Compiling Untyped λ-calculus to Lower-level Code by Game Semantics and Partial Evaluation

▶ Daniil Berezun
State University of St. Petersburg

▶ Neil D. Jones
DIKU, University of Copenhagen (prof. emeritus)
Implicit in PCF research (Ong/Abramsky/. . . 1990s)

Explicit in ong [1]:

1. Convert typed \(\lambda \)-expression \(M \) into long form \(M^{lf} \)

2. Traverse the syntax nodes of \(M^{lf} \):

3. Traversal builds a history \(h \) of the normalisation of \(M \)

4. \(h \in H = (\text{Subexp}(M) \times H)^* \)

Origins: research on full abstraction for PCF.
The game semantics for PCF amounts to an executable implementation of PCF, i.e., a PCF interpreter.

An observation: this implementation uses none of the usual machinery: parameters by closures or thunks; bindings by environments. (Instead, all is done by tokens and back pointers).

A traversal is a

- sequence of subexpressions of M. This is a finite set, whose elements we will call tokens (think: M = program, tokens = program points)

- each token in a traversal may have a back pointer (aka. justifier).
ONG’S NORMALISATION PROCEDURE ONP

▶ applies to simply-typed λ-expressions

▶ begins by translating M into η-long form

▶ effect: head linear reduction of M, one step at a time

▶ Correctness: proven by game semantics and category theory. Strongly based on M’s types.

Properties of the normalisation procedure:

- Uses no β-reduction: just take a walk through subexpressions of M.

While running, ONP does not use the types of M at all.
OUR WORK

► Extend Ong [1] to the untyped \(\lambda \)-calculus. We use two kinds of back pointers.

► Call the this algorithm \(UNP \). Concretely, \(UNP \) can be programmed in \textsc{haskell} or \textsc{scheme}.

Partial evaluation: we construct low-level code for \(\lambda \)-expression \(M \) by partial evaluation:

\[\llbracket spec \rrbracket(UNP, M) = \text{Target code for } M \]

► More: one can generate a compiler from \(UNP \) by partial evaluation:

\[\llbracket cogen \rrbracket(UNP) \in \text{ULC } \Rightarrow \text{LLL} \]
MULTIPLYING CHURCH NUMERALS: $2 \times 2 = 2(2S)Z$

Church numeral for $n : \lambda s \lambda z . s(\cdots(sz)\cdots)$

$mul = \lambda mn sz . m(ns)z$

Normal form of 2×2: $S(S(S(SZ)))$

\[
\begin{array}{cl}
m = 2 \\
\downarrow \\
\lambda s1 \\
\downarrow \\
\lambda z1 \\
\downarrow \\
\lambda s1 \\
\downarrow \\
\lambda z1 \\
\downarrow \\
\lambda s1 \\
\downarrow \\
z1 \\
\frac{\text{PROGRAM}}{
\begin{array}{cl}
\Leftarrow n = 2 \\
\\shortdownarrow \\
\text{\rule{5cm}{0.5mm}} \\
\end{array}
}
\end{array}
\]

\[
\begin{array}{cl}
\frac{\text{\rule{1cm}{0.5mm}}}{z1} \\
\Downarrow \\
\lambda s2 \\
\Downarrow \\
\lambda z2 \\
\Downarrow \\
\lambda s2 \\
\Downarrow \\
z2 \\
\frac{\text{\rule{5cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\text{\rule{1cm}{0.5mm}} \\
\end{array}
\]

\[
\begin{array}{cl}
\frac{\text{\rule{1cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
\lambda z1 \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
z1 \\
\frac{\text{\rule{5cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\text{\rule{1cm}{0.5mm}} \\
\end{array}
\]

\[
\begin{array}{cl}
\frac{\text{\rule{1cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
\lambda z1 \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
z1 \\
\frac{\text{\rule{5cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\text{\rule{1cm}{0.5mm}} \\
\end{array}
\]

\[
\begin{array}{cl}
\frac{\text{\rule{1cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
\lambda z1 \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
z1 \\
\frac{\text{\rule{5cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\text{\rule{1cm}{0.5mm}} \\
\end{array}
\]

