Higher reverse mathematics

Noah Schweber

January 6, 2016
1 Background on higher reverse mathematics

2 Determinacy principles

3 Further ATR_0 variants

4 Choice principles
1 Background on higher reverse mathematics

2 Determinacy principles

3 Further ATR_0 variants

4 Choice principles
Some history

- Harnik (1987) introduces conservative extension of RCA_0 for studying reverse mathematics of stability theory
- Kohlenbach (2001) introduces RCA_0
Some history

- Harnik (1987) introduces conservative extension of RCA_0 for studying reverse mathematics of stability theory
- Kohlenbach (2001) introduces RCA_0^ω

Since then, substantial work has been done in the system RCA_0^ω:

- Uniform versions of classical principles (Kohlenbach, Sakamoto/Yamazaki, Sanders)
- Topology and measure theory (Hunter, Kreuzer)
- Ultrafilters (Kreuzer, Towsner*)
- Interactions with NSA (Sanders)
Some history

- Harnik (1987) introduces conservative extension of RCA_0 for studying reverse mathematics of stability theory
- Kohlenbach (2001) introduces RCA_0^ω

Since then, substantial work has been done in the system RCA_0^ω:

- Uniform versions of classical principles (Kohlenbach, Sakamoto/Yamazaki, Sanders)
- Topology and measure theory (Hunter, Kreuzer)
- Ultrafilters (Kreuzer, Towsner*)
- Interactions with NSA (Sanders)

Today: interactions between higher reverse math and set theory (S., Hachtman)
Theorem (Grilliot’s Trick)

The following are “effectively equivalent”:

- The jump functional $x \mapsto x'$ exists.
- “Uniform Weak Konig’s Lemma”: There is a functional F such that, if T is an infinite binary tree, then $F(T)$ is a path through T.

“Proof”.

Let

- $T^0_n = \{ \sigma \in 2^\omega : (\forall i(\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i(\sigma(i) = 1))\}$
- $T^1_n = \{ \sigma \in 2^\omega : (\forall i(\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i(\sigma(i) = 1))\}$
- $T_\infty = \{ \sigma \in 2^\omega : \forall i, j(\sigma(i) = \sigma(j))\}$.

Then either $F(T_\infty)$ goes left (zero) or right (one).
Theorem (Grilliot’s Trick)

The following are “effectively equivalent”:

- The jump functional $x \mapsto x'$ exists.
- “Uniform Weak Konig’s Lemma”: There is a functional F such that, if T is an infinite binary tree, then $F(T)$ is a path through T.

“Proof”.

Let

- $T^0_n = \{ \sigma \in 2^\omega : (\forall i(\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i(\sigma(i) = 1)) \}$
- $T^1_n = \{ \sigma \in 2^\omega : (\forall i(\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i(\sigma(i) = 1)) \}$
- $T_\infty = \{ \sigma \in 2^\omega : \forall i, j(\sigma(i) = \sigma(j)) \}$.

Then either $F(T_\infty)$ goes left (zero) or right (one). Suppose $F(T_\infty)$ goes left. Then, given real x and natural e, let $T_{x,e}$ consist of “all ones” branch \uparrow every all-zeros node of length s such that $\varphi^x_e(e)[s] \uparrow$.

Noah Schweber
Higher reverse mathematics
January 6, 2016 5 / 21
Theorem (Grilliot’s Trick)

The following are “effectively equivalent”:

- The jump functional $x x' \mapsto x'$ exists.
- “Uniform Weak Konig’s Lemma”: There is a functional F such that, if T is an infinite binary tree, then $F(T)$ is a path through T.

“Proof”.

Let

- $T^0_n = \{ \sigma \in 2^\omega : (\forall i (\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i (\sigma(i) = 1)) \}$
- $T^1_n = \{ \sigma \in 2^\omega : (\forall i (\sigma(i) = 0)) \lor (|\sigma| < n \land \forall i (\sigma(i) = 1)) \}$
- $T_\infty = \{ \sigma \in 2^\omega : \forall i, j (\sigma(i) = \sigma(j)) \}$.

