Automata-based Analysis of Threaded Programs

Markus Müller-Olm
Westfälische Wilhelms-Universität Münster, Germany

Workshop HOMC + CDPS
Singapore, September 19-23, 2016
What This Talk is About

Last decades:
 Tremendous progress on automatic analysis of infinite-state systems

One line of research:
 Automata-based methods / regular model-checking

This talk:
 Automata-based analysis of recursive multi-threaded programs synchronizing via locks/monitors
Communicating Synchronization via lock

Distributed Parallelism, no globally shared state

Parameterised Dynamic thread creation

Systems Networks of pushdown systems
Dynamic Pushdown Networks (DPNs)

- DPN: An automata-based model for multi-threaded recursive programs

- A natural extension of push-down systems:

 \[p\gamma \xrightarrow{a} qw \quad \text{if } |w| \leq 2 \]

 \[p\gamma \xrightarrow{a} qw \triangleright q'\gamma' \quad \text{if } |w|=1 \]

- Generic methods for lock-sensitive iterated reachability analysis based on word- and tree-automata

- Applied for data-race and information-flow analysis of Java
Recursive Programs with Thread Creation

Procedures

Recursive procedure calls

Basic statements

Thread creation

Entry point, e_q, of Q

Call Q

Branching & Looping

Return point, r_q, of Q

+ finite-state abstraction of (thread-local) global and local variables
Modelling Program Behavior with DPNs

à la [Esparza/Knoop, FOSSACS’99]

for basic edge e: A

$g \langle l, u \rangle \xrightarrow{e} g' \langle l', v \rangle$, if $(g, l), (g', l') \in \text{Abstr}(A)$

for call edge e: P

$g \langle l, u \rangle \xrightarrow{e} g \langle l_{\text{init}}, e_P \rangle \langle l, v \rangle$

for return point of each procedure r_P

$g \langle l, r_P \rangle \xrightarrow{\text{ret}} g$

for spawn edge e: P

$g \langle l, u \rangle \xrightarrow{e} g \langle l, v \rangle > g_{\text{init}} \langle l_{\text{init}}, e_P \rangle$
Execution Semantics of DPNs on Word-shaped Configurations

A configuration of a DPN is a word in \((P\Gamma^*)^+\):

\[p_1 w_1 p_2 w_2 \cdots p_k w_k \]
(with \(p_i \in P, w_i \in \Gamma^*, k > 0\))

... an infinite state space

The transition relation of a DPN:

\[
\begin{align*}
(p \gamma \xrightarrow{a} q w) & \in \Delta \\
(p \gamma v \xrightarrow{a} u q w v) & \\
(p \gamma \rightarrow q w \triangleright q' w') & \in \Delta \\
(p \gamma v \xrightarrow{a} u q' w' q w v) &
\end{align*}
\]
Example

A DPN:

\[
\begin{align*}
 p \gamma &\xrightarrow{\text{spawn}} p \gamma \triangleright q_0 \gamma \\
 q_0 \gamma &\xrightarrow{\text{hello}} q_1 \gamma \\
 q_1 \gamma &\xrightarrow{\text{world}} q_2
\end{align*}
\]

One of its many execution sequences:

\[
\begin{align*}
 p \gamma &\xrightarrow{\text{spawn}} q_0 \gamma p \gamma \\
 q_0 \gamma p \gamma &\xrightarrow{\text{spawn}} q_0 q_0 \gamma p \gamma p \\
 q_0 q_0 \gamma p \gamma p &\xrightarrow{\text{hello}} q_1 q_0 q_1 \gamma p \gamma p p \\
 q_1 q_0 q_1 \gamma p \gamma p p &\xrightarrow{\text{world}} q_2 q_0 q_1 q_2 \gamma p \gamma p p \\
 q_2 q_0 q_1 q_2 \gamma p \gamma p p &\xrightarrow{\text{hello}} q_2 q_1 q_2 q_1 \gamma p \gamma p
\end{align*}
\]
Spawn are Fundamentally Different from Parallel Procedure Calls

\[P \text{ induces trace language: } L = \bigcup \{ A^n \cdot (B^m \otimes (C^i \cdot D^j) \mid n \geq m \geq 0, i \geq j \geq 0 \} \]

