theta_a] - \frac{1}{\pi} \int_0^\infty \frac{\theta_a^2 [l\xi(x) - \frac{\pi}{2}]}{x(\theta_a^2 + x^2)} dx
$$

$$
+ \frac{1}{\pi} \int_0^\infty \frac{\theta_a \{ R\xi(x) + \log[(a - \mu_0)x] \}}{\theta_a^2 + x^2} dx
$$

where R and l denote real and imaginary parts.

Tu and Siegmund (1999) proved that for the arithmetic case,

$$
\sum_{k=1}^{\infty} \frac{1}{k} E(e^{-\theta_a D_k^+}) = - \log(a - \mu_0)
$$

$$
+ \frac{1}{2\pi} \int_0^{2\pi} \left\{ \frac{\xi(x)e^{-\theta_a-ix}}{1 - e^{-\theta_a-ix}} + \frac{\xi(x) + \log[(a - \mu_0)(1 - e^{ix})]}{1 - e^{ix}} \right\} dx.
$$
Example 1: Normal distribution.

<table>
<thead>
<tr>
<th>n</th>
<th>t</th>
<th>a</th>
<th>p_1</th>
<th>p_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>50</td>
<td>0.2</td>
<td>0.9315</td>
<td>0.9594</td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
<td>0.4</td>
<td>0.2429</td>
<td>0.2624</td>
</tr>
<tr>
<td>1000</td>
<td>50</td>
<td>0.5</td>
<td>0.0331</td>
<td>0.0334</td>
</tr>
<tr>
<td>2000</td>
<td>50</td>
<td>0.5</td>
<td>0.0668</td>
<td>0.0672</td>
</tr>
</tbody>
</table>
Example 2: Bernoulli distribution.

<table>
<thead>
<tr>
<th>n</th>
<th>t</th>
<th>μ_0</th>
<th>a</th>
<th>p_1</th>
<th>p_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>7680</td>
<td>30</td>
<td>0.1</td>
<td>11/30</td>
<td>0.14097</td>
<td>0.14021</td>
</tr>
<tr>
<td>7680</td>
<td>30</td>
<td>0.1</td>
<td>0.4</td>
<td>0.029614</td>
<td>0.029387</td>
</tr>
<tr>
<td>15360</td>
<td>30</td>
<td>0.1</td>
<td>0.4</td>
<td>0.058458</td>
<td>0.058003</td>
</tr>
</tbody>
</table>
Sketch of proof:

- Let $m = \lfloor C(\log t \land \log(n - t)) \rfloor$. Let

 $$Y_i = I(T_i \geq at, T_{i+1} < T_i, \ldots, T_{i+m} < T_i, T_{i-1} < T_i, \ldots, T_{i-m} < T_i).$$

 Let

 $$W = \sum_{i=1}^{n-t+1} Y_i, \quad \lambda_1 = EW = (n - t + 1)EY_1.$$

- $P(M_n; t \geq at) \approx P(W \geq 1)$.
- From the Poisson approximation theorem of Arratia, Goldstein and Gordon (1990), we have

 $$|P(W \geq 1) - (1 - e^{-\lambda_1})| \leq C(\frac{1}{t} + \frac{1}{n-t})(\lambda \land 1).$$
Approximating λ_1 by λ:

$$EY_1 = P(T_1 \geq at, T_2 < T_1, \ldots, T_{1+m} < T_1; T_0 < T_1, \ldots, T_{1-m} < T_1)$$

$$\approx P(T_1 \geq at) P^2(T_1 - T_2 > 0, \ldots, T_1 - T_{1+m} > 0 | T_1 \approx at)$$

Note that $T_1 - T_2 = X_1 - X_{t+1}$ and that given $T_1 \approx at$, $X_1 \sim F_{\theta_a}$ approximately and $X_{t+1} \sim F$. Thus,

$$\{T_1 - T_2 > 0\} \approx \{D_1 > 0\} \text{ where } D_1 = X_1^a - X_1.$$

Similarly, $\{T_1 - T_{k+1} > 0\} \approx \{D_k > 0\}, D_k = \sum_{i=1}^{k} (X_i^a - X_i)$.

Therefore,

$$EY_1 \approx P(T_1 \geq at) P^2(D_k > 0, k = 1, 2, \ldots).$$

Recall

$$\lambda = \frac{(n - t + 1)e^{-[a\theta_a - \Psi(\theta_a)]t}}{\theta_a \sigma_a (2\pi t)^{1/2}} \exp[-\sum_{k=1}^{\infty} \frac{1}{k} E(e^{-\theta_a D_k^+})].$$
Corollary