Then either $F(T_\infty)$ goes left (zero) or right (one). Suppose $F(T_\infty)$ goes left. Then, given real x and natural e, let $T_{x,e}$ consist of “all ones” branch + every all-zeroes node of length s such that $\varphi_{e}(x)[s] \uparrow$. Now ask, “$F(T_{x,e})(0) = ?$”
Kohlenbach: introduced RCA_0^ω, a conservative extension of RCA_0 for all finite types. Different appearance from RCA_0.
S.: base theory RCA_0^3 for types 0, 1, 2; similar form to RCA_0.
Kohlenbach: introduced RCA_0^ω, a conservative extension of RCA_0 for all finite types. Different appearance from RCA_0.
S.: base theory RCA_0^3 for types 0, 1, 2; similar form to RCA_0.

Proposition (S.)

RCA_0^ω is a conservative extension of RCA_0^3.
Kohlenbach: introduced RCA_0^ω, a conservative extension of RCA_0 for all finite types. Different appearance from RCA_0.
S.: base theory RCA_0^3 for types 0, 1, 2; similar form to RCA_0.

Proposition (S.)

RCA_0^ω is a conservative extension of RCA_0^3.

- Language: arithmetic, application symbols "$F(x)"$, and **coding**: \(\triangle, \ast\)
- Ordered semiring axioms + Σ^0_1 induction
- Δ^0_1-comprehension for reals and functionals (with arbitrary parameters) in the language
- Coding operations defined as:
 - $n\triangle(a_0, a_1, a_2, \ldots) = (n, a_0, a_1, \ldots)$,
 - $F \ast r = (F(0\triangle r), F(1\triangle r), F(2\triangle r), \ldots)$
Δ₁⁰ comprehension

RCA₀³: ordered semiring axioms, \(\Sigma^0_1 \) induction, extensionality, and versions of \(\Delta^0_1 \)-comprehension for reals and functionals in the language of third-order arithmetic + "coding operations"

- "\(\Sigma^0_1 \)" has usual meaning: existential quantifier over naturals, matrix has bounded quantifiers over naturals only (and equality for naturals only)
- A \(\Delta^0_1 \)-definition of a real is a \(\Sigma^0_1 \) formula \(\varphi(x^\mathbb{N}, y^\mathbb{N}) \) such that
 \[
 \forall x \exists! y \varphi(x, y).
 \]
- A \(\Delta^0_1 \)-definition of a functional is a \(\Sigma^0_1 \) formula \(\varphi(x^\mathbb{R}, y^\mathbb{N}) \) such that
 \[
 \forall x \exists! y \varphi(x, y).
 \]

Note: arbitrary type parameters are allowed in \(\Sigma^0_1 \) formulas.
Models of RCA_0^3

A model of RCA_0^3 has form

$$(Nat, Rea, Fun; +, \times, 0, 1, \wedge, *, app)$$

\wedge and $*$ are coding operations

app is application — “$F(x)$” shorthand for "app(F, x)"

Here: ω-models only, so a model of RCA_0^3 is specified by Rea and Fun.

Example

If $X \subseteq \omega^\omega$ is a Turing ideal, there is a smallest model of RCA_0^3 with second-order part X: $$(\omega, X, \{s \mapsto \Phi_t \oplus s \in X, \Phi_t \oplus e\}$$

Example

Other models: $(\omega, R, \text{continuous functions})$ and $(\omega, R, \text{Borel functions})$
Models of RCA_0^3

A model of RCA_0^3 has form

$$(Nat, Rea, Fun; +, \times, 0, 1, \wedge, *, app)$$

\wedge and $*$ are coding operations

app is application — “$F(x)$” shorthand for “$app(F, x)$”

Here: ω-models only, so a model of RCA_0^3 is specified by Rea and Fun.
A model of RCA^3_0 has form

$$(\text{Nat}, \text{Rea}, \text{Fun}; +, \times, 0, 1, \wedge, *, \text{app})$$

\wedge and $*$ are coding operations

app is application — “$F(x)$” shorthand for ”$\text{app}(F, x)$”

Here: ω-models only, so a model of RCA^3_0 is specified by Rea and Fun.