Cannot characterize \(L \) by constraint system with "\cdot" and "\otimes".
Trace languages of DPNs differ from those of PA processes.
[Bouajjani, MO, Touili: CONCUR 2005]
Basic Results on Reachability Analysis of DPNs

[Defintion]

\[\text{pre}^*[L](C) := \{ c \mid \exists d \in C, w \in L : c \xrightarrow{w}^* d \} \]
\[\text{post}^*[L](C) := \{ d \mid \exists c \in C, w \in L : c \xrightarrow{w}^* d \} \]

Forward-Reachability

😀 1) \text{post}^*[\text{Act}^*](C) is in general non-regular for regular C.
😊 2) \text{post}^*[A^*](C) is effectively context-free for context-free C and \(A \subseteq \text{Act} \) (in polytime).
😡 3) Membership in \text{post}^*[L](C) is in general undecidable for regular L.

Backward-Reachability

😊 1) \text{pre}^*[A^*](C) is effectively regular for regular C and \(A \subseteq \text{Act} \) (in polytime).
😡 2) Membership in \text{pre}^*[L](C) is in general undecidable for regular L.

Single Steps

😊 1) \text{pre}^*[A](C) and \text{post}^*[A](C) are effectively regular for regular C and \(A \subseteq \text{Act} \) (in polyn. time).
Example: Backward Reachability Analysis for DPNs

Consider a DPN with just the rule

\[p \gamma \xrightarrow{\text{spawn}} p \gamma \gamma q \gamma \]

and the infinite set of states

\[\text{Bad} = (q \gamma q p \gamma^+)^+ = L(A) \]

Analysis problem: can \text{Bad} be reached from \(p \gamma \)?
Example: Backward Reachability Analysis for DPNs

1. **Step:** Saturate automaton for Bad with the DPN rule:

 Generalization of [Bouajjani/Esparza/Maler, CONCUR’97]
 method for pushdown systems

 Resulting automaton $A_{\text{pre}*}$ represents $\text{pre}^*(\text{Bad})$!

2. **Step:** Check, whether $p\gamma$ is accepted by A_{pre^*} or not

 Result: Bad is reachable from $p\gamma$, as $A_{\text{pre}*}$ accepts $p\gamma$!
Some Applications of pre*-Computations with unrestricted \(L \) (i.e. \(L = \text{Act}^* \))

Reachability of regular sets of configurations, e.g. conflict analysis, data race analysis etc.
Set Bad of configurations is reachable from initial configuration \(p_0 \gamma_0 \) iff
\[p_0 \gamma_0 \in \text{pre}^*[\text{Act}^*](\text{Bad}) \]

Bounded model checking

By iterated pre*-computations alternating with single steps corresponding to synchronizations/communications

Bit-vector data-flow analysis problems

Variable \(x \) is live at program point \(u \) iff
\[g_{\text{init}}(l_{\text{init}}, e_{\text{Main}}) \in \text{pre}^*[\text{Act}^*](A_t \cap \text{pre}^*[\text{NonDef}_x^*](\text{pre}^*[\text{Use}_x](\text{Conf}))) \]

used in JMoped of Schwoon/Esparza

à la [Esparza/Knoop, FOSSACS'99]
Lock-/Monitor-sensitive Analysis

- Assume finite set of locks (or monitors)
- Have acquire- and release actions
 - acq \(L \), rel \(L \) ∈ Act f.a. locks \(L \)
- Intuition: At any time a lock can be held by at most one thread
- The Goal: lock-sensitive analysis
A Multi-Threaded Java Program

class MyThread extends Thread {
 private Objekt l;
 private int secret = 42;
 private int x = 0;

 public MyThread (Object l) {
 this.l = l;
 }
 public void run() {
 synchronized (l) {
 x = secret;
 }
 }
 public static void main (String[] args) {
 Object l = new Object();
 MyThread t = new MyThread(l);
 System.out.println(t.x);
 t.start();
 System.out.println(t.x);
 }
}
Lock-sensitive Analysis

Power of different analyses:

- Pure lock sets: 3
- Analysis sensitive to thread creation, e.g., [BMOT05], [LMO07]: 1,2
- Lock-sensitive analysis from [LMO08], [LMOW09]: 1,2,3,4

Of course, we also treat branching, loops, recursion!
The Results of Kahlon and Gupta

Theorem 1 [Kahlon/Gupta, LICS 2006]

Reachability is undecidable for two pushdown-systems running in parallel and synchronizing by release- and acquire-operations used in an unstructured way.

