Verification of parameterized shared-memory asynchronous systems

Anca Muscholl
LaBRI, Bordeaux University
IAS, TU Munich

Joint work with: M. Fortin, S. LaTorre, I. Walukiewicz
Model: asynchronous, shared memory

Hague, 2011

Esparza, Ganty, Majumdar, 2013

Durand-Gasselin, Esparza, Ganty, Majumdar, 2015

leader

Reg

contributors
Model: asynchronous, shared memory

Hague, 2011
Esparza, Ganty, Majumdar, 2013
Durand-Gasselin, Esparza, Ganty, Majumdar, 2015

Register: lock-free reads/writes

leader D
(C,D)-systems
contributors C
Leader and contributors are pushdown processes.

Contributors do not have identities.

With locks: a unique contributor can be distinguished.

With only one contributor: leader+contributor can simulate a Turing machine.

Without locks and with an arbitrary number of contributors: the model becomes surprisingly manageable.

Parametrization as powerful abstraction (Kahlon, 2008)
Multiset semantics of (C,D)-systems

\[C = \langle S, \delta \subseteq S \times \Sigma_C \times S, s_{\text{init}} \rangle \quad D = \langle T, \Delta \subseteq T \times \Sigma_D \times T, t_{\text{init}} \rangle . \]

contributor

leader

\[G: \text{a finite set of register values} \]

A configuration is \((M, t, g)\), where \(M \in \mathbb{N}^S\), \(t \in T\), \(g \in G\).

\[
\begin{align*}
(M, t, g) \xrightarrow{w(h)} (M, t', h) & \quad \text{if } t \xrightarrow{w(h)} t' \text{ in } \Delta, \\
(M, t, g) \xrightarrow{r(h)} (M, t', h) & \quad \text{if } t \xrightarrow{r(h)} t' \text{ in } \Delta \text{ and } h = g, \\
(M, t, g) \xrightarrow{\bar{w}(h)} (M', t, h) & \quad \text{if } M \xrightarrow{\bar{w}(h)} M' \text{ in } \delta, \\
(M, t, g) \xrightarrow{\bar{r}(h)} (M', t, h) & \quad \text{if } M \xrightarrow{\bar{r}(h)} M' \text{ in } \delta \text{ and } h = g.
\end{align*}
\]

where \(M \xrightarrow{a} M'\) in \(\delta\) \quad \text{if } s \xrightarrow{a} s' \text{ in } \delta \text{ and } M' = M - [s] + [s']\), for some \(s, s' \in S\).
(M, t, g) \xrightarrow{w(h)} (M, t', h) \quad \text{if } t \xrightarrow{w(h)} t' \text{ in } \Delta,
(M, t, g) \xrightarrow{r(h)} (M, t', h) \quad \text{if } t \xrightarrow{r(h)} t' \text{ in } \Delta \text{ and } h = g,
(M, t, g) \xrightarrow{\bar{w}(h)} (M', t, h) \quad \text{if } M \xrightarrow{\bar{w}(h)} M' \text{ in } \delta,
(M, t, g) \xrightarrow{\bar{r}(h)} (M', t, h) \quad \text{if } M \xrightarrow{\bar{r}(h)} M' \text{ in } \delta \text{ and } h = g.

where

\[
M \xrightarrow{a} M' \text{ in } \delta \quad \text{if } s \xrightarrow{a} s' \text{ in } \delta \text{ and } M' = M - [s] + [s'], \text{ for some } s, s' \in S.
\]
C, D may be infinite-state

\[C = \langle S, \delta \subseteq S \times \Sigma_C \times S, s_{init} \rangle \quad D = \langle T, \Delta \subseteq T \times \Sigma_D \times T, t_{init} \rangle. \]

Contributor \quad Leader

Transition systems C and D need not to be finite. In our case they are given by pushdown systems:

\[\mathcal{A}_C = \langle P, \Sigma_C, \Gamma_C, \delta, p_{init}, A_{init}^C \rangle \quad \mathcal{A}_D = \langle Q, \Sigma_D, \Gamma_D, \Delta, q_{init}, A_{init}^D \rangle. \]

So \(S = \{ q\alpha : q \in P, \alpha \in \Gamma_C^* \} \)
Every contributor proposes a value
* Leader chooses one of these values
* The rest of the protocol uses the chosen value

Example of properties:
(for every n, for every run)
* Leader eventually decides on a value
* If the leader decides on a value, contributors use only this value
* On runs where only one value is used i.o. the protocol is correct
Example of a system:
- Contributors proposes values.
- Leader chooses one of these values.
- The rest of the protocol uses the chosen value.