Example

If $X \subseteq \omega^\omega$ is a Turing ideal, there is a smallest model of RCA^3_0 with second-order part X:

$$(\omega, X, \{s \mapsto \Phi_e^{t+s} : t \in X, \Phi_e^{t+s} \text{ total on } X\})$$

Example

Other models: $(\omega, \mathbb{R}, \text{continuous functions})$ and $(\omega, \mathbb{R}, \text{Borel functions})$
Background on higher reverse mathematics

Determinacy principles

Further ATR_0 variants

Choice principles
Every clopen game on ω has (relatively) hyperarithmetic winning strategy. Fails for open games.
Every clopen game on ω has (relatively) hyperarithmetic winning strategy. Fails for open games. Nevertheless:

Theorem (Steel)

Over RCA_0, the following are equivalent:

- **Open determinacy.**
- **Clopen determinacy.**

Open and clopen determinancy are equivalent because “clopen” is Π^1_1-complete — more complex than principles involved
Every clopen game on ω has (relatively) hyperarithmetic winning strategy. Fails for open games. Nevertheless:

Theorem (Steel)

Over RCA_0, the following are equivalent:

- Open determinacy.
- Clopen determinacy.

Open and clopen determinancy are equivalent because “clopen” is Π^1_1-complete — more complex than principles involved

Question

Is this the only reason?
Determinacy on reals

Since \(\omega \)-sequences of reals can be coded by reals, “\(T \subseteq (\omega^\omega)^{<\omega} \) is well-founded” is \(\Pi^1_1 \).

Definition

- **Open determinacy for reals** (\(\Sigma^R_1 \)-Det): “Any open game of length \(\omega \) on \(\mathbb{R} \) is determined.” (Game tree \(\subseteq \mathbb{R}^{<\omega} \), I wins iff play leaves tree.)

- **Clopen determinacy for reals** (\(\Delta^R_1 \)-Det): “Any clopen game of length \(\omega \) on \(\mathbb{R} \) is determined.” (Game tree \(\text{wellfounded} \subseteq \mathbb{R}^{<\omega} \), first to leave tree loses.)
Determinacy on reals

Since ω-sequences of reals can be coded by reals, “$T \subseteq (\omega^\omega)^{<\omega}$ is well-founded” is Π^1_1.

Definition

- Open determinacy for reals (Σ^R_1-Det): “Any open game of length ω on \mathbb{R} is determined.” (Game tree $\subseteq \mathbb{R}^{<\omega}$, I wins iff play leaves tree.)
- Clopen determinacy for reals (Δ^R_1-Det): “Any clopen game of length ω on \mathbb{R} is determined.” (Game tree *wellfounded* $\subseteq \mathbb{R}^{<\omega}$, first to leave tree loses.)

Theorem (S.)

Over RCA_0^3, Δ^R_1-Det is strictly weaker than Σ^R_1-Det.

Uses nontrivial countably closed higher-type forcings — counterpart of complexity of “clopenness” at second-order

Shortly afterwards: Hachtman, via analysis of Goedel’s L (see later)
Let α be an ordinal.

- C_{α} is clopen game “walk down α”: Players I and II (independently) build decreasing sequences in α; first who cannot play, loses.
- O_{α} is open game “play C_{α} until I wins”: Players I and II play ω-many games of C_{α} (in sequence). II wins iff she wins every game.

We let $T \subseteq (c^+)^{<\omega}$ be game tree for O_{c^+}.