Idea: Can simulate synchronous communication

Theorem 2 [Kahlon/Gupta, LICS 2006]

Reachability is decidable for two pushdown-systems running in parallel and synchronizing by release- and acquire-operations used in a nested fashion.

Idea: Collect information about lock usage of each process in acquisition histories and check mutual consistency of the collected histories.

Our goal: Lock-sensitive analysis for systems with thread creation
Example: Locksets are not Precise Enough

Thread 1:
- acquire L1
- acquire L2
- release L2

X:

Thread 2:
- acquire L2;
- acquire L1;
- release L1;

Y:

Must-Lockset computed at X: \{ L1 \}
Must-Lockset computed at Y: \{ L2 \}

We have disjoint locksets at X and Y: \{ L1 \} \cap \{ L2 \} = \{ \}.

Nevertheless, X and Y are not reachable simultaneously!
A Tree-Based View of Executions: Action Trees

A DPN:
\[
\begin{align*}
p \gamma & \xrightarrow{\text{spawn}} p \gamma p q_0 \gamma \\
q_0 \gamma & \xrightarrow{\text{hello}} q_1 \gamma \\
q_1 \gamma & \xrightarrow{\text{world}} q_2 \gamma
\end{align*}
\]

Execution sequences:

Action tree:

We write: \[
p \gamma \xrightarrow{T} * q_2 q_1 \gamma p q_\gamma \gamma
\]
A Tree-Based View of Executions

Definition

\[\text{pre}^*[L](C) := \{ c \mid \exists d \in C, w \in L : c \xrightarrow{w}^* d \} \quad \text{where } L \subseteq \text{Act}^* \]

\[\text{preT}^*[M](C) := \{ c \mid \exists d \in C, T \in M : c \xrightarrow{T}^* d \} \quad \text{where } M \subseteq \text{Trees}(\text{Act}) \]

Recall:

Membership in pre*[L](C) is undecidable for regular L already for very simple languages C (e.g. singletons).

Theorem 1 [Lammich, MO, Wenner, CAV 2009]

preT*[M](C) is effectively regular for regular C and regular M (on trees).

Theorem 2 [Lammich, MO, Wenner, CAV 2009]

In a DPN that uses locks in a well-nested and non-reentrant fashion: Set of tree-shaped executions having a lock-sensitive schedule is regular.

Idea of proof: Generalize Kahlon and Gupta’s acquisition histories.

Size of automaton exponential in number of locks...
Which of these action trees have a lock-sensitive schedule?

No! Yes: (0,acq X),(0,sp),(0,rel X), (1,acq X),(1,rel X)

No!
An Even More Regular View to Executions: Execution Trees

Joint work (VMCAI’11) with:
- Thomas Gawlitza, Helmut Seidl (TU München)
- Peter Lammich, Alexander Wenner (WWU Münster)

Realised for Java analysis: Benedikt Nordhoff’s diploma thesis

Example:

\[
\begin{align*}
\text{Call} : & \quad p\gamma \xrightarrow{\text{call}} p\gamma \gamma \\
\text{Spawn} : & \quad p'\gamma \xrightarrow{\text{spawn}} p\gamma \triangleright q\gamma \\
\text{NoMore} : & \quad p\gamma \xrightarrow{\text{no_more}} p''\gamma \\
\text{Return} : & \quad p''\gamma \xrightarrow{\text{return}} p'' \\
\text{Hello} : & \quad q\gamma \xrightarrow{\text{hello}} q
\end{align*}
\]
An Even More Regular View to Executions

The DPN:

- **Call**: \(p\gamma \xrightarrow{\text{call}} p'\gamma \)
- **Spawn**: \(p'\gamma \xrightarrow{\text{spawn}} p\gamma \triangleright q\gamma \)
- **NoMore**: \(p\gamma \xrightarrow{\text{no_more}} p''\gamma \)
- **Return**: \(p''\gamma \xrightarrow{\text{return}} p'' \)
- **Hello**: \(q\gamma \xrightarrow{\text{hello}} q \)

Execution tree:

Action tree:
Execution Trees

Recall: post*[Act*](p_0 \gamma_0) is non-regular in general.