Example properties:
(for every n, for every run)
- Leader eventually decides on a value
- If the leader decides on a value, contributors use only this value.
- On runs where only one value is used i.o. the protocol is correct.

There is a run where the leader has decided on some value and afterwards a contributor uses a different value.
Example of a system:

- Contributors proposes values.
- Leader chooses one of these values.
- The rest of the protocol uses the chosen value.

Example properties:
(for every n, for every run)

- Leader eventually decides on a value.
- If the leader decides on a value, contributors use only this value.
- On runs where only one value is used i.o. the protocol is correct.

There is a maximal run where the leader does not decide on any value.
Example of a system:

- Contributors propose values.
- Leader chooses one of these values.
- The rest of the protocol uses the chosen value.

Example properties:
(for every n, for every run)

- Leader eventually decides on a value
- If the leader decides on a value, contributors use only this value.
- On runs where only one value is used i.o., the protocol is correct
(C,D)-systems

- Reachability
- Repeated reachability
- Safety
- Verification of properties

- PSPACE-complete for pushdowns
- Almost always decidable
- Hierarchical (C,D)-systems
- NEXPTIME-complete for pushdowns
- PSPACE-complete if only about infinite runs
- C-stutter-expanding properties
- Nexpctime-Comple
We are interested in the complexity of deciding these properties when C, D are pushdown systems.
(C,D)-systems

- Reachability
 - PSPACE-complete for pushdowns
 - Almost always decidable
 - Hierarchical (C,D)-systems
- Repeated reachability
- Safety
- Verification of properties
Reachability in (C,D)-systems

Given a leader D from some class of systems \(\mathcal{D} \) and a contributor C from some class \(\mathcal{C} \), is there some integer \(n \) such that D, together with \(n \) copies of C, writes a particular value into the register along some run?

Fact

When \(C \) and \(D \) are pushdown systems and \(n \) is known, the problem is undecidable.
Reachability in (C,D)-systems

Given a leader D from some class of systems \(\mathcal{D} \) and a contributor C from some class \(\mathcal{C} \), is there some integer n such that D, together with n copies of C, writes a particular value into the register along some run?

Thm [Hague, Esparza et al. 2013]

When \(\mathcal{C} \) and \(\mathcal{D} \) are pushdown systems then the reachability problem is decidable (PSPACE-complete). If \(\mathcal{C} \) is finite-state systems, the problem is NP-complete.
Accumulator semantics

\[
(B, t, g) \xrightarrow{w(h)} (B, t', h) \quad \text{if } t \xrightarrow{w(h)} t' \text{ in } \Delta, \quad B \subseteq S
\]

\[
(B, t, g) \xrightarrow{r(h)} (B, t', h) \quad \text{if } t \xrightarrow{r(h)} t' \text{ in } \Delta \text{ and } h = g,
\]

\[
(B, t, g) \xrightarrow{\bar{w}(h)} (B', t, h) \quad \text{if } B \xrightarrow{\bar{w}(h)} B' \text{ in } \delta,
\]

\[
(B, t, g) \xrightarrow{\bar{r}(h)} (B', t, h) \quad \text{if } B \xrightarrow{\bar{r}(h)} B' \text{ in } \delta \text{ and } h = g.
\]

\[
B \xrightarrow{a} B' \text{ in } \delta \quad \text{if } s \xrightarrow{a} s' \text{ in } \delta \text{ and } B' = B \cup \{s'\}, \text{ for some } s, s' \in S.
\]

\[
(M, t, g) \xrightarrow{w(h)} (M, t', h) \quad \text{if } t \xrightarrow{w(h)} t' \text{ in } \Delta,
\]

\[
(M, t, g) \xrightarrow{r(h)} (M, t', h) \quad \text{if } t \xrightarrow{r(h)} t' \text{ in } \Delta \text{ and } h = g,
\]

\[
(M, t, g) \xrightarrow{\bar{w}(h)} (M', t, h) \quad \text{if } M \xrightarrow{\bar{w}(h)} M' \text{ in } \delta,
\]