Actually, right game is slight variation on this.
The separating model

- Start with ground model $V \models ZFC$
The separating model

- Start with ground model $V \models ZFC$
- Force: generic copy \mathcal{G} of \mathbb{T} as tree on reals (countably closed)
The separating model

- Start with ground model $V \models ZFC$
- Force: generic copy G of \mathbb{T} as tree on reals \textbf{(countably closed)}
- Model M: Closure of G (+ ground functionals) under “$(< c^+)$-many jumps” (a la Steel forcing)
The separating model

- Start with ground model $V \models ZFC$
- Force: generic copy G of T as tree on reals (countably closed)
- Model M: Closure of G (+ ground functionals) under “($< c^+$)-many jumps” (a la Steel forcing)
- Properties:
The separating model

- Start with ground model $V \models ZFC$
- Force: generic copy \mathcal{G} of T as tree on reals (countably closed)
- Model M: Closure of \mathcal{G} (+ ground functionals) under "(< $c^+\) -many jumps" (a la Steel forcing)
- Properties:
 - RCA_0^3, "\mathcal{G} is undetermined" are easy
The separating model

- Start with ground model $V \models ZFC$
- Force: generic copy \mathcal{G} of T as tree on reals \textbf{(countably closed)}
- Model M: Closure of \mathcal{G} (± ground functionals) under "(< c^+)-many jumps" (à la Steel forcing)
- Properties:
 - RCA_0^3, "\mathcal{G} is undetermined" are easy
 - Clopen games of rank $< c^+$ determined via ranking argument
The separating model

- Start with ground model $V \models ZFC$
- Force: generic copy \mathcal{G} of T as tree on reals (**countably closed**)
- Model M: Closure of \mathcal{G} (+ ground functionals) under "($< c^+$)-many jumps" (a la Steel forcing)
- Properties:
 - RCA_0^3, "\mathcal{G} is undetermined" are easy
 - Clopen games of rank $< c^+$ determined via ranking argument
 - Countable closure: no clopen games of rank $\geq c^+$ in M
Subsequent analysis

Shortly afterwards, Sherwood Hachtman drew a connection with his work on the constructible universe L:

Definition (Hachtman)

θ is the least ordinal such that L_θ satisfies: “$\mathcal{P}(\omega)$ exists and for every height-ω tree T with no path, there is $\rho : T \rightarrow ON$ such that $x \supseteq y \implies \rho(x) < \rho(y)$.”

Theorem (Hachtman)

$(\omega, \omega^\omega \cap L_\theta, \omega^\omega \cap L_\theta)$ separates clopen and open determinacy for reals.

That is, Hachtman found a set-theoretic canonical model of the separation. This θ is also connected to Σ^0_4 determinacy on naturals, and reflection principles.

Question

Are there other canonical models? (Hyperanalytic functionals?)
1 Background on higher reverse mathematics

2 Determinacy principles

3 Further ATR_0 variants

4 Choice principles
Definition

- **TR**: Σ^1_1 recursion along a well-ordering with domain $\subseteq \mathbb{R}$.
- **RR**: Σ^1_1 recursion along a well-founded tree with domain $\subseteq \mathbb{R}$.

Definition

- **WO**: The reals are well-orderable. (Role: Kleene-Brouwer ordering of tree)
- **SF**: Real-indexed families of nonempty sets of reals have choice functionals. (Role: quasistrategy \rightarrow strategy)

Proposition (S.)

Over RCA_0^3, we have:

- **RR + SF** is equivalent to clopen determinacy for reals.
- **TR + WO + SF** implies clopen determinacy for reals.
\(\Sigma^2_1 \)-Separation

Definition

\(\Sigma^2_1 \)-Sep is the statement: “Given \(\varphi, \psi \in \Sigma^2_1 \), if at most one holds for each real \(r \), then have separating functional.”

Proposition (S.)

Over \(RCA_0^3 + SF \), \(\Sigma^2_1 \)-Sep implies clopen determinacy for reals.
Σ²¹-Separation

Definition

Σ²¹-Sep is the statement: “Given φ, ψ ∈ Σ²¹, if at most one holds for each real r, then have separating functional.”

Proposition (S.)

Over RCA³₀ + SF, Σ²¹-Sep implies clopen determinacy for reals.