Let \(\{X_1, \ldots, X_n\} \) be i.i.d. random variables with distribution function \(F \) that can be imbedded in an exponential family, as in (2). Let \(EX_1 = \mu_0 \). Assume \(X_1 \) is integer-valued with span 1. Suppose \(a = \sup\{x : p_x := P(X_1 = x) > 0\} \) is finite. Let \(b = at \). Then we have, with constants \(C \) and \(c \) depending only on \(p_a \),

\[
|P(M_{n;t} \geq b) - (1 - e^{-\lambda})| \leq C(\lambda \wedge 1)e^{-ct}
\]

where

\[
\lambda = (n - t)p_a^t(1 - p_a) + p_a^t.
\]
The second scan statistic

Recall that we want to test

$$H_0 : X_1, \ldots, X_n \sim F_{\theta_0}(\cdot)$$

against the alternative

$$H_1 : \text{for some } i < j, X_{i+1}, \ldots, X_j \sim F_{\theta_1}(\cdot)$$

$$X_1, \ldots, X_i, X_{j+1}, \ldots, X_n \sim F_{\theta_0}(\cdot)$$

Now assume $j - i$ is not given, and F_{θ_0} and F_{θ_1} are from the same exponential family of distributions

$$dF_{\theta}(x) = e^{\theta x - \Psi(\theta)} dF(x), \quad \theta \in \Theta.$$

Then the log likelihood ratio statistic is

$$\max_{0 \leq i < j \leq n} \sum_{k=i+1}^{j} (\theta_1 - \theta_0)(X_k - \frac{\Psi(\theta_1) - \Psi(\theta_0)}{\theta_1 - \theta_0}).$$
It reduces to the following problem: Let \(\{X_1, \ldots, X_n\} \) be independent, identically distributed random variables. Let \(E X_1 = \mu_0 < 0 \). Let \(S_0 = 0 \) and \(S_i = \sum_{j=1}^{i} X_j \) for \(1 \leq i \leq n \). We are interested in the distribution of

\[
M_n := \max_{0 \leq i < j \leq n} (S_j - S_i).
\]

Iglehart (1972) observed that it can be interpreted as the maximum waiting time of the first \(n \) customers in a single server queue.

Karlin, Dembo and Kawabata (1990) discussed genomic applications.
The limiting distribution was derived by Iglehart (1972):
Assume the distribution of X_1 can be imbedded in an exponential family of distributions

$$dF_\theta(x) = e^{\theta x - \Psi(\theta)} dF(x), \quad \theta \in \Theta.$$

Assume $EX_1 = \Psi'(0) = \mu_0 < 0$ and there exists a positive $\theta_1 \in \Theta$ such that

$$\Psi'(\theta_1) = \mu_1, \quad \Psi(\theta_1) = 0.$$

When X_1 is nonlattice, we have

$$\lim_{n \to \infty} P(M_n \geq \frac{\log n}{\theta_1} + x) = 1 - \exp(-K^* e^{-\theta_1 x}).$$
Theorem

Let $h(b) > 0$ be any function such that $h(b) \rightarrow \infty$, $h(b) = O(b^{1/2})$ as $b \rightarrow \infty$. Suppose $n - b/\mu_1 > b^{1/2}h(b)$. We have,

$$|P(M_n \geq b) - (1 - e^{-\lambda})| \leq C\lambda \left\{ \left(1 + \frac{b/h^2(b)}{n - b/\mu_1} \right) e^{-ch^2(b)} + \frac{b^{1/2}h(b)}{n - \frac{b}{\mu_1}} \right\}$$

where if X_1 is nonlattice plus mild conditions,

$$\lambda = \left(n - \frac{b}{\mu_1} \right) e^{-\theta_1 b} \frac{\theta_1}{\theta_1 \mu_1} \exp\left(-2 \sum_{k=1}^{\infty} \frac{1}{k} E_{\theta_1} e^{-\theta_1 S_k^+} \right),$$

and if X_1 is integer-valued with span 1 and b is an integer,

$$\lambda = \left(n - \frac{b}{\mu_1} \right) \frac{e^{-\theta_1 b}}{\left(1 - e^{-\theta_1} \right) \mu_1} \exp\left(-2 \sum_{k=1}^{\infty} \frac{1}{k} E_{\theta_1} e^{-\theta_1 S_k^+} \right).$$
Remarks:

- By choosing \(h(b) = b^{1/2} \), we get
 \[
 |P(M_n \geq b) - (1 - e^{-\lambda})| \leq C\lambda\{e^{-cb} + \frac{b}{n}\}
 \]

- By choosing \(h(b) = C(\log b)^{1/2} \) with large enough \(C \), we can see that the relative error in the Poisson approximation goes to zero under the conditions

 \[b \to \infty, \quad (b \log b)^{1/2} \ll n - b/\mu_1 = O(e^{\theta_1 b}) \]

 where \(n - b/\mu_1 = O(e^{\theta_1 b}) \) ensures that \(\lambda \) is bounded.

