Limit-Deterministic Büchi Automata for Probabilistic Model Checking

Javier Esparza Jan Křetínský
Stefan Jaax Salomon Sickert
Technische Universität München
PROBABILISTIC MODEL CHECKING

- Markov Decision Process (MDP).

 At each state, a scheduler chooses a probability distribution, and then the next state is chosen stochastically according to the distribution.

 Fixed scheduler: MDP → Markov chain

- Qualitative Model Checking:
 - Input: MDP, LTL formula
 - Does the formula hold for all schedulers with probability 1?

- Quantitative Model Checking:
 - Input: MDP, LTL formula, threshold \(c \)
 - Does the formula hold for all schedulers with probability at least \(c \)?
LIMIT-DETERMINISTIC BÜCHI AUTOMATA

Initial Component

(possibly) non-deterministic

Accepting Component
deterministic

“Jumps”
QUALITATIVE PROB. MODEL CHECKING

- MDP
- LTL
- Büchi
- Product
- Limit-det. Büchi

- Non-optimal: double exponential
- Other algorithms with single exponential complexity

Vardi [85]
Courcoubetis, and Yannakakis [88,95]

Prob=1?
Yes/No
QUANTITATIVE PROB. MODEL CHECKING

- In practice large automata
- Hard to implement efficiently
- Rise of “safraleza” approaches:
 - Acacia, ltl3dra, Rabinizer, ...

Yes/No

Asymp. optimal: double exponential

Safra [89] → Det. Rabin

MDP

LTL

Det. Büchi
Our Construction

MDP

• Optimal: $2^{O(n)}$
• Simpler construction
• Smaller automata
• Same MC algorithm as for det. automata

Product

P ≥ 0.7?
Yes/No

LTL

Limit-det. Büchi

Yes/No
LIMIT-DETERMINISM

In our construction:

Every runs „uses“ nondeterminism at most once
PRELIMINARIES

• Linear Temporal Logic in Negation Normal Form

\[\varphi ::= \text{tt} | \text{ff} | a | \neg a | \varphi \land \varphi | \varphi \lor \varphi | F\varphi | \varphi U \varphi | X\varphi | G\varphi \]

Only liveness operator.

• Monotonicity of NNF:

 if \(w \) satisfies \(\varphi \)
 \(w' \) satisfies all the subformulas of \(\varphi \) satisfied by \(w \),
 and perhaps more

 then \(w' \) satisfies \(\varphi \)
FIRST STEP: A DETERMINISTIC "TRACKING" AUTOMATON

- The automaton "tracks" the property that must hold now for the original property to hold at the beginning.

- Formulas with F, X, U: ✔

- Formulas with G: not good enough.
G-SUBFORMULAS

- Fix a formula φ and a word w. Let $G\psi$ be a G-subformula of φ.

- Informally: while reading the word w, the set of G-subformulas that hold cannot decrease, and eventually stabilizes to a set $\text{TrueGs}(w, \varphi)$.
SECOND STEP: JUMPING

- We modify the tracking automaton so that at any moment it can nondeterministically jump to an accepting component.

- From each state ψ we add a jump for every set G of G-subformulas of ψ.

- „Meaning“ of a G-jump at state ψ: The automaton „guesses“ that the rest of the word satisfies

 1. G (every formula of G), and

 2. $G \Rightarrow \psi$

 even if no other G-subformula of ψ ever becomes true.

- After the jump, the task of the accepting component is to „check that the guess is correct“, i.e., accept iff the guess is correct.
SECOND STEP: JUMPING

• „Meaning“ of the \mathcal{G}-jump at state ψ: The automaton „guesses“ that the rest of the run satisfies

 1. \mathcal{G} (every formula of \mathcal{G}), and
 2. $\mathcal{G} \Rightarrow \psi$

 even if no other \mathcal{G}-subformula of ψ ever becomes true.

• $w \models \varphi$ iff the automaton can make a right guess.