\[
\begin{array}{cl}
\frac{\text{\rule{1cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
\lambda z1 \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
z1 \\
\frac{\text{\rule{5cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\text{\rule{1cm}{0.5mm}} \\
\end{array}
\]

\[
\begin{array}{cl}
\frac{\text{\rule{1cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
\lambda z1 \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
z1 \\
\frac{\text{\rule{5cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\text{\rule{1cm}{0.5mm}} \\
\end{array}
\]

\[
\begin{array}{cl}
\frac{\text{\rule{1cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
\lambda z1 \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
z1 \\
\frac{\text{\rule{5cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\text{\rule{1cm}{0.5mm}} \\
\end{array}
\]

\[
\begin{array}{cl}
\frac{\text{\rule{1cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
\lambda z1 \\
\Downarrow \\
\lambda s1 \\
\Downarrow \\
z1 \\
\frac{\text{\rule{5cm}{0.5mm}}}{\text{\rule{1cm}{0.5mm}}} \\
\text{\rule{1cm}{0.5mm}} \\
\end{array}
\]
GAME: DATA $m = 2, n = 2$ VERSUS PROGRAM: STEPS 1–6

1: $\@_1$

\downarrow

3: λs_1

4: λz_1

5: $\@_3$

6: s_1

\downarrow

\downarrow

\downarrow

\downarrow

\downarrow

\downarrow

\downarrow

\downarrow

2: $\@_2$

λs_2

λz_2

$\@_5$

$\@_6$

$\@_7$

\rightarrow PROGRAM

\leftarrow PROGRAM

$\leftarrow n = 2$
TRAVERSAL OF $2 \times 2 = 2(2S)Z$: STEPS 7–11

$$m = 2$$

$$\Rightarrow$$

1: $@_1$

2: $@_2$

7: $@_5$

Z

S

1: $@_1$

2: $@_2$

3: $\lambda s1$

4: $\lambda z1$

5: $@_3$

6: $s1$

7: $@_4$

8: $\lambda s2$

9: $\lambda z2$

10: $@_6$

11: $s2$

11: $s2$

$n = 2$
TRAVERSAL OF $2 \times 2 = 2(2S)Z$: STEPS 12–16

$m = 2$

$\lambda s1$

$\lambda z1$

@3

@4

$\lambda s2$

$\lambda z2$

@8

@9

$S : 12, 15$

$n = 2$

\Rightarrow PROGRAM

$z1$

@1

\Rightarrow PROGRAM

$z2 : 16$

$11: s2$

$14: s2$

$12, 15$
TRAVERSAL OF $2 \ast 2 = \underline{2(2S)}Z$: STEPS 17–18

$m = 2 \Downarrow$

1: $\@_1$

2: $\@_2$

3: λs_1

4: λz_1

5: $\@_3$

6: s_1

7: $\@_5$

8: λs_2

9: λz_2

10: $\@_6$

11: s_2

12: s_2

13: $z_2 : 16$

14: s_2

15: $S : 12, 15$

16: $z_2 : 16$

17: $\@_4 : 17$

18: s_1

PROGRAM

$\Leftarrow n = 2 \Downarrow$
TRAVERSAL OF $2 \times 2 = 2(2S)Z$: STEPS 19–23

$m = 2$

\downarrow

λs_1

\[\lambda z_1 \]

$@_3$

s_1

z_1

\[@_4 : 17 \]

$@_5$

$S : 12, 15$

\[n = 2 \]

\leftarrow PROGRAM
TRAVERSAL OF $2 \times 2 = 2(2S)Z$: STEPS 24–30
How on earth did we select the right node visit sequence? There are many possibilities, mostly wrong!

We develop several semantics.

▶ Semantics 1 is classical β-reduction (a deterministic version)

▶ Semantics 5 resembles Ong’s, with no environments, thunks, etc. but two kinds of back pointers. Leftmost head linear reduction

▶ All traverse subexpressions of M in the same order

All the semantics achieve the canonical traversal order.