\[
(M, t, g) \xrightarrow{\bar{r}(h)} (M', t, h) \quad \text{if } M \xrightarrow{\bar{r}(h)} M' \text{ in } \delta \text{ and } h = g.
\]

\[
M \xrightarrow{a} M' \text{ in } \delta \quad \text{if } s \xrightarrow{a} s' \text{ in } \delta \text{ and } M' = M - [s] + [s'], \text{ for some } s, s' \in S.
\]
Multiset

\[
t \xrightarrow{a} t' \quad t' \quad t'
\]

\[
g \quad g' \quad g'' \quad g'''
\]

\[
s_1 \quad s_1 \xrightarrow{b} s_1' \quad s_1'
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
s_i \quad s_i \quad s_i \xrightarrow{c} s_i' \quad s_i'
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
s_n \quad s_n \quad s_n \quad s_n
\]

Accumulator

\[
t \xrightarrow{a} t' \quad t' \quad t'
\]

\[
g \quad g' \quad g'' \quad g'''
\]

\[
s_1 \quad s_1 \quad s_1 \quad s_1 \quad s_1
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
s_i \quad s_i \xrightarrow{b} s_i \quad s_i \quad s_i
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
s_n \quad s_n \quad s_n \xrightarrow{c} s_n \quad s_n \quad s_n
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
s_1' \quad s_1' \quad s_i' \quad s_i' \quad s_i'
\]

\[
\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots
\]

\[
s_1' \quad s_1' \quad s_i' \quad s_i' \quad s_i'
\]
Let C and D be both effectively closed under synchronized product with finite-state systems. If C has a decidable reachability problem and D has effective downward closure, the reachability for (C,D)-systems is decidable.

Thm [La Torre, M., Walukiewicz 2015]

Let C and D be both effectively closed under synchronized product with finite-state systems. If C has a decidable reachability problem and D has effective downward closure, the reachability for (C,D)-systems is decidable.
Thm

Let \mathcal{C} and \mathcal{D} be both effectively closed under synchronized product with finite-state systems.

If \mathcal{C} has a decidable reachability problem and \mathcal{D} has effective downward closure, then reachability for $(\mathcal{C}, \mathcal{D})$-systems is decidable.

\textit{\mathcal{C} is effectively closed under synchronized product with finite-state systems:}
given M from \mathcal{C} and a finite automaton A, the synchronized product of M and A belongs to \mathcal{C} and can be effectively constructed.

\textit{\mathcal{D} has effective downward closure:}
given M from \mathcal{D}, the finite automaton accepting all (scattered) subwords of traces of M can be constructed effectively.
Effective downward closure:

- pushdown automata [Courcelle 1991]
- Petri nets [Habermehl et al. 2010]
- stacked counter automata [Zetzsche 2015]
- higher-order pushdown wo / with collapse
 [Hague, Kochems, Ong 2016] [Clemente, Parys, Salvati, Walukiewicz 2016]

Theorem applies to

leader: pushdown automata, Petri nets, decidable subclasses of multi-stack, stacked counter automata.

contributors: any of the above, lossy channel systems, hierarchical composition of (C,D)-systems.
Hierarchical composition of (C,D)-systems

leader P_0 and each subtree (C,D)-system is contributor
(C,D)-systems

- Reachability
 - PSPACE-complete for pushdowns
 - Almost always decidable
 - Hierarchical (C,D)-systems

- Repeated reachability
 - PSPACE-complete for pushdowns

- Safety

- Verification of properties
Repeated reachability in (C,D)-systems

Given a leader D from some class of systems \(\mathcal{D} \) and a contributor C from some class \(\mathcal{C} \), is there some integer \(n \) such that D, together with \(n \) copies of C, writes a particular value into the register infinitely often along some run?

Thm [Durand-Gasselin, Esparza, Ganty, Majumdar 2015]

When \(\mathcal{C} \) and \(\mathcal{D} \) are pushdown systems: the repeated reachability problem is PSPACE-hard and in NEXPTIME.
Repeated reachability in (C,D)-systems

Given a leader D from some class of systems D and a contributor C from some class C, is there some integer n such that D, together with n copies of C, writes a particular value into the register infinitely often along some run?