Observation 1:
Set of all execution trees from given initial config., postE*(p_0 \gamma_0), is regular!

Observation 2:
Set of execution trees that have a lock-sensitive schedule is regular, e.g. for:
• nested non-reentrant locking (even with structured form of joins)
• reentrant block-structured locking (monitors, synchronized-blocks)

Observation 3:
Set of execution trees reaching a given regular set C of configs is regular

Obtain homogenous approach to, e.g., lock-sensitive reachability:
Reg. set C is lock-sensitively reachable from start config p_0 \gamma_0
iff
postE*(p_0 \gamma_0) \cap \text{LockSensTrees} \cap \text{ExecTrees}(C) \text{ is non-empty.}
Applications

Lock-join-sensitive ...

- ... reachability analysis to regular sets of configurations, e.g. conflict analysis, data race analysis etc.

- ... bounded model checking

- ... DFA of bitvector problems
Realization for Java

Uses:
- WALA from IBM: T.J. Watson Libraries for Analysis
- XSB: A Prolog-like system with tabulating evaluation

Identifies object references that can be used as locks
- Object creation sites visited at most once
- Experiments with Kidd et. al.'s random isolation technique

For practicality:
- Pre-analysis of WALA flow graph and (massive) pruning
- Modular formulation of automata-based analysis
- Clever evaluation strategy for tree automata construction

Experimental applications:
- Lock-sensitive data-race analyzer for Java
- With KIT: Improve PDG-based IFC analysis of concurrent Java programs
Java Data-Race Finder: Screenshot 1

```java
package bnord.examples.datarace;

import bnord.examples.lock;

public class BSP03 extends Thread {
    static long x;

    public static void main(String[] args) {
        synchronized (lock1) {
            thread.start();
            x = 42;
        }

        public void run() {
            x = 17;
        }
    }

    static Lock lock1 = new Lock();
    static BSP03 thread = new BSP03();
}
```

Race found!

There might be a race in your program.

See result view.

Overall Result: Race free: 2/3 Possible race: 1/3

- Field: bnord.examples.datarace.BSP03.lock1 of type: bnord.examples.Lock
- Field: bnord.examples.datarace.BSP03.thread of type: bnord.examples.datarace.BSP03
- Field: bnord.examples.datarace.BSP03.x of type: J
Java Data-Race Finder: Screenshot 2

```java
package bnord.examples.datarace;

import bnord.examples.Lock;

public class BSP03 extends Thread {
    static long x;

    public static void main(String[] args) {
        synchronized (lock1) {
            thread.start();
            x = 42;
        }

        public void run() {
            x = 17;
        }

        static Lock lock1 = new Lock();
        static BSP03 thread = new BSP03();
    }
}
```

Witness View:
- Call 1 in FakeRootClass.fakeRootMethod
- Acq in BSP03.main
- Call 2 in BSP03.main
- Spawn in Thread.start
- Nil in BSP03.main
- Nil in BSP03.run
- Ret in Thread.start

Data race result:
Overall Result: Race free: 2/3 Possible race: 1/3
- Field: bnord.examples.datarace.BSP03.of type: bnord.examples.datarace.BSP03
- Field: bnord.examples.datarace.BSP03.x of type: j
- Field on static object: <Application,Lbnord/examples/datarace/BSP03>
Java Data-Race Finder: Screenshot 3

```java
package bnord.examples.datarace;
import bnord.examples.Lock;
public class BSP03 extends Thread {
    static long x;
    public static void main(String[] args) {
        synchronized (lock1) {
            thread.start();
            x = 42;
        }
    }
    public void run() {
        synchronized (lock1) {
            x = 17;
        }
    }
    static Lock lock1 = new Lock();
}
```

No race found

There is no race in your program
Experimental Integration with Joana: Screenshot
Conclusion

- Lock-join-sensitive analysis using automata
- Finite state + recursion + thread creation + locks + joins
- Experimental applications for Java
- SAS‘13: Extension to „contextual locking“
- LOPSTR‘15: Application to information-flow analysis
- Ongoing work: Unbounded number of locks
Thank you!