Proof sketch.

Suppose G is a clopen game. For each node σ ∈ G, at most one of the following hold:

- There is a witness to σ being a win for player I.
- There is a witness to σ being a win for player II.

Applying Σ²¹-Sep yields a winning quasistrategy.
Definition

Σ^2_1-Sep is the statement: “Given $\varphi, \psi \in \Sigma^2_1$, if at most one holds for each real r, then have separating functional.”

Proposition (S.)

Over $\text{RCA}_0^3 + \text{SF}$, Σ^2_1-Sep implies clopen determinacy for reals.

Proof sketch.

Suppose G is a clopen game. For each node $\sigma \in G$, at most one of the following hold:

- There is a witness to σ being a win for player I.
- There is a witness to σ being a win for player II.

Applying Σ^2_1-Sep yields a winning quasistrategy. . . after analysis.

What is the relationship between Σ^2_1-Sep and open determinacy for reals?
1 Background on higher reverse mathematics

2 Determinacy principles

3 Further ATR_0 variants

4 Choice principles
Comparing choice principles, I/II

Two natural choice principles:

\[SF \]: 'Every family \(S_r (r \in \mathbb{R}) \) of nonempty sets of reals has a choice function'

\[WO \]: 'The reals are well-orderable'

Proposition \(SF \) does not imply \(WO \) over \(RCA_0^3 \).

Proofs.

In \(ZF + AD_R \), projective functionals give separating model.

Over \(ZF \), Truss 1978 provided a forcing argument.

Over \(RCA_0^3 \), set of continuous functionals is model of \(SF + \neg WO \).

What about other direction? Note that choice functions are definable from a well-ordering...
Comparing choice principles, I/II

Two natural choice principles:

- \(SF = \) “Every family \(S_r \ (r \in \mathbb{R}) \) of nonempty sets of reals has a choice function”
- \(WO = \) “The reals are well-orderable”
Comparing choice principles, I/II

Two natural choice principles:
- $SF = \text{“Every family } S_r (r \in \mathbb{R}) \text{ of nonempty sets of reals has a choice function”}$
- $WO = \text{“The reals are well-orderable”}$

Proposition

SF does not imply WO over RCA_0^3.

Proofs.
- In $ZF + AD_{\mathbb{R}}$, projective functionals give separating model
- Over ZF, Truss 1978 provided a forcing argument
- Over RCA_0^3, set of continuous functionals is model of $SF + \neg WO$
Comparing choice principles, I/II

Two natural choice principles:

- **SF** = “Every family \(S_r \ (r \in \mathbb{R}) \) of nonempty sets of reals has a choice function”
- **WO** = “The reals are well-orderable”

Proposition

\(SF \) does not imply \(WO \) over \(RCA_0^3 \).

Proofs.

- In \(ZF + AD_\mathbb{R} \), projective functionals give separating model
- Over \(ZF \), Truss 1978 provided a forcing argument
- Over \(RCA_0^3 \), set of continuous functionals is model of \(SF + \neg WO \)

What about other direction? Note that choice functions are *definable* from a well-ordering . . .
Two natural choice principles:

- **SF** = “Every family $S_r \ (r \in \mathbb{R})$ of nonempty sets of reals has a choice function”
- **WO** = “The reals are well-orderable”

Theorem (S.)

Over RCA_0^3, WO does not imply SF.
Comparing choice principles, II/II

Two natural choice principles:
- $SF = \text{“Every family } S_r \ (r \in \mathbb{R}) \text{ of nonempty sets of reals has a choice function”}$
- $WO = \text{“The reals are well-orderable”}$

Theorem (S.)

Over RCA^3_0, WO does not imply SF.

Proof sketch.
- Force with countable partial injections $\mathbb{R} \rightarrow \omega_1$; call generic induced ordering “\prec_G.”
- Take functionals which are definable from \prec_G via truth tables of “countable depth”
- Let $S_r = \{ s : r \prec_G s \}$. This family has no choice function.
Thanks!