Thm [Fortin, M., Walukiewicz 2016]

When C and D are pushdown systems: the repeated reachability problem is PSPACE-complete.
NEXPTIME (Esparza et al.): reduce the problem to \(C = \) NFA of exponential size by bounding the stack

The \((C, D)\)-system has a live run iff there is some Büchi trace \(uv^\omega \) s.t.

- leader pushdown has effective stack height 1 after each \(uv^k \) and same (state, top of stack)
- multiset of contributor states is the same after each \(uv^k \)
Separate leader D and contributor C according to the first writes of C:

Trace of D

\[v_1 \text{ new}(h_1)v_2 \text{ new}(h_2) \cdots v_k \text{ new}(h_k)v_{k+1} \]

is omega-supported if for every \(1 \leq j \leq k \) there exists a loop of C

\[u_1 \text{ new}(h_1)u_2 \cdots u_j \text{ new}(h_j)\overline{w}(h_j) \cdots v_k \text{ new}(h_k)u_{k+1} \]

such that \(v_i = \) projection of \(u_i \) on alphabet of D for every \(i \)
For each j: contributor run $\rho(j)$ supporting $\text{new}(h_j)$.

Use $(2n+1)$ copies of $\rho(j)$ to support all n reads of h_j in the loop.
(C,D)-systems

Reachability
- PSPACE-complete for pushdowns
- Almost always decidable
- Hierarchical (C,D)-systems

Repeated reachability
- PSPACE-complete for pushdowns

Safety
- NEXPTIME-complete for pushdowns
- PSPACE-complete if only about infinite runs

Verification of properties
Safety in (C,D)-systems

Given a leader D from some class of systems D and a contributor C from some class C, is there some integer n such that D, together with n copies of C, does not write a particular value into the register along some maximal run?

Thm

When C and D are pushdown systems then the safety problem is NEXPTIME-complete.
Thm

If C and D are pushdown systems the safety problem is NEXPTIME-complete.

Thm

Let C and D be pushdown systems.
Knowing if there is some infinite safe run is PSPACE-complete.
Knowing if there is some maximal finite safe run is NEXPTIME-complete.

Thm

If C is finite-state systems and D is pushdown systems the problems are NP-complete.
The intuition is that we consider the case of contributors given by a pushdown automaton. As for liveness we take the transition. The transitions in the set semantics are essentially the same as in the multiset semantics of Section 2 when only finite traces are considered. The idea is that since the number of contributors is arbitrary, we can always add contributors equivalent to the multiset semantics of Section 2.

Theorem 12. Let M be a one-counter system with the notations as in Eq. (1) on page 3:

$\Delta = \{ (B, t, g) \xrightarrow{w(h)} (B, t', h) \mid B \subseteq S \}$

- If $t \xrightarrow{w(h)} t'$ in Δ and $h = g$.
- If $B \xrightarrow{\bar{w}(h)} B'$ in δ.
- If $B \xrightarrow{\bar{r}(h)} B'$ in δ and $h = g$.

$B \xrightarrow{a} B'$ in δ if $s \xrightarrow{a} s'$ in δ, and B' is either $B \cup \{s'\}$ or $(B \cup \{s'\}) \setminus \{s\}$ for some $s \in B$.

The (C,D)-system has a finite, maximal run ending in configuration (M,t,g) in the multiset semantics iff it has a finite, maximal run ending in (B,t,g) in the set semantics, with $B = \text{support}(M)$.

- If $t \xrightarrow{w(h)} t'$ in Δ and $h = g$.
- If $B \xrightarrow{\bar{w}(h)} B'$ in δ.
- If $B \xrightarrow{\bar{r}(h)} B'$ in δ and $h = g$.
Prop
When C and D are pushdown systems, the existence of a maximal finite safe run is NEXPTIME-hard.

Reduction from tiling problem:
Find a tiling with symbols from Σ of a $2^n \times 2^n$ square.
The tiling should respect neighborhood relations $H, V \subseteq \Sigma \times \Sigma$.

Leader writes: $A_{1,1}, \overline{A}_{1,1}, A_{1,2}, \overline{A}_{1,2}, \ldots, A_{1,2^n}, \overline{A}_{1,2^n}, \ldots, A_{2^n,2^n}, \overline{A}_{2^n,2^n} (\$\$)^{2^n}$.
and checks the horizontal dependencies.
Prop
When C and D are the class of pushdown systems then the existence of a maximal finite safe run is NEXPTIME-hard.