How is it defined? Mark the subexpression occurrences in M. Then trace their order during the complete leftmost head β-reduction.
Semantics 1: A classical β-reduction semantics.

Semantics 2: An environment semantics as in functional programming.

Semantics 3: Environment-based but tail recursive. Realise nested evaluator calls by data structures.

Semantics 4: First history semantics. Implement the control data by back pointers into the computational history.

Semantics 5: Final history semantics. Implement the environments by back pointers into the computational history.

This history records the normaliser calls done until now (with argument values). Net effect: Semantics 5 is

$$\text{UNP} \in \Lambda_L$$

UNP is a first-order program.
Classical reduction: needs a flag to avoid reducing e_0 twice in an application $(\lambda x.e_0)@e_2$.

Environment semantics: $\rho \in Env = Variable \rightarrow Exp \times Env$. Two excerpts:

$$\llbracket x \rrbracket \rho = \text{let } (e_0, \rho_0) = \rho(x) \text{ in } \llbracket e_0 \rrbracket \rho_0$$

$$\llbracket e_1@e_2 \rrbracket \rho = \text{let } (\lambda x.e_0, \rho_0) = \llbracket e_1 \rrbracket \rho \text{ in } \llbracket e_0 \rrbracket \rho_0[x \mapsto (e_2, \rho)]$$

Environment semantics is not compositional, but it is semi-compositional. This means:

in any call $\llbracket e \rrbracket \rho$ that occurs while evaluating λ-expression M, argument e will be a subexpression of M.

(This is good for compilation and partial evaluation.)
CONTINUATIONS AND DEFUNCTIONALISATION

Goal: Semantics 3 = tail-recursive version of Semantics 2. Techniques: well-known, e.g. John Reynolds’ **Definitional interpreters** paper.

- **Continuations**: modify Semantics 2 to have linear control flow.

 Defunctionalisation: then replace the continuation functions by data structures.

- Example of net effect: replace

 \[
 \left[e_1 \circ e_2 \right]^2 \rho = \text{let } (\lambda x. e_0, \rho_0) = \left[e_1 \right]^2 \rho \text{ in } \left[e_0 \right]^2 \rho_0[x \mapsto (e_2, \rho)]
 \]

 by:

 \[
 \left[e_1 \circ e_2 \right]^3 \rho k = \left[e_1 \right]^3 \rho \langle Kapp e_2 \rho \rangle k
 \]

 plus:

 \[
 \text{applycont } \langle Kapp e_2 \rho \rangle e_0 \rho_0 = \left[e_0 \right]^3 \rho_0[x \mapsto (e_2, \rho)] k
 \]
Semantics 4:

► Replace the continuation argument \(k \) by a history \(h \).

► \(h \) is a accumulative trace that remembers

\[h \in H = (\text{Exp} \times \text{Env} \times H)^* \]

► What’s the point? We can replace a continuation data structure such as \(\langle Kapp \ e_2 \ \rho \ k \rangle \) by a pointer to the time at which it was created (call it \(t \)).

If you are given a back pointer as value of \(t \), you can find the parts that \(\langle Kapp \ e_2 \ \rho \ k \rangle \) was built from in the history.

► Effect: save the time and space needed to build the continuation data.

► However this has a cost: keeping the history available for access.
Semantics 5:

► Replace the environment ρ in Semantics 4 by a back pointer into the history h.

► Same idea, but a separate pointer is needed.

► A difference from Semantics 2-3-4:

 The value of a variable x is found,

 • not by applying a single function ρ, but
 • by following a chain of back pointers, to locate the place where x was last bound.

► Effect: all of the normaliser’s arguments are now first-order.
A partial evaluator is a program specialiser. Defining property of $spec$:

$$\forall p \in Programs . \forall s, d \in Data . \llbracket \llbracket spec \rrbracket (p, s) \rrbracket (d) = \llbracket p \rrbracket (s, d)$$

- Program speedup by precomputation. Applications: compiling, and compiler generation (from an interpreter, and by self-applying $spec$).

- Given program p and “static” data s, $spec$ builds a residual program $p_s \overset{def}{=} \llbracket spec \rrbracket (p, s)$.