 • Right guess before suffix $w' \rightarrow w' \models \psi \rightarrow w \models \varphi$ (tracking!)
 • $w \models \varphi \rightarrow w' \models \text{TrueGs}(w, \varphi)$ for some suffix w'
 \rightarrow jump before w' with $\mathcal{G} := \text{TrueGs}(w, \varphi)$ satisfies 1. and 2.
A DBA THAT CHECKS 1. & 2.

- Since DBA are closed under intersection, it suffices to construct two DBAs for 1. and 2.
CHECKING 2.

• “\(G \Rightarrow \psi\) holds even if no other \(G\)-subformula of \(\psi\) ever becomes true”

• Reduces to checking the \(G\)-free formula

\[
\psi[\ G \setminus \text{tt} \ , \ \overline{G} \setminus \text{ff} \]
\]

• Example:

\[
\psi = G(a \lor Fb) \land (Gc \lor Xd)
\]

\[
G = \{ G(a \lor Fb) \}
\]

reduces to checking \(Xd\)

• Since the formula is \(G\)-free, use the tracking automaton.
CHECKING 1.

- "\(g \) holds even if no other \(G \)-subformula of \(\psi \) ever becomes true"

- Reduces to checking a formula \(G\rho \) where \(\rho \) is \(G \)-free.

- Example:
 \[
 \psi = Fc \land GF(a \land (Gb \lor FGc))
 \]
 \[
 G = \{ Gb, GF(a \land (Gb \lor FGc)) \}
 \]
 reduces to checking \(Gb \land GFa \equiv G(b \land Fa) \)
We use the well-known breakpoint construction.
A DBA FOR $G(a \lor Fb)$

- Put new goals on hold while tracking current goal
- Accept if infinitely often the current goal is proven
- “Breakpoint Construction”
DBA FOR $G(a \lor Fb)$
COMPLETE LDBS FOR $\varphi = c \lor XG(a \lor Fb)$

1. Tracking DBA for φ
 (abbr. $\psi := a \lor Fb$)

2. For every set \mathcal{G} add a \mathcal{G}-jump to the product of the automata checking \mathcal{G} and the \mathcal{G}-remainder
<table>
<thead>
<tr>
<th>Part</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Component</td>
<td>2^{2^n}</td>
</tr>
<tr>
<td>G-Monitor</td>
<td>$2^{2^{n+1}}$</td>
</tr>
<tr>
<td>Accepting Component</td>
<td>$2^{2^{O(n)}}$</td>
</tr>
<tr>
<td>Total</td>
<td>$2^{2^{O(n)}}$</td>
</tr>
</tbody>
</table>
SIZES OF AUTOMATA

\[\bigwedge_{i=1}^{j}(GFa_i) \implies \bigwedge_{i=1}^{j}(GFb_i) \]

\[k: \bigwedge_{i=1}^{k}(GFa_i \lor FGb_i) \]

\[f(0, j) = (GFa_0)U(X^j b) \]

\[f(i + 1, j) = (GFa_{i+1})U(Gf(i, j)) \]

<table>
<thead>
<tr>
<th></th>
<th>LDBA</th>
<th>Safra (spot+ltl2dstar)</th>
<th>Rabinizer</th>
</tr>
</thead>
<tbody>
<tr>
<td>(j = 1)</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>(j = 2)</td>
<td>4</td>
<td>17</td>
<td>3</td>
</tr>
<tr>
<td>(j = 3)</td>
<td>5</td>
<td>49</td>
<td>4</td>
</tr>
<tr>
<td>(j = 4)</td>
<td>6</td>
<td>129</td>
<td>5</td>
</tr>
<tr>
<td>(k = 2)</td>
<td></td>
<td>4385</td>
<td>13</td>
</tr>
<tr>
<td>(k = 3)</td>
<td>9</td>
<td>*</td>
<td>198</td>
</tr>
<tr>
<td>(f(0, 0))</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>(f(0, 2))</td>
<td>10</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>(f(0, 4))</td>
<td>16</td>
<td>12</td>
<td>9</td>
</tr>
<tr>
<td>(f(1, 0))</td>
<td>6</td>
<td>196</td>
<td>17</td>
</tr>
<tr>
<td>(f(1, 2))</td>
<td>28</td>
<td>109839</td>
<td>33</td>
</tr>
<tr>
<td>(f(1, 4))</td>
<td>58</td>
<td>*</td>
<td>70</td>
</tr>
<tr>
<td>(f(2, 0))</td>
<td>10</td>
<td>99793</td>
<td>41</td>
</tr>
<tr>
<td>(f(2, 2))</td>
<td>46</td>
<td>*</td>
<td>94</td>
</tr>
<tr>
<td>(f(2, 4))</td>
<td>92</td>
<td>*</td>
<td>139</td>
</tr>
</tbody>
</table>
MODEL CHECKING RUNTIME