- For the smaller range (in which case \(\lambda \to 0 \))

 \[b \to \infty, \quad \delta b \leq n - b/\mu_1 = o(e^{\frac{1}{2}\theta_1 b}) \]

 for some \(\delta > 0 \), Siegmund (1988) obtained more accurate estimates by a technique different from ours.
Let $G(z) = \sum_0^\infty p_k z^k + \sum_1^\infty q_k z^{-k}$, and let z_0 denote the unique root > 1 of $G(z) = 1$. For the case $p_k = 0$ for $k > 1$, using the notation $Q(z) = \sum_k q_k z^k$, one can show for large values of n and b that $\lambda \sim nz_0^{-b} \{[Q(1) - Q(z_0^{-1})] - (1 - z_0^{-1})z_0^{-1}Q'(z_0^{-1})\}$. For the case $q_k = 0$ for $k > 1$, $\lambda \sim nz_0^{-b}(1 - z_0^{-1})|G'(1)|^2 / G'(z_0)$. In particular if $q_1 = q$ and $p_1 = p$, where $p + q = 1$, both these results specialize to $\lambda \sim n(p/q)^b(q - p)^2 / q$.
Sketch of proof (for the case $h(b) = b^{1/2}$):

- Recall $S_i = \sum_{k=1}^{i} X_k$. Define $T_b := \inf\{n \geq 1 : S_n \notin [0, b]\}$.
- For a positive integer m, let ω_m^+ be the m-shifted sample path of $\omega := \{X_1, \ldots, X_n\}$. Let $t = \lceil \frac{b}{\mu_1} + b \rceil$ and $m = \lfloor cb \rfloor$ such that $m < t$.
- For $1 \leq i \leq n - t$, let
 \[Y_i = I(S_i < S_{i-j}, \forall 1 \leq j \leq m; \ T_b(\omega_i^+) \leq t, \ S_{T_b}(\omega_i^+) \geq b). \]
 That is, Y_i is the indicator of the event that the sequence $\{S_1, \ldots S_n\}$ reaches a local minimum at i and the i-shifted sequence $\{S_i(\omega_\alpha^+)\}$ exits the interval $[0, b)$ within time t and the first exiting position is b.
- Let $W = \sum_{i=1}^{n-t} Y_i$.
Sketch of proof (cont.)

- $P(M_n \geq b) \approx P(W \geq 1)$.
- $|P(W \geq 1) - (1 - e^{-\lambda_1})| \leq C\lambda e^{-cb}$.
- $\lambda_1 = (n - t)EY_1 \approx (n - t)P(\tau_0 = \infty)P(S_{T_b} \geq b)$ where $\tau_0 := \inf\{n \geq 1 : S_n \geq 0\}$.
- $\lambda_1 \approx \lambda$.
Recall again that we want to test

\[H_0 : X_1, \ldots, X_n \sim F_{\theta_0}(\cdot) \]

against the alternative

\[H_1 : \text{for some } i < j, X_{i+1}, \ldots, X_j \sim F_{\theta_1}(\cdot) \]

\[X_1, \ldots, X_i, X_{j+1}, \ldots, X_n \sim F_{\theta_0}(\cdot) \]

1. If \(\theta_0 \) is not given, we need to consider

\[P(M_{n;t} \geq b | S_n) \text{ and } P(M_n \geq b | S_n). \]
2. If θ_0 is given but θ_1 is a nuisance parameter, then the log likelihood ratio statistic is

$$\max_{0 \leq i < j \leq n} \max_{\theta} [\theta(S_j - S_i) - (j - i)\psi(\theta)].$$

For normal distribution, it reduces to

$$\max_{0 \leq i < j \leq n} \frac{(S_j - S_i)^2}{2(j - i)}.$$

The limit of is only know for normal distribution and for $n \asymp b^2$ [Siegmund and Venkatraman (1995)].
3. Frick, Munk and Sieling (2014) proposed the following multiscale statistic:

$$\max_{0 \leq i < j \leq n} \left\{ \left| \frac{S_j - S_i}{\sqrt{j - i}} \right| - \sqrt{2 \log \left(\frac{n}{j - i} \right)} \right\}.$$

The penalty term $\sqrt{2 \log(n/(j - i))}$ was first studied in Dümbgen and Spokoiny (2001) and motivated by Lévy’s modulus of continuity theorem.
4. Let X_1, \ldots, X_m be an independent sequence of Gaussian random variables with mean $EX_i = \mu_i$ and variance 1. We are interested in testing the null hypothesis

$$H_0 : \mu_1 = \cdots = \mu_m$$

against the alternative hypothesis that there exist $1 \leq \tau_1 < \cdots < \tau_K \leq m - 1$ such that

$$H_1 : \mu_1 = \cdots \mu_{\tau_1} \neq \mu_{\tau_1+1} = \cdots = \mu_{\tau_2} \neq \cdots = \mu_{\tau_K}$$

$$\neq \mu_{\tau_K+1} = \cdots = \mu_m.$$
4. (cont.)

- If $K = 1$, the log likelihood ratio statistic is
 \[\max_{1 \leq t \leq m-1} \frac{|S_{m-t} - S_t|}{\sqrt{\frac{1}{t} + \frac{1}{m-t}}}. \]

- If $K > 1$, an appropriate statistic is
 \[\max_{0 \leq i < j < k \leq m} \left\{ \frac{|S_{j-i} - S_{k-j}|}{\sqrt{\frac{1}{j-i} + \frac{1}{k-j}}} \right\}. \]
Thank you!