- When run on any remaining “dynamic” data d, residual program p_s computes what p would have computed on both data inputs s and d.

- Net effect: a staging transformation: $\llbracket p \rrbracket (s, d)$ is a 1 stage computation; but $\llbracket \llbracket spec \rrbracket (p, s) \rrbracket (d)$ is a 2 stage computation.

- Well-known in recursive function theory, as the S-1-1 theorem.

- Partial evaluation = engineering the S-1-1 theorem on real programs.
LLL is a tiny **tail recursive first-order functional** language. Essentially a machine language with a heap. Functional version of **WHILE** in book: *Computability and Complexity from a Programming Perspective*

SYNTAX

```
program ::= f1 x = e1 ... fn x = en

e ::= x | f e
    | token | case e of token1 -> e1 ... tokenn -> en
    | (e,e) | case e of (x,y) -> e
    | [] | case e of [] -> e x:y -> e

x ::= variable

token ::= an atomic symbol (from a fixed alphabet)
```

Variables have **SIMPLE TYPES** (not depending on \(M\)):

```
tau ::= Token | tau x tau | [ tau ]
```

A token, or a product type, has a **static structure**, fixed for any one **LLL** program. A list type \([\tau]\) (dynamic) has constructors \([]\) and \(::\).
HOW TO PARTIALLY EVALUATE NP (IN PROGRAM FORM) WITH RESPECT TO STATIC λ-EXPRESSION M?

1. **Annotate** parts of NP as either **static** or **dynamic**. Variables ranging over
 - (a) **tokens** are static, i.e., λ-expressions (subexpressions of M);
 - (b) **back pointers** are dynamic;
 - (c) so the **traversal** being built is dynamic too.

2. **Classify** data 1a as static (there are only finitely many)

3. **Classify** data 1b, 1c as dynamic (there are unboundedly many)

4. **Computations in NP** are either **unfolded** (done at PE time) or **residualised** (runtime code is generated to do them at stage 2)
 - Perform **fully static computations** at partial evaluation time.
 - Operations to build or test a traversal: generate **residual code**.
THE RESIDUAL PROGRAM $\mathbf{NP}_M = [\mathit{spec}] \mathbf{NP} \; M$

If NP is semi-compositional:

Any recursive NP call has a substructure of M as argument.

Then:

- The partial evaluator can do, at specialisation time, all of the NP operations that depend only on M

- \mathbf{NP}_M contains “residual code”:
 - operations to extend the traversal; and
 - operations to follow back pointers

- \mathbf{NP}_M performs no operations at all on lambda expressions (!)

- Subexpressions of M will appear, but are only used as tokens:
 Tokens are indivisible, only used for equality comparisons with other tokens
AN OLD DREAM: SEMANTICS-DIRECTED COMPILER GENERATION

(Just a wild idea for now, needs much more thought and work.)

Idea: specify the semantics of a subject programming language
(e.g., call-by-value \(\lambda \)-calculus, imperative languages, etc.)
by mapping source programs into LLL.

A “gedankeneksperiment”, to get started:

Express the semantics of \(\Lambda \) by semi-compositional semantic rules without variable environments, thunks, etc:

\[
\llbracket \cdot \rrbracket^\Lambda : \Lambda \to \text{LLL}
\]

Expectations/hopes:
- Reasonably many programming languages can be specified this way
- A generalising framework: compiling, optimisation, . . . tasks can all be reduced to questions and algorithms concerning LLL programs
1. An idea: formalise a computation of λ-expression M on input d as a two-player game between the LLL-codes for M and d.

2. An example: mul, usual λ-calculus definition on Church numerals.

3. Loops appear from out of nowhere:
 - Neither mul nor the data contain loops;
 - but mul is compiled into an LLL-program with two nested loops.
 - Expect: can do the computation entirely without back pointers.

4. Current work: express such program-data games in a communicating version of LLL. A lead: apply traditional methods for compiling remote function calls.

5. Next step: optimise LLL. Remove all inessential bits of the traversal.

6. Think about complexity and data-flow analysis of such programs.
References