PNUELI-ZUCK MUTEX PROTOCOL

<table>
<thead>
<tr>
<th>Our Implementation</th>
<th>Symbolic, state-based</th>
<th>Rabinizer state-based</th>
<th>CMC state-based</th>
</tr>
</thead>
<tbody>
<tr>
<td>explicit, transition-based</td>
<td>PRISM symbolic, state-based</td>
<td>PRISM+Rabinizer</td>
<td></td>
</tr>
</tbody>
</table>

#Clients

| Step | Formula | #Clients | PRISM | PRISM+Rabinizer | PRISM+Rabinizer
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(6)</td>
<td>$P_{max} = ?[GFp1=0 \lor FGp2 \neq 0 \land (GFp2=0 \lor FGp3 \neq 0) \land (GFp3=0 \lor GFp1 \neq 0)]$</td>
<td>4</td>
<td>< 1</td>
<td>78</td>
<td>9</td>
</tr>
<tr>
<td>(7)</td>
<td>$P_{max} = ?[GFp1=0 \land (GFp2=0 \lor FGp3 \neq 0) \land (GFp3=0 \lor GFp1 \neq 0)]$</td>
<td>5</td>
<td>10</td>
<td>1293</td>
<td>137</td>
</tr>
<tr>
<td>(8)</td>
<td>$P_{min} = ?[GFp1 \neq 0 \lor GFp2 \neq 0 \land GFp1=0 \land GFp2=1]$</td>
<td>4</td>
<td>< 1</td>
<td>< 1</td>
<td>61</td>
</tr>
<tr>
<td>(9)</td>
<td>$P_{min} = ?[GFp1 \neq 0 \lor GFp2 \neq 0 \lor GFp3 \neq 0 \land GFp1 \neq 0 \land GFp2=1 \land GFp3=1]$</td>
<td>5</td>
<td>1</td>
<td>< 1</td>
<td>1077</td>
</tr>
<tr>
<td>(10)</td>
<td>$P_{min} = ?[GFp1 \neq 0 \lor GFp2 \neq 0 \land GFp3 \neq 0 \land GFp2=1 \land GFp3=1]$</td>
<td>4</td>
<td>5</td>
<td>-</td>
<td>1195</td>
</tr>
<tr>
<td>(11)</td>
<td>$P_{min} = ?[GFp1=0 \lor GFp2 \neq 0 \land GFp3=0 \land GFp2=1]$</td>
<td>5</td>
<td>24</td>
<td>-</td>
<td>486</td>
</tr>
<tr>
<td>(12)</td>
<td>$P_{max} = ?[f_{0,4}]$</td>
<td>4</td>
<td>< 1</td>
<td>728</td>
<td>33</td>
</tr>
<tr>
<td>(13)</td>
<td>$P_{min} = ?[GFp1=10 \lor GFp2=10]$</td>
<td>5</td>
<td>11</td>
<td>17</td>
<td>40</td>
</tr>
<tr>
<td>(14)</td>
<td>$P_{max} = ?[f_{0,4}]$</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>< 1</td>
</tr>
</tbody>
</table>

#Clients
CONCLUSION

• We have presented a translation from LTL to LDBA that
 • uses formulas as states
 • is modular
 • optimisations of any module helps to reduce state space!
 • yields in practice small ω-automata
 • is usable for quantitative prob. model checking without changing the algorithm!

• Website: https://www7.in.tum.de/~sickert/projects/Ltl2Ldba/