Reduction from tiling problem:
Find a tiling with symbols from Σ of an $2^n \times 2^n$ square.
The tiling should respect neighborhood relations $H, V \subseteq \Sigma \times \Sigma$.

Leader writes: $A_{1,1}, \overline{A_{1,1}}, A_{1,2}, \overline{A_{1,2}}, \ldots, A_{1,2^n}, \overline{A_{1,2^n}}, \ldots, A_{2^n,2^n}, \overline{A_{2^n,2^n}} (\$\$)^{2^n}$

and checks the horizontal dependencies.

Contributors check vertical dependencies, using counting.

Leader ensures that

- every vertical dependency is checked by some contributor, and
- inconsistencies lead to write an error value in the register
(C,D)-systems

- **Reachability**
 - PSPACE-complete for pushdowns
 - Almost always decidable
 - Hierarchical (C,D)-systems

- **Repeated reachability**
 - PSPACE-complete for pushdowns

- **Safety**
 - NEXPTIME-complete for pushdowns
 - PSPACE-complete if only about infinite runs

- **Verification of properties**
 - C-stutter-expanding properties
 - NEXPTIME-complete
A **trace** is a sequence of register operations during a run.
Maximal trace comes from a maximal run (finite or infinite).

A property of traces is $P \subseteq (\Sigma_D \cup \Sigma_C)^\infty$

A property is **C-stutter-expanding** if it is closed under **replicating** contributor actions.

If $x \bar{w}(g) y \in P$ then $x \bar{w}(g) \bar{w}(g) y \in P$

Verification of properties of (C,D)-systems

Given a C-stuttering-expanding property P. Given a leader D from some class of systems \mathcal{D} and a contributor C from some class \mathcal{C}, is there some integer n such that D, together with n copies of C, has a **maximal** trace in P?
Verification of properties of \((C, D)\)-systems

Given a C-stuttering-expanding property \(P\). Given a leader \(D\) from some class of systems \(\mathcal{D}\) and a contributor \(C\) from some class \(\mathcal{C}\), is there some integer \(n\) such that \(D\), together with \(n\) copies of \(C\), has a \textbf{maximal} trace in \(P\)?

All previously considered properties are special instances:

- **reachability**: \(P\) is the set of traces containing the special action.
- **repeated reachability**: \(P\) is the set of traces containing the special action infinitely often.
- **safety**: \(P\) is the set of traces without the special action.
Verification of properties of (C,D)-systems

Given a C-stuttering-expanding property \(P \). Given a leader \(D \) from some class of systems \(\mathcal{D} \) and a contributor \(C \) from some class \(\mathcal{C} \), is there some integer \(n \) such that \(D \), together with \(n \) copies of \(C \), has a maximal trace in \(P \)?

A property of traces is \(P \subseteq (\Sigma_D \cup \Sigma_C)^\infty \).
A property is C-stutter-expanding if it is closed under replicating actions of contributors.

\[
\text{If } x \bar{w}(g) y \in P \text{ then } x \bar{w}(g)\bar{w}(g) y \in P
\]

Rem: Verification of arbitrary regular properties is undecidable, as with a property we can require that there is only one copy of a contributor.

Thm

When \(C \) and \(D \) are pushdown systems then the verification of regular properties of (C,D)-systems is NEXPTIME-complete.
A property of traces is $P \subseteq (\Sigma_D \cup \Sigma_C)^\infty$.

A property is **C-stutter-expanding** if it is closed under duplicating actions of contributors.

If $x \bar{w}(g) y \in P$ then $x \bar{w}(g)\bar{w}(g) y \in P$

The verification of C-stutter-expanding properties of (C,D)-systems reduces to the verification of properties over leader actions.

Leader can keep a local copy of the register and simulate contributor actions: action-requests from contributors are acknowledged by leader, information flows through the register.
Conclusion

Changing from one to arbitrary many contributors turns the problem from undecidable to manageable.

(C,D)-systems of pushdown process have very good algorithmic properties

- Verification of C-stutter-expanding properties is decidable in NEXPTIME
- For some relevant subclasses it is PSPACE.

NEXPTIME-hardness shows that they can exhibit a quite nontrivial behavior.