A Tutorial on Weihrauch Complexity

Vasco Brattka
Universität der Bundeswehr München, Germany
University of Cape Town, South Africa

New Challenges in Reverse Mathematics

Singapore, 3–16 January 2016
Outline

1. A Calculus of Mathematical Problems
2. Choice
3. The Classification of Theorems
4. Jumps
5. Ramsey’s Theorem
6. Lowness
7. Genericity
8. Randomness
Some History on Weihrauch Reducibility

- **1992** Klaus Weihrauch introduced the concept of his reducibility for single-valued functions $f : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}$ and for sets of such functions (in two unpublished technical reports).
- **1989-2007** he supervised 6 MSc/PhD theses on this topic, mostly unpublished (von Stein, Mylatz, B., Hertling, Pauly).
- The reducibility was also considered for single-valued functions $f : \subseteq X \rightarrow Y$ on other topological/represented spaces.
- **2008** Guido Gherardi and Alberto Marcone noticed that this reducibility for multi-valued functions can be used to classify the computational content of Π_2 theorems.
- **2009** Akitoshi Kawamura (and Stephen Cook) rediscovered a polynomial-time version of Weihrauch reducibility and used it for the study of uniform computational time complexity.
- **2012** Dorais, Dzhafarov, Hirst, Mileti, Shafer rediscovered Weihrauch reducibility directly for the special case of Π_2^1 statements (work extended by Hirschfeldt and Jockusch).
Currently there are 89 entries in this bibliography. Please help to update it!
A Calculus of Mathematical Problems
Mathematical Problems and Solutions

Definition

A mathematical problem is a partial multi-valued \(f : \subseteq X \Rightarrow Y \).

- There are a certain sets of potential inputs \(X \) and outputs \(Y \).
- \(D = \text{dom}(f) \) contains the valid instances of the problem.
- \(f(x) \) is the set of solutions of the problem \(f \) for instance \(x \).

Definition

\(g : \subseteq X \Rightarrow Y \) solves \(f : \subseteq X \Rightarrow Y \), if \(\text{dom}(f) \subseteq \text{dom}(g) \) and \(g(x) \subseteq f(x) \) for all \(x \in \text{dom}(f) \). We write \(g \sqsubseteq f \) in this situation.

Definition

For \(f : \subseteq X \Rightarrow Y \), \(g : \subseteq Y \Rightarrow Z \) we define the composition \(g \circ f : \subseteq X \Rightarrow Z \) by

\[
(g \circ f)(x) := \{ z \in Z : (\exists y \in Y) \ y \in f(x) \text{ and } z \in g(y) \}
\]

and \(\text{dom}(g \circ f) := \{ x \in X : f(x) \subseteq \text{dom}(g) \} \).
Mathematical Problems and Solutions

Definition

A **mathematical problem** is a partial multi-valued $f : \subseteq X \Rightarrow Y$.

- There are a certain sets of potential inputs X and outputs Y.
- $D = \text{dom}(f)$ contains the valid instances of the problem.
- $f(x)$ is the set of solutions of the problem f for instance x.

Definition

$g : \subseteq X \Rightarrow Y$ solves $f : \subseteq X \Rightarrow Y$, if $\text{dom}(f) \subseteq \text{dom}(g)$ and $g(x) \subseteq f(x)$ for all $x \in \text{dom}(f)$. We write $g \sqsubseteq f$ in this situation.

Definition

For $f : \subseteq X \Rightarrow Y$, $g : \subseteq Y \Rightarrow Z$ we define the **composition** $g \circ f : \subseteq X \Rightarrow Z$ by

$$(g \circ f)(x) := \{z \in Z : (\exists y \in Y) \ y \in f(x) \text{ and } z \in g(y)\}$$

and $\text{dom}(g \circ f) := \{x \in X : f(x) \subseteq \text{dom}(g)\}$.
Mathematical Problems and Solutions

Definition

A mathematical problem is a partial multi-valued $f : \subseteq X \Rightarrow Y$.

- There are a certain sets of potential inputs X and outputs Y.
- $D = \text{dom}(f)$ contains the valid instances of the problem.
- $f(x)$ is the set of solutions of the problem f for instance x.

Definition

$g : \subseteq X \Rightarrow Y$ solves $f : \subseteq X \Rightarrow Y$, if $\text{dom}(f) \subseteq \text{dom}(g)$ and $g(x) \subseteq f(x)$ for all $x \in \text{dom}(f)$. We write $g \sqsubseteq f$ in this situation.

Definition

For $f : \subseteq X \Rightarrow Y$, $g : \subseteq Y \Rightarrow Z$ we define the composition $g \circ f : \subseteq X \Rightarrow Z$ by

$$(g \circ f)(x) := \{ z \in Z : (\exists y \in Y) \ y \in f(x) \text{ and } z \in g(y) \}$$

and $\text{dom}(g \circ f) := \{ x \in X : f(x) \subseteq \text{dom}(g) \}$.
Mathematical Problems and Solutions

Definition

A **mathematical problem** is a partial multi-valued $f : \subseteq X \Rightarrow Y$.

- There are a certain sets of potential inputs X and outputs Y.
- $D = \text{dom}(f)$ contains the valid instances of the problem.
- $f(x)$ is the set of solutions of the problem f for instance x.

Definition

$g : \subseteq X \Rightarrow Y$ solves $f : \subseteq X \Rightarrow Y$, if $\text{dom}(f) \subseteq \text{dom}(g)$ and $g(x) \subseteq f(x)$ for all $x \in \text{dom}(f)$. We write $g \sqsubseteq f$ in this situation.

Definition

For $f : \subseteq X \Rightarrow Y$, $g : \subseteq Y \Rightarrow Z$ we define the **composition** $g \circ f : \subseteq X \Rightarrow Z$ by

$$(g \circ f)(x) := \{ z \in Z : (\exists y \in Y) \ y \in f(x) \text{ and } z \in g(y) \}$$

and $\text{dom}(g \circ f) := \{ x \in X : f(x) \subseteq \text{dom}(g) \}$.
Examples of Mathematical Problems

- **The Zero Problem** \(Z_X : \subseteq \mathcal{C}(X) \Rightarrow X, h \mapsto h^{-1}\{0\} \).

- **The Limit Problem** is the mathematical problem

 \[\lim : \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, ... \rangle \mapsto \lim_{i \rightarrow \infty} p_i \]

 with \(\text{dom}(\lim) := \{ \langle p_0, p_1, ... \rangle : (p_i)_i \text{ is convergent} \} \).

- **Martin-Löf Randomness** is the mathematical problem

 \(\text{MLR} : 2^{\mathbb{N}} \Rightarrow 2^{\mathbb{N}} \) with

 \[\text{MLR}(x) := \{ y \in 2^{\mathbb{N}} : y \text{ is Martin-Löf random relative to } x \} \].

- **The Cohesiveness Problem** is the mathematical problem

 \(\text{COH} : (2^{\mathbb{N}})^{\mathbb{N}} \Rightarrow 2^{\mathbb{N}} \) where \(\text{COH}(R_i) \) contains all infinite \(X \subseteq \mathbb{N} \) such that for all \(i \in \mathbb{N} \) one of the sets

 \[X \cap R_i \text{ or } X \cap (\mathbb{N} \setminus R_i) \]

 is finite.
Examples of Mathematical Problems

- The zero problem $Z_X :\subseteq C(X) \Rightarrow X, h \mapsto h^{-1}\{0\}$.
- The limit problem is the mathematical problem

$$\lim :\subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, \ldots \rangle \mapsto \lim_{i \rightarrow \infty} p_i$$

with $\text{dom}(\lim) := \{\langle p_0, p_1, \ldots \rangle : (p_i)_i \text{ is convergent}\}$.

- Martin-Löf randomness is the mathematical problem $\text{MLR} : 2^\mathbb{N} \Rightarrow 2^\mathbb{N}$ with

$$\text{MLR}(x) := \{y \in 2^{\mathbb{N}} : y \text{ is Martin-Löf random relative to } x\}.$$

- The cohesiveness problem is the mathematical problem $\text{COH} : (2^\mathbb{N})^\mathbb{N} \Rightarrow 2^\mathbb{N}$ where $\text{COH}(R_i)$ contains all infinite $X \subseteq \mathbb{N}$ such that for all $i \in \mathbb{N}$ one of the sets

$$X \cap R_i \text{ or } X \cap (\mathbb{N} \setminus R_i)$$

is finite.
Examples of Mathematical Problems

- The **Zero Problem** $Z_X : \subseteq C(X) \Rightarrow X, h \mapsto h^{-1}\{0\}$.
- The **Limit Problem** is the mathematical problem
 \[
 \lim : \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}, \langle p_0, p_1, ... \rangle \mapsto \lim_{i \to \infty} p_i
 \]
 with $\text{dom}(\lim) := \{\langle p_0, p_1, ... \rangle : (p_i)_i \text{ is convergent}\}$.
- **Martin-Löf Randomness** is the mathematical problem
 \[
 \text{MLR} : 2^{\mathbb{N}} \Rightarrow 2^{\mathbb{N}} \text{ with } \text{MLR}(x) := \{y \in 2^{\mathbb{N}} : y \text{ is Martin-Löf random relative to } x\}.
 \]
- The **Cohesiveness Problem** is the mathematical problem
 \[
 \text{COH} : (2^{\mathbb{N}})^{\mathbb{N}} \Rightarrow 2^{\mathbb{N}} \text{ where } \text{COH}(R_i) \text{ contains all infinite } X \subseteq \mathbb{N} \text{ such that for all } i \in \mathbb{N} \text{ one of the sets } X \cap R_i \text{ or } X \cap (\mathbb{N} \setminus R_i)
 \]
 is finite.
Examples of Mathematical Problems

- **The Zero Problem** $Z_X : \subseteq C(X) \Rightarrow X, h \mapsto h^{-1}\{0\}$.
- **The Limit Problem** is the mathematical problem
 \[
 \lim : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}, \langle p_0, p_1, \ldots \rangle \mapsto \lim_{i \rightarrow \infty} p_i
 \]
 with $\text{dom}(\lim) := \{\langle p_0, p_1, \ldots \rangle : (p_i)_i \text{ is convergent} \}$.
- **Martin-Löf Randomness** is the mathematical problem
 $MLR : 2^\mathbb{N} \Rightarrow 2^\mathbb{N}$ with
 \[
 MLR(x) := \{y \in 2^\mathbb{N} : y \text{ is Martin-Löf random relative to } x\}.
 \]
- **The Cohesiveness Problem** is the mathematical problem
 $COH : (2^\mathbb{N})^\mathbb{N} \Rightarrow 2^\mathbb{N}$ where $COH(R_i)$ contains all infinite $X \subseteq \mathbb{N}$ such that for all $i \in \mathbb{N}$ one of the sets
 \[
 X \cap R_i \text{ or } X \cap (\mathbb{N} \setminus R_i)
 \]
 is finite.
Theorems as Problems

Definition

Any theorem T of the Π_2 form

$$(\forall x \in X)(x \in D \implies (\exists y \in Y) P(x, y))$$

is identified with $F : \subseteq X \Rightarrow Y$ with $\text{dom}(F) := D$ and

$$F(x) := \{y \in Y : P(x, y)\}.$$

Examples: Weak Weak Kőnig’s Lemma is the mathematical problem

$$\text{WWKL} : \subseteq \text{Tr} \Rightarrow 2^\mathbb{N}, T \mapsto [T]$$

with $\text{dom}(\text{WWKL}) := \{T \in \text{Tr} : \mu([T]) > 0\}.$

The Intermediate Value Theorem is the mathematical problem

$$\text{IVT} : \subseteq C[0, 1] \Rightarrow \mathbb{R}, f \mapsto f^{-1}\{0\}$$

where $\text{dom}(\text{IVT}) := \{f \in C[0, 1] : f(0) \cdot f(1) < 0\}.$
Theorems as Problems

Definition

Any theorem \(T \) of the \(\Pi_2 \) form

\[
(\forall x \in X)(x \in D \implies (\exists y \in Y) \ P(x, y))
\]

is identified with \(F : \subseteq X \Rightarrow Y \) with \(\text{dom}(F) := D \) and

\[
F(x) := \{ y \in Y : P(x, y) \} .
\]

Examples: Weak Weak Kőnig’s Lemma is the mathematical problem

\[
\text{WWKL} : \subseteq \text{Tr} \Rightarrow 2^\mathbb{N}, \ T \mapsto [T]
\]
with \(\text{dom}(\text{WWKL}) := \{ T \in \text{Tr} : \mu([T]) > 0 \} \).

The Intermediate Value Theorem is the mathematical problem

\[
\text{IVT} : \subseteq C[0, 1] \Rightarrow \mathbb{R}, \ f \mapsto f^{-1}\{0\}
\]
where \(\text{dom}(\text{IVT}) := \{ f \in C[0, 1] : f(0) \cdot f(1) < 0 \} \).
Let $f : \subseteq X \Rightarrow Y$ and $g : \subseteq Z \Rightarrow W$ be two mathematical problems.

f is Weihrauch reducible to g, $f \leq_W g$, if there are computable $H : \subseteq X \times W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $H(\text{id}_X, gK) \subseteq f$.

f is strongly Weihrauch reducible to g, $f \leq_{sW} g$, if there are computable $H : \subseteq W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $HgK \subseteq f$.

Equivalences $f \equiv_W g$ and $f \equiv_{sW} g$ are defined as usual.

Theorem (Tavana and Weihrauch 2011)

$f \leq_W g \iff$ there is a Turing machine that computes f and uses g as an oracle exactly once during its infinite computation.
Weihrauch Reducibility

Let \(f : \subseteq X \Rightarrow Y \) and \(g : \subseteq Z \Rightarrow W \) be two mathematical problems.

\[
\begin{array}{c}
\text{x} \\
\downarrow \\
K \\
\downarrow \\
g \\
\downarrow \\
H \\
\downarrow \\
f(x)
\end{array}
\]

- \(f \) is **Weihrauch reducible** to \(g \), \(f \leq_W g \), if there are computable \(H : \subseteq X \times W \Rightarrow Y \), \(K : \subseteq X \Rightarrow Z \) such that \(H(\text{id}_X, gK) \sqsubseteq f \).
- \(f \) is **strongly Weihrauch reducible** to \(g \), \(f \leq_{sW} g \), if there are computable \(H : \subseteq W \Rightarrow Y \), \(K : \subseteq X \Rightarrow Z \) such that \(HgK \sqsubseteq f \).
- **Equivalences** \(f \equiv_W g \) and \(f \equiv_{sW} g \) are defined as usual.

Theorem (Tavana and Weihrauch 2011)

\(f \leq_W g \iff \) there is a Turing machine that computes \(f \) and uses \(g \) as an oracle exactly once during its infinite computation.
Let \(f : \subseteq X \Rightarrow Y \) and \(g : \subseteq Z \Rightarrow W \) be two mathematical problems.

- \(f \) is Weihrauch reducible to \(g \), \(f \leq_W g \), if there are computable \(H : \subseteq X \times W \Rightarrow Y \), \(K : \subseteq X \Rightarrow Z \) such that \(H(\text{id}_X, gK) \sqsubseteq f \).
- \(f \) is strongly Weihrauch reducible to \(g \), \(f \leq_{sW} g \), if there are computable \(H : \subseteq W \Rightarrow Y \), \(K : \subseteq X \Rightarrow Z \) such that \(HgK \sqsubseteq f \).
- Equivalences \(f \equiv_W g \) and \(f \equiv_{sW} g \) are defined as usual.

Theorem (Tavana and Weihrauch 2011)

\(f \leq_W g \iff \text{there is a Turing machine that computes } f \text{ and uses } g \text{ as an oracle exactly once during its infinite computation.} \)
Let $f : \subseteq X \Rightarrow Y$ and $g : \subseteq Z \Rightarrow W$ be two mathematical problems.

- **f is Weihrauch reducible** to g, $f \leq_W g$, if there are computable $H : \subseteq X \times W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $H(id_X, gK) \sqsubseteq f$.

- **f is strongly Weihrauch reducible** to g, $f \leq_{sW} g$, if there are computable $H : \subseteq W \Rightarrow Y$, $K : \subseteq X \Rightarrow Z$ such that $HgK \sqsubseteq f$.

- **Equivalences** $f \equiv_W g$ and $f \equiv_{sW} g$ are defined as usual.

Theorem (Tavana and Weihrauch 2011)

$f \leq_W g \iff$ there is a Turing machine that computes f and uses g as an oracle exactly once during its infinite computation.
Weihrauch Reducibility

Let \(f : \subseteq X \Rightarrow Y \) and \(g : \subseteq Z \Rightarrow W \) be two mathematical problems.

\[
\begin{array}{c}
\text{K} \\
\text{f} \\
\text{g} \\
\text{H} \\
\end{array} \quad \xrightarrow{\text{x}} \quad \xrightarrow{\text{f(x)}} \\
\]

- \(f \) is **Weihrauch reducible** to \(g \), \(f \leq_W g \), if there are computable \(H : \subseteq X \times W \Rightarrow Y \), \(K : \subseteq X \Rightarrow Z \) such that \(H(\text{id}_X, gK) \sqsubseteq f \).
- \(f \) is **strongly Weihrauch reducible** to \(g \), \(f \leq_{sW} g \), if there are computable \(H : \subseteq W \Rightarrow Y \), \(K : \subseteq X \Rightarrow Z \) such that \(HgK \sqsubseteq f \).
- **Equivalences** \(f \equiv_W g \) and \(f \equiv_{sW} g \) are defined as usual.

Theorem (Tavana and Weihrauch 2011)

\[f \leq_W g \iff \text{there is a Turing machine that computes } f \text{ and uses } g \text{ as an oracle exactly once during its infinite computation.} \]
A representation of X is a surjective map $\delta_X : \subseteq \mathbb{N}^\mathbb{N} \to X$.

$F : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ is a realizer of $f : \subseteq X \Rightarrow Y$, in symbols $F \vdash f$, if $\delta_Y F(p) \in f\delta_X(p)$ for all $p \in \text{dom}(f\delta_X)$.

f is continuous, computable, polynomial-time computable or Borel measurable, if it admits a corresponding realizer F.

$f \leq_w g $ \iff there are computable $H, K : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ such that $H(\text{id}, GK) \vdash f$ whenever $G \vdash g$.
Realizers and Representations

> A representation of X is a surjective map $\delta_X : \subseteq \mathbb{N}^\mathbb{N} \to X$.

> $F : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ is a realizer of $f : \subseteq X \Rightarrow Y$, in symbols $F \vdash f$, if $\delta_Y F(p) \in f \delta_X(p)$ for all $p \in \text{dom}(f \delta_X)$.

> f is continuous, computable, polynomial-time computable or Borel measurable, if it admits a corresponding realizer F.

> $f \leq_W g \iff$ there are computable $H, K : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ such that $H(\text{id}, GK) \vdash f$ whenever $G \vdash g$.
Realizers and Representations

- A representation of X is a surjective map $\delta_X : \subseteq \mathbb{N}^\mathbb{N} \rightarrow X$.
- $F : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}$ is a realizer of $f : \subseteq X \Rightarrow Y$, in symbols $F \vdash f$, if $\delta_Y F(p) \in f\delta_X(p)$ for all $p \in \text{dom}(f\delta_X)$.

\[\begin{array}{ccc}
\mathbb{N}^\mathbb{N} & \xrightarrow{F} & \mathbb{N}^\mathbb{N} \\
\downarrow{\delta_X} & & \downarrow{\delta_Y} \\
X & \xrightarrow{f} & Y \\
\end{array} \]

- f is continuous, computable, polynomial-time computable or Borel measurable, if it admits a corresponding realizer F.
- $f \leq_W g \iff$ there are computable $H, K : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}$ such that $H(id, GK) \vdash f$ whenever $G \vdash g$.

Definition

(X, d, α) is called **computable metric space** if

1. $d : X \times X \to \mathbb{R}$ is a metric on X,
2. $\alpha : \mathbb{N} \to X$ is a sequence with a dense range,
3. $d \circ (\alpha \times \alpha) : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ is computable.

Definition

$\delta_X : \subseteq \mathbb{N}^\mathbb{N} \to X$ is called **Cauchy representation**, if

$$\delta_X(p) = x : \iff (\forall k) \ d(\alpha p(k), x) < 2^{-k}.$$
Definition

(X, d, α) is called **computable metric space** if

1. $d : X \times X \to \mathbb{R}$ is a metric on X,
2. $\alpha : \mathbb{N} \to X$ is a sequence with a dense range,
3. $d \circ (\alpha \times \alpha) : \mathbb{N} \times \mathbb{N} \to \mathbb{R}$ is computable.

Definition

$\delta_X : \subseteq \mathbb{N}^\mathbb{N} \to X$ is called **Cauchy representation**, if

\[
\delta_X(p) = x : \iff (\forall k) \ d(\alpha p(k), x) < 2^{-k}.
\]
Realizer Version of Problems

Definition

Let \((X, \delta_X)\) and \((Y, \delta_Y)\) be represented spaces and \(f : \subseteq X \Rightarrow Y\) a mathematical problem. Then we define the realizer version \(f^r : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}\) of \(f\) by \(f^r := \delta_Y^{-1} \circ f \circ \delta_X\).

Proposition

\(f \equiv_{sW} f^r\).

- This means that properties of \(\leq_W\) and \(\leq_{sW}\) can be studied by considering only problems of type \(f : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}\).
- Arbitrary represented spaces \(X, Y\) are used as types in order to classify practical problems and theorems, which are most naturally expressed in such types.
Realizer Version of Problems

Definition

Let \((X, \delta_X)\) and \((Y, \delta_Y)\) be represented spaces and \(f : \subseteq X \Rightarrow Y\) a mathematical problem. Then we define the realizer version \(f^r : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}\) of \(f\) by \(f^r := \delta_Y^{-1} \circ f \circ \delta_X\).

Proposition

\[f \equiv_{sW} f^r. \]

- This means that properties of \(\leq_W\) and \(\leq_{sW}\) can be studied by considering only problems of type \(f : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}\).
- Arbitrary represented spaces \(X, Y\) are used as types in order to classify practical problems and theorems, which are most naturally expressed in such types.
Realizer Version of Problems

Definition

Let \((X, \delta_X)\) and \((Y, \delta_Y)\) be represented spaces and \(f : \subseteq X \Rightarrow Y\) a mathematical problem. Then we define the realizer version \(f^r : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}\) of \(f\) by \(f^r := \delta_Y^{-1} \circ f \circ \delta_X\).

Proposition

\(f \equiv_{SW} f^r\).

- This means that properties of \(\leq_W\) and \(\leq_{SW}\) can be studied by considering only problems of type \(f : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}\).
- Arbitrary represented spaces \(X, Y\) are used as types in order to classify practical problems and theorems, which are most naturally expressed in such types.
Cylinders and Strong Weihrauch Reducibility

By \(id : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N} \) we denote the identity of Baire space \(\mathbb{N}^\mathbb{N} \). We always have \(f \leq_{sW} id \times f \), the inverse is not necessarily true.

Definition

\(f : \subseteq X \Rightarrow Y \) is called a cylinder if \(id \times f \equiv_{sW} f \) and \(id \times f \) is called the cylindrification of \(f \).

Examples: \(\text{lim}, WKL \) are cylinders, \(WWKL, COH, MLR \) are not.

Proposition (B. and Gherardi 2011)

\[f \leq_W g \iff f \leq_{sW} id \times g. \]

Corollary (B. and Gherardi 2011)

\[(\forall f)(f \leq_W g \iff f \leq_{sW} g) \iff g \text{ is a cylinder.} \]

Remark: The relation between strong and ordinary Weihrauch reducibility has formal similarities to the relation between one-one and many-one reducibility.
Cylinders and Strong Weihrauch Reducibility

By $\text{id} : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ we denote the identity of Baire space $\mathbb{N}^\mathbb{N}$. We always have $f \leq_{\text{sW}} \text{id} \times f$, the inverse is not necessarily true.

Definition

$f : \subseteq X \Rightarrow Y$ is called a cylinder if $\text{id} \times f \equiv_{\text{sW}} f$ and $\text{id} \times f$ is called the cylindrification of f.

Examples: lim, WKL are cylinders, $\text{WWKL}, \text{COH}, \text{MLR}$ are not.

Proposition (B. and Gherardi 2011)

$f \leq_{\text{W}} g \iff f \leq_{\text{sW}} \text{id} \times g$.

Corollary (B. and Gherardi 2011)

$(\forall f)(f \leq_{\text{W}} g \iff f \leq_{\text{sW}} g) \iff g$ is a cylinder.

Remark: The relation between strong and ordinary Weihrauch reducibility has formal similarities to the relation between one-one and many-one reducibility.
Cylinders and Strong Weihrauch Reducibility

By $\text{id} : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ we denote the identity of Baire space $\mathbb{N}^\mathbb{N}$. We always have $f \leq_{\text{sW}} \text{id} \times f$, the inverse is not necessarily true.

Definition

$f : \subseteq X \Rightarrow Y$ is called a **cylinder** if $\text{id} \times f \equiv_{\text{sW}} f$ and $\text{id} \times f$ is called the **cylindrification** of f.

Examples: lim, WKL are cylinders, WWKL, COH, MLR are not.

Proposition (B. and Gherardi 2011)

$f \leq_{\text{W}} g \iff f \leq_{\text{sW}} \text{id} \times g$.

Corollary (B. and Gherardi 2011)

$(\forall f)(f \leq_{\text{W}} g \iff f \leq_{\text{sW}} g) \iff g$ is a cylinder.

Remark: The relation between strong and ordinary Weihrauch reducibility has formal similarities to the relation between one-one and many-one reducibility.
By $\text{id} : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ we denote the identity of Baire space $\mathbb{N}^\mathbb{N}$. We always have $f \leq_{sW} \text{id} \times f$, the inverse is not necessarily true.

Definition

$f : \subseteq X \Rightarrow Y$ is called a **cylinder** if $\text{id} \times f \equiv_{sW} f$ and $\text{id} \times f$ is called the **cylindrification** of f.

Examples: lim, WKL are cylinders, WWKL, COH, MLR are not.

Proposition (B. and Gherardi 2011)

$f \leq_W g \iff f \leq_{sW} \text{id} \times g$.

Corollary (B. and Gherardi 2011)

$(\forall f)(f \leq_W g \iff f \leq_{sW} g) \iff g$ is a cylinder.

Remark: The relation between strong and ordinary Weihrauch reducibility has formal similarities to the relation between one-one and many-one reducibility.
Cylinders and Strong Weihrauch Reducibility

By \(\text{id} : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N} \) we denote the identity of Baire space \(\mathbb{N}^\mathbb{N} \). We always have \(f \leq_{SW} \text{id} \times f \), the inverse is not necessarily true.

Definition

\(f : \subseteq X \Rightarrow Y \) is called a **cylinder** if \(\text{id} \times f \equiv_{SW} f \) and \(\text{id} \times f \) is called the **cylindrification** of \(f \).

Examples: \(\text{lim}, \text{WKL} \) are cylinders, \(\text{WWKL}, \text{COH}, \text{MLR} \) are not.

Proposition (B. and Gherardi 2011)

\[f \leq_W g \iff f \leq_{SW} \text{id} \times g. \]

Corollary (B. and Gherardi 2011)

\[(\forall f)(f \leq_W g \iff f \leq_{SW} g) \iff g \text{ is a cylinder}. \]

Remark: The relation between strong and ordinary Weihrauch reducibility has formal similarities to the relation between one-one and many-one reducibility.
By \(\text{id} : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N} \) we denote the identity of Baire space \(\mathbb{N}^\mathbb{N} \). We always have \(f \leq_{sW} \text{id} \times f \), the inverse is not necessarily true.

Definition

\(f : \subseteq X \Rightarrow Y \) is called a **cylinder** if \(\text{id} \times f \equiv_{sW} f \) and \(\text{id} \times f \) is called the **cylindrification** of \(f \).

Examples: \(\lim, \text{WKL} \) are cylinders, \(\text{WWKL}, \text{COH}, \text{MLR} \) are not.

Proposition (B. and Gherardi 2011)

\(f \leq_{W} g \iff f \leq_{sW} \text{id} \times g. \)

Corollary (B. and Gherardi 2011)

\((\forall f)(f \leq_{W} g \iff f \leq_{sW} g) \iff g \text{ is a cylinder}. \)

Remark: The relation between strong and ordinary Weihrauch reducibility has formal similarities to the relation between one-one and many-one reducibility.
Algebraic Operations in the Weihrauch Lattice

Definition

Let f, g be two mathematical problems. We consider:

- $f \times g$: both problems are available in parallel (Product)
- $f \sqcup g$: both problems are available, but for each instance one has to choose which one is used (Coproduct)
- $f \sqcap g$: given an instance of f and g, only one of the solutions will be provided (Sum)
- $f \ast g$: f and g can be used consecutively (Comp. Product)
- $g \rightarrow f$: this is the simplest problem h such that f can be reduced to $g \ast h$ (Implication)
- f^*: f can be used any given finite number of times in parallel (Star)
- \hat{f}: f can be used countably many times in parallel (Parallelization)
- f': f can be used on the limit of the input (Jump)
Definitions of Algebraic Operations

Definition

For \(f : \subseteq X \Rightarrow Y \) and \(g : \subseteq W \Rightarrow Z \) we define:

- \(f \times g : \subseteq X \times W \Rightarrow Y \times Z \), \((x, w) \mapsto f(x) \times g(w)\) (Product)

- \(f \sqcup g : \subseteq X \sqcup W \Rightarrow Y \sqcup Z \), \(z \mapsto \begin{cases} f(z) \text{ if } z \in X \\ g(z) \text{ if } z \in W \end{cases}\) (Coproduct)

- \(f \sqcap g : \subseteq X \times W \Rightarrow Y \sqcup Z \), \((x, w) \mapsto f(x) \sqcup g(w)\) (Sum)

- \(f^* : \subseteq X^* \Rightarrow Y^* \), \(f^* = \bigsqcup_{i=0}^\infty f^i\) (Star)

- \(\hat{f} : \subseteq X^N \Rightarrow Y^N, \hat{f} = \bigcup_{i=0}^\infty f \) (Parallelization)

Here

- \(Y \times Z \) denotes the usual Caresian product,
- \(Y \sqcup Z := (\{0\} \times Y) \cup (\{1\} \times Z) \) denotes the disjoint union,
- \(X^* := \{f : \mathbb{N} \to X : \text{dom}(f) = n \text{ for some } n \in \mathbb{N}\} \) denotes the set of words over \(X \), where \(n = \{0, \ldots, n - 1\} \),
- \(X^N := \{f : \mathbb{N} \to X\} \) denotes the set of sequences over \(X \).
The Algebraic Structure of the Weihrauch Lattice

Proposition (B., Gherardi 2011, Pauly 2010)

Weihrauch reducibility induces a distributive lattice with the coproduct \sqcup as supremum and \sqcap as infimum. Parallelization $\hat{\wedge}$ and star operation \ast are closure operators in the Weihrauch lattice.

- With \sqcup, \times, \ast one obtains a Kleene algebra (B., Pauly).
- The Weihrauch lattice is neither a Brouwer nor a Heyting algebra (Higuchi und Pauly 2012).

Open Problem

Does the strong Weihrauch reducibility induce a lattice structure?

- It is known that \sqcap is an infimum for \leq_{sW} and hence one obtains a lower semi-lattice (B., Gherardi).
- One can show that \sqcup fails as supremum for \leq_{sW}.
The Algebraic Structure of the Weihrauch Lattice

Proposition (B., Gherardi 2011, Pauly 2010)

*Weihrauch reducibility induces a distributive lattice with the coproduct \(\sqcup \) as supremum and \(\sqcap \) as infimum. Parallelization \(\wedge \) and star operation \(* \) are closure operators in the Weihrauch lattice.*

- With \(\sqcup, \times, * \) one obtains a Kleene algebra (B., Pauly).
- The Weihrauch lattice is neither a Brouwer nor a Heyting algebra (Higuchi und Pauly 2012).

Open Problem

Does the strong Weihrauch reducibility induce a lattice structure?

- It is known that \(\sqcap \) is an infimum for \(\leq_{sW} \) and hence one obtains a lower semi-lattice (B., Gherardi).
- One can show that \(\sqcup \) fails as supremum for \(\leq_{sW} \).
The Algebraic Structure of the Weihrauch Lattice

Proposition (B., Gherardi 2011, Pauly 2010)

Weihrauch reducibility induces a distributive lattice with the coproduct \sqcup as supremum and \sqcap as infimum. Parallelization \wedge and star operation \ast are closure operators in the Weihrauch lattice.

- With \sqcup, \times, \ast one obtains a Kleene algebra (B., Pauly).
- The Weihrauch lattice is neither a Brouwer nor a Heyting algebra (Higuchi und Pauly 2012).

Open Problem

Does the strong Weihrauch reducibility induce a lattice structure?

- It is known that \sqcap is an infimum for \leq_{sW} and hence one obtains a lower semi-lattice (B., Gherardi).
- One can show that \sqcup fails as supremum for \leq_{sW}.*
Constants of the Weihrauch Lattice

- **0**: the equivalence class of the *nowhere defined problems* is the bottom element of the Weihrauch lattice, and a neutral element with respect to \sqcup. It acts like a zero with respect to \times and \ast.

- **1**: the equivalence class of the identity $\text{id} : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ is a neutral element with respect to \times and \ast.

- $0^* \equiv_W 1$.

- **∞**: the equivalence class of all problems without realizer is the top element of the Weihrauch lattice and a neutral element with respect to \sqcap.

- ∞ exists if and only if the Axiom of Choice does not hold for Baire space $\mathbb{N}^\mathbb{N}$.

- We usually assume that the Axiom of Choice holds, but we can always add an artificial element ∞ on top of the Weihrauch lattice.
0 := the equivalence class of the nowhere defined problems is the bottom element of the Weihrauch lattice, and a neutral element with respect to \(\sqcup \). It acts like a zero with respect to \(\times \) and \(\ast \).

1 := the equivalence class of the identity \(\text{id} : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N} \) is a neutral element with respect to \(\times \) and \(\ast \).

0^* \equiv_w 1.

\(\infty \) := the equivalence class of all problems without realizer is the top element of the Weihrauch lattice and a neutral element with respect to \(\sqcap \).

\(\infty \) exists if and only if the Axiom of Choice does not hold for Baire space \(\mathbb{N}^\mathbb{N} \).

We usually assume that the Axiom of Choice holds, but we can always add an artificial element \(\infty \) on top of the Weihrauch lattice.
0 := the equivalence class of the nowhere defined problems is the bottom element of the Weihrauch lattice, and a neutral element with respect to \(\sqcup\). It acts like a zero with respect to \(\times\) and \(*\).

1 := the equivalence class of the identity \(\text{id} : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}\) is a neutral element with respect to \(\times\) and \(*\).

\[0^* \equivW 1.\]

\[\infty := \text{the equivalence class of all problems without realizer is the top element of the Weihrauch lattice and a neutral element with respect to} \ \sqcap.\]

\[\infty \text{ exists if and only if the Axiom of Choice does not hold for Baire space } \mathbb{N}^\mathbb{N}.\]

We usually assume that the Axiom of Choice holds, but we can always add an artificial element \(\infty\) on top of the Weihrauch lattice.
Constants of the Weihrauch Lattice

- **0**: the equivalence class of the nowhere defined problems is the bottom element of the Weihrauch lattice, and a neutral element with respect to \sqcup. It acts like a zero with respect to \times and \ast.

- **1**: the equivalence class of the identity $\text{id}: \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ is a neutral element with respect to \times and \ast.

- $0^* \equiv_W 1$.

- **∞**: the equivalence class of all problems without realizer is the top element of the Weihrauch lattice and a neutral element with respect to \sqcap.

- ∞ exists if and only if the Axiom of Choice does not hold for Baire space $\mathbb{N}^\mathbb{N}$.

- We usually assume that the Axiom of Choice holds, but we can always add an artificial element ∞ on top of the Weihrauch lattice.
0 : the equivalence class of the nowhere defined problems is the bottom element of the Weihrauch lattice, and a neutral element with respect to \(\sqcup \). It acts like a zero with respect to \(\times \) and \(* \).

1 : the equivalence class of the identity \(\text{id} : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N} \) is a neutral element with respect to \(\times \) and \(* \).

0* \(\equiv_w 1 \).

\(\infty \) : the equivalence class of all problems without realizer is the top element of the Weihrauch lattice and a neutral element with respect to \(\sqcap \).

\(\infty \) exists if and only if the Axiom of Choice does not hold for Baire space \(\mathbb{N}^\mathbb{N} \).

We usually assume that the Axiom of Choice holds, but we can always add an artificial element \(\infty \) on top of the Weihrauch lattice.
Constants of the Weihrauch Lattice

- \(0 := \) the equivalence class of the **nowhere defined problems** is the bottom element of the Weihrauch lattice, and a neutral element with respect to \(\sqcup\). It acts like a zero with respect to \(\times\) and \(*\).

- \(1 := \) the equivalence class of the **identity** \(id : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}\) is a neutral element with respect to \(\times\) and \(*\).

- \(0^* \equiv_W 1\).

- \(\infty := \) the equivalence class of all **problems without realizer** is the top element of the Weihrauch lattice and a neutral element with respect to \(\sqcap\).

- \(\infty\) exists if and only if the **Axiom of Choice** does not hold for Baire space \(\mathbb{N}^\mathbb{N}\).

- We usually assume that the Axiom of Choice holds, but we can always add an artificial element \(\infty\) on top of the Weihrauch lattice.
The Weihrauch lattice is not complete and infinite suprema and infima do not always exist. There are some known existent ones.

Theorem (B. and Pauly 2013)

For two mathematical problems \(f, g \) the following exist:

- \(f \star g := \max\{f_0 \circ g_0 : f_0 \leq_W f \text{ and } g_0 \leq_W g\} \) and
- \(g \rightarrow f := \min\{h : f \leq_W g \star h\}. \)

The maximum and minimum is understood with respect to \(\leq_W \).

Proof. (Sketch) For every \(f : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \) we consider the transpose \(f^t : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \) defined by

\[
f^t\langle p, q \rangle := \eta_p \circ f(q),
\]

where \(\eta \) is a standard representation of all continuous functions \(F : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N} \). For arbitrary \(f, g \) we obtain

\[
f \star g \equiv_W f^{rt} \circ g^{rt}.
\]

The case of \(g \rightarrow f \) can be treated similarly.
Compositional Product and Implication

The Weihrauch lattice is not complete and infinite suprema and infima do not always exist. There are some known existent ones.

Theorem (B. and Pauly 2013)

For two mathematical problems \(f, g \) the following exist:

\[
\begin{align*}
\triangleright \ f \ast g & := \max\{f_0 \circ g_0 : f_0 \leq_W f \text{ and } g_0 \leq_W g\} \text{ and } \\
\triangleright \ g \rightarrow f & := \min\{h : f \leq_W g \ast h\}.
\end{align*}
\]

The maximum and minimum is understood with respect to \(\leq_W \).

Proof. (Sketch) For every \(f : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \) we consider the transpose \(f^t : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \) defined by

\[
f^t\langle p, q \rangle := \eta_p \circ f(q),
\]

where \(\eta \) is a standard representation of all continuous functions \(F : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N} \). For arbitrary \(f, g \) we obtain

\[
f \ast g \equiv_W f^{rt} \circ g^{rt}.
\]

The case of \(g \rightarrow f \) can be treated similarly.
Relations Between Algebraic Operations

\(f \text{ pointed} : \iff 1 \leq_W f \iff (\exists x \in \text{dom}(f)) x \text{ computable.} \)

Proposition

For pointed \(f, g \) we obtain

\[
f \sqcap g \leq_W f \sqcup g \leq_W f \times g \leq_W f \ast g,
\]

where pointedness is needed only for \(f \sqcup g \leq_W f \times g \).

Proof. \(f \sqcap g \leq_W f \sqcup g \leq_W f \times g \) is clear. The last reduction follows since

\[
f \times g = (f \times \text{id}) \circ (\text{id} \times g) \leq_W f \ast g.
\]

\(\square \)

Proposition

For pointed \(f \) we obtain \(f^* \leq_W \hat{f} \).
Relations Between Algebraic Operations

\[f \text{ pointed }: \iff 1 \leq_W f \iff (\exists x \in \text{dom}(f)) \times \text{computable}. \]

Proposition

For pointed \(f, g \) we obtain

\[f \sqcap g \leq_W f \sqcup g \leq_W f \times g \leq_W f \ast g, \]

where pointedness is needed only for \(f \sqcup g \leq_W f \times g \).

Proof. \(f \sqcap g \leq_W f \sqcup g \leq_W f \times g \) is clear. The last reduction follows since

\[f \times g = (f \times \text{id}) \circ (\text{id} \times g) \leq_W f \ast g. \]

Proposition

For pointed \(f \) we obtain \(f^* \leq_W \hat{f} \).
Relations Between Algebraic Operations

\[f \text{ pointed} : \iff 1 \leq_W f \iff (\exists x \in \text{dom}(f)) \times \text{computable}. \]

Proposition

For pointed \(f, g \), we obtain

\[f \sqcap g \leq_W f \sqcup g \leq_W f \times g \leq_W f \ast g, \]

where pointedness is needed only for \(f \sqcup g \leq_W f \times g \).

Proof. \(f \sqcap g \leq_W f \sqcup g \leq_W f \times g \) is clear. The last reduction follows since

\[f \times g = (f \times \text{id}) \circ (\text{id} \times g) \leq_W f \ast g. \]

\[\square \]

Proposition

For pointed \(f \) we obtain \(f^* \leq_W \hat{f} \).
Algebraic Closure Properties

- **f** is called **idempotent** if \(f \times f \equiv_W f \),
 for pointed \(f \) this holds if and only if \(f^* \equiv_W f \).

- **Examples**: \(\lim, \text{WKL, WWKL, MLR} \) are idempotent, \(\text{IVT} \) is not.

- **f** is called **parallelizable** if \(\hat{f} \equiv_W f \).

- **Examples**: \(\lim, \text{WKL, MLR} \) are parallelizable, \(\text{WWKL, IVT} \) are not.

- **f** is called **closed under composition** if \(f \ast f \equiv_W f \).

- **Examples**: \(\text{WKL, WWKL, MLR} \) are closed under composition, \(\lim, \text{IVT} \) are not.

```
l_\text{lim}, \text{WKL, MLR} \rightarrow \text{parallelizable}
WKL, \text{WWKL, MLR} \rightarrow \text{closed under composition}
```

```
l_\text{idempotent}
l_\text{lim, WKL, WWKL, MLR}
```
Algebraic Closure Properties

- f is called **idempotent** if $f \times f \equiv_W f$.
 For pointed f this holds if and only if $f^* \equiv_W f$.

 Examples: $\text{lim}, \text{WKL}, \text{WWKL}, \text{MLR}$ are idempotent IVT is not.

- f is called **parallelizable** if $\hat{f} \equiv_W f$.

 Examples: $\text{lim}, \text{WKL}, \text{MLR}$ are parallelizable, WWKL, IVT are not.

- f is called **closed under composition** if $f \ast f \equiv_W f$.

 Examples: $\text{WKL}, \text{WWKL}, \text{MLR}$ are closed under composition, lim, IVT are not.
- f is called **idempotent** if $f \times f \equiv_W f$, for pointed f this holds if and only if $f^* \equiv_W f$.

- **Examples**: $\text{lim, WKL, WWKL, MLR}$ are idempotent, IVT is not.

- f is called **parallelizable** if $\hat{f} \equiv_W f$.

- **Examples**: lim, WKL, MLR are parallelizable, WWKL, IVT are not.

- f is called **closed under composition** if $f \ast f \equiv_W f$.

- **Examples**: WKL, WWKL, MLR are closed under composition, lim, IVT are not.
Algebraic Closure Properties

- f is called **idempotent** if $f \times f \equiv_W f$.
 - For pointed f this holds if and only if $f^* \equiv_W f$.
 - **Examples**: $\text{lim}, WKL, WWKL, MLR$ are idempotent IVT is not.

- f is called **parallelizable** if $\hat{f} \equiv_W f$.
 - **Examples**: lim, WKL, MLR are parallelizable, $WWKL, \text{IVT}$ are not.

- f is called **closed under composition** if $f \ast f \equiv_W f$.
 - **Examples**: $WKL, WWKL, MLR$ are closed under composition, lim, IVT are not.

\[
\begin{array}{c}
\text{lim, WKL, MLR} & \text{WKL, WWKL, MLR} \\
\text{parallelizable} & \text{closed under composition}
\end{array}
\]
Remark

There is a vague analogy between versions of Weihrauch reducibilities induced by closure operators and computability theoretic reducibilities:

<table>
<thead>
<tr>
<th>Closure operation</th>
<th>Reducibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f \leq_{sW} g$</td>
<td>one-one reducibility</td>
</tr>
<tr>
<td>$f \leq_{W} g$</td>
<td>many-one reducibility</td>
</tr>
<tr>
<td>$f \leq_{W} g^*$</td>
<td>weak truth-table reducibility</td>
</tr>
<tr>
<td>$f \leq_{W} \hat{g}$</td>
<td>Turing reducibility</td>
</tr>
<tr>
<td>$f \leq_{gW} g$</td>
<td>”</td>
</tr>
</tbody>
</table>

Question

Can this analogy be made more precise?
Remark

There is a vague analogy between versions of Weihrauch reducibilities induced by closure operators and computability theoretic reducibilities:

<table>
<thead>
<tr>
<th>Closure operation</th>
<th>Reducibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f \leq_{sW} g)</td>
<td>one-one reducibility</td>
</tr>
<tr>
<td>(f \leq_{W} g)</td>
<td>many-one reducibility</td>
</tr>
<tr>
<td>(f \leq_{W} g^*)</td>
<td>weak truth-table reducibility</td>
</tr>
<tr>
<td>(f \leq_{W} \hat{g})</td>
<td>Turing reducibility</td>
</tr>
<tr>
<td>(f \leq_{gW} g)</td>
<td>”</td>
</tr>
</tbody>
</table>

Question

Can this analogy be made more precise?
Embedding of the Medvedev Lattice

Proposition (B. and Gherardi 2011)

\[A \leq_M B \iff c_A \leq_W c_B \iff \operatorname{id}|_B \leq_W \operatorname{id}|_A \text{ for } A, B \subseteq \mathbb{N}^\mathbb{N}. \]

- \(c_A : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}, p \mapsto A \) is the constant multi-valued function.
- By \(\operatorname{id}|_A : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N} \) denotes the identity restricted to \(A \).
- We note that \(\operatorname{id}|_A \leq_W 1 \leq_W c_A \).
- \(p \leq_T q \iff \{p\} \leq_M \{q\} \), hence also the Turing semi-lattice embeds into the Weihrauch lattice.

Proposition (B. and Gherardi 2011)

- \(c_{A \oplus B} \equiv_W c_A \times c_B \equiv_W (c_A \sqcup c_B)^* \equiv_W c_A \sqcup c_B \),
- \(c_{A \otimes B} \equiv_W c_A \cap c_B \),
- \(\operatorname{id}|_{A \oplus B} \equiv_W \operatorname{id}|_A \times \operatorname{id}|_B \),
- \(\operatorname{id}|_{A \otimes B} \equiv_W \operatorname{id}|_A \sqcup \operatorname{id}|_B \).

Here \(A \oplus B = \langle A \times B \rangle \), \(A \otimes B = 0A \sqcup 1B \) for \(A, B \subseteq \mathbb{N}^\mathbb{N} \).
Embedding of the Medvedev Lattice

Proposition (B. and Gherardi 2011)

\[A \leq_M B \iff c_A \leq_W c_B \iff \text{id}|_B \leq_W \text{id}|_A \text{ for } A, B \subseteq \mathbb{N}^\mathbb{N}. \]

- \(c_A : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}, p \mapsto A \) is the constant multi-valued function.
- By \(\text{id}|_A : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N} \) denotes the identity restricted to \(A \).
- We note that \(\text{id}|_A \leq_W 1 \leq_W c_A \).
- \(p \leq_T q \iff \{p\} \leq_M \{q\}, \) hence also the Turing semi-lattice embeds into the Weihrauch lattice.

Proposition (B. and Gherardi 2011)

- \(c_{A \oplus B} \equiv_W c_A \times c_B \equiv_W (c_A \sqcup c_B)^* \equiv_W c_A \sqcup c_B, \)
- \(c_{A \otimes B} \equiv_W c_A \sqcap c_B, \)
- \(\text{id}|_{A \oplus B} \equiv_W \text{id}|_A \times \text{id}|_B, \)
- \(\text{id}|_{A \otimes B} \equiv_W \text{id}|_A \sqcup \text{id}|_B. \)

Here \(A \oplus B = \langle A \times B \rangle, A \otimes B = 0A \sqcup 1B \text{ for } A, B \subseteq \mathbb{N}^\mathbb{N}. \)
Embedding of the Medvedev Lattice

Proposition (B. and Gherardi 2011)

\[A \leq_M B \iff c_A \leq_W c_B \iff \text{id}|_B \leq_W \text{id}|_A \text{ for } A, B \subseteq \mathbb{N}^\mathbb{N}. \]

- \(c_A : \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}, p \mapsto A \) is the constant multi-valued function.
- By \(\text{id}|_A : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N} \) denotes the identity restricted to \(A \).
- We note that \(\text{id}|_A \leq_W 1 \leq_W c_A \).
- \(p \leq_T q \iff \{ p \} \leq_M \{ q \} \), hence also the Turing semi-lattice embeds into the Weihrauch lattice.

Proposition (B. and Gherardi 2011)

- \(c_{A \oplus B} \equiv_W c_A \times c_B \equiv_W (c_A \sqcup c_B)^* \equiv_W c_A \sqcup c_B \),
- \(c_{A \otimes B} \equiv_W c_A \sqcap c_B \),
- \(\text{id}|_{A \oplus B} \equiv_W \text{id}|_A \times \text{id}|_B \),
- \(\text{id}|_{A \otimes B} \equiv_W \text{id}|_A \sqcup \text{id}|_B \).

Here \(A \oplus B = \langle A \times B \rangle \), \(A \otimes B = 0A \cup 1B \) for \(A, B \subseteq \mathbb{N}^\mathbb{N} \).
Lemma (B., Hendtlass and Kreuzer 2015)

\[f \leq_W g \implies (\forall \text{computable } p \in \text{dom}(f))(\exists \text{computable } q \in \text{dom}(g)) \]
\[f(p) \leq_M g(q) \]

for \(f, g : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \).

- Hence, Weihrauch reducibility can be seen as a parameterized version of Medvedev reducibility.
- Computability theoretic problems such as MLR, where the input is just an oracle, can and have also been studied in the Medvedev lattice (for computable inputs).
- As long as the proofs relativize, one obtains corresponding results in the Weihrauch lattice.
- Other problems such as WKL, WWKL depend on inputs in a relevant way and can be compared to problems such as MLR in the Weihrauch lattice.
Lemma (B., Hendtlass and Kreuzer 2015)

\[f \leq_W g \]

\[\implies (\forall \text{computable } p \in \text{dom}(f))(\exists \text{computable } q \in \text{dom}(g)) \]

\[f(p) \leq_M g(q) \]

for \(f, g : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \).

- Hence, Weihrauch reducibility can be seen as a parameterized version of Medvedev reducibility.
- Computability theoretic problems such as MLR, where the input is just an oracle, can and have also been studied in the Medvedev lattice (for computable inputs).
- As long as the proofs relativize, one obtains corresponding results in the Weihrauch lattice.
- Other problems such as WKL, WWKL depend on inputs in a relevant way and can be compared to problems such as MLR in the Weihrauch lattice.
Zoo of Reducibilities

Weihrauch complexity
(computable)

Reverse mathematics
(over RCA_0)

uniform
resource sensitive

refines

non-uniform
closed under composition

\[f \leq_{\text{sW}} g \longrightarrow f \leq_{\text{W}} g \rightarrow f \leq_{gW} g \]

\[f \leq_{\text{sc}} g \rightarrow f \leq_{c} g \rightarrow f \leq_{\omega} g \]

Diagram based on: Hirschfeldt and Jockusch, On Notions of Computability Theoretic Reduction Between Π^1_2 Principles, preprint 2015.
Can the slogan “Weihrauch complexity is a kind of a model of reverse mathematics with some form of (intuitionistic) linear logic” be converted into a theorem?
Choice
Let \((X, d, \alpha)\) be a computable metric space and \(A \subseteq X\) closed.

By \(B_{\langle n, k \rangle} := B(\alpha(n), \overline{k})\) we denote the ball with center \(\alpha(n)\) and rational radius \(\overline{k}\). Here \(\langle a, b, c \rangle := \frac{a-b}{c+1}\).

Then the following are equivalent to each other:

- \(A\) is co-c.e. closed,
- \(X \setminus A = \bigcup_{i=0}^{\infty} B_{n_i}\) for a computable sequence \((n_i)\) of natural numbers,
- \(A = f^{-1}\{0\}\) for a computable function \(f : X \rightarrow \mathbb{R}\).
We define a representation $\psi : \mathbb{N}^\mathbb{N} \to A_-(X)$ of the set $A_-(X)$ of all closed subsets of X by

$$\psi_-(p) := X \setminus \bigcup_{i=0}^{\infty} B_{p(i)}.$$

The computable points in the represented space $A_-(X)$ are exactly the co-c.e. closed subsets $A \subseteq X$.

There is also a natural representation of the set $C(X)$ of continuous functions $f : X \to \mathbb{R}$.

Proposition

$P : C(X) \to A_-(X), f \mapsto f^{-1}\{0\}$ is a computable isomorphism in the sense that P and P^{-1} are computable.
We define a representation \(\psi_- : \mathbb{N}^\mathbb{N} \to \mathcal{A}_-(X) \) of the set \(\mathcal{A}_-(X) \) of all closed subsets of \(X \) by

\[
\psi_-(p) := X \setminus \bigcup_{i=0}^{\infty} B_p(i).
\]

The computable points in the represented space \(\mathcal{A}_-(X) \) are exactly the co-c.e. closed subsets \(A \subseteq X \).

There is also a natural representation of the set \(\mathcal{C}(X) \) of continuous functions \(f : X \to \mathbb{R} \).

Proposition

\(P : \mathcal{C}(X) \to \mathcal{A}_-(X), f \mapsto f^{-1}\{0\} \) is a computable isomorphism in the sense that \(P \) and \(P^{-1} \) are computable.
We define a representation $\psi^- : N^N \to A_-(X)$ of the set $A_-(X)$ of all closed subsets of X by

$$\psi^-(p) := X \setminus \bigcup_{i=0}^{\infty} B_p(i).$$

The computable points in the represented space $A_-(X)$ are exactly the co-c.e. closed subsets $A \subseteq X$.

There is also a natural representation of the set $C(X)$ of continuous functions $f : X \to \mathbb{R}$.

Proposition

$P : C(X) \to A_-(X), f \mapsto f^{-1}\{0\}$ is a computable isomorphism in the sense that P and P^{-1} are computable.
We define a representation \(\psi_- : \mathbb{N}^\mathbb{N} \to \mathcal{A}_-(X) \) of the set \(\mathcal{A}_-(X) \) of all closed subsets of \(X \) by

\[
\psi_-(p) := X \setminus \bigcup_{i=0}^{\infty} B_{p(i)}.
\]

The computable points in the represented space \(\mathcal{A}_-(X) \) are exactly the co-c.e. closed subsets \(A \subseteq X \).

There is also a natural representation of the set \(\mathcal{C}(X) \) of continuous functions \(f : X \to \mathbb{R} \).

Proposition

\(P : \mathcal{C}(X) \to \mathcal{A}_-(X), f \mapsto f^{-1}\{0\} \) is a computable isomorphism in the sense that \(P \) and \(P^{-1} \) are computable.
Definition

$C_X : \subseteq \mathcal{A}(X) \Rightarrow X, A \mapsto A$ is called the **choice problem** of a computable metric space X.

This is the problem that corresponds to the statement:

- Every non-empty closed set $A \subseteq X$ has a point $x \in A$.

Corollary

$C_X \equiv_{sW} Z_X$ for every computable metric space X.

The choice problem is equivalent to the zero problem of finding a solution $x \in X$ of the equation

$$f(x) = 0$$

for a continuous function $f : X \rightarrow \mathbb{R}$. Formally, we consider the zero problem as $Z_X : \subseteq \mathcal{C}(X) \Rightarrow X, f \mapsto f^{-1}\{0\}$.
Choice

Definition

\(C_X : \subseteq A_\neg (X) \implies X, A \mapsto A \) is called the choice problem of a computable metric space \(X \).

This is the problem that corresponds to the statement:

- Every non-empty closed set \(A \subseteq X \) has a point \(x \in A \).

Corollary

\(C_X \equiv_{SW} Z_X \) for every computable metric space \(X \).

The choice problem is equivalent to the zero problem of finding a solution \(x \in X \) of the equation

\[f(x) = 0 \]

for a continuous function \(f : X \to \mathbb{R} \). Formally, we consider the zero problem as \(Z_X : \subseteq C(X) \implies X, f \mapsto f^{-1}\{0\} \).
Choice

Definition

\(C_X : \subseteq A_-(X) \Rightarrow X, A \mapsto A \) is called the choice problem of a computable metric space \(X \).

This is the problem that corresponds to the statement:

- Every non-empty closed set \(A \subseteq X \) has a point \(x \in A \).

Corollary

\(C_X \equiv_{sW} Z_X \) for every computable metric space \(X \).

The choice problem is equivalent to the zero problem of finding a solution \(x \in X \) of the equation

\[f(x) = 0 \]

for a continuous function \(f : X \to \mathbb{R} \). Formally, we consider the zero problem as \(Z_X : \subseteq \mathcal{C}(X) \Rightarrow X, f \mapsto f^{-1}\{0\} \).
Mind-Changes and Choice

Proposition

\[C_0 \equiv_W 0, \quad C_1 \equiv_W 1, \quad C_2 \equiv_W \text{LLPO}, \quad C_N \equiv_{sW} \lim_N. \]

Proposition (B. and Gherardi 2011)

\(f \leq_W g. \) If \(g \) is computable with \(n \) mind changes, then so is \(f \).

Proposition (B., de Brecht and Pauly 2012)

\(f \leq_W C_N \iff f \) is computable with finitely many mind changes.

Corollary

\(C_n <_W C_{n+1} <_W C_N \) for all \(n \in \mathbb{N} \).
Proposition

\[C_0 \equiv_W 0, \; C_1 \equiv_W 1, \; C_2 \equiv_W \text{LLPO}, \; C_N \equiv_{sW} \text{lim}_N. \]

Proposition (B. and Gherardi 2011)

Let \(f \leq_W g. \) If \(g \) is computable with \(n \) mind changes, then so is \(f \).

Proposition (B., de Brecht and Pauly 2012)

\[f \leq_W C_N \iff f \text{ is computable with finitely many mind changes.} \]

Corollary

\[C_n <_W C_{n+1} <_W C_N \text{ for all } n \in \mathbb{N}. \]
Proposition

\[C_0 \equiv_W 0, \ C_1 \equiv_W 1, \ C_2 \equiv_W \text{LLPO}, \ C_N \equiv_{sW} \text{lim}_N. \]

Proposition (B. and Gherardi 2011)

Let \(f \leq_W g \). If \(g \) is computable with \(n \) mind changes, then so is \(f \).

Proposition (B., de Brecht and Pauly 2012)

\[f \leq_W C_N \iff f \text{ is computable with finitely many mind changes.} \]

Corollary

\[C_n <_W C_{n+1} <_W C_N \text{ for all } n \in \mathbb{N}. \]
Mind-Changes and Choice

Proposition

\[C_0 \equiv_W 0, \ C_1 \equiv_W 1, \ C_2 \equiv_W \text{LLPO}, \ C_N \equiv_{sW} \text{lim}_N. \]

Proposition (B. and Gherardi 2011)

Let \(f \leq_W g \). If \(g \) is computable with \(n \) mind changes, then so is \(f \).

Proposition (B., de Brecht and Pauly 2012)

\[f \leq_W C_N \iff \text{f is computable with finitely many mind changes}. \]

Corollary

\[C_n <_W C_{n+1} <_W C_N \text{ for all } n \in \mathbb{N}. \]
Theorem (B. and Gherardi 2011)

\[\text{WKL} \equiv_{sW} \text{C}_2^N \equiv_{sW} \hat{\text{C}}_2. \]

Proof. The equivalence \(\text{WKL} \equiv_{sW} \text{C}_2^N \) follows since the map

\[[\,] : \text{Tr} \rightarrow \mathcal{A}_-(2^N), \ T \mapsto [T] \]

which maps a binary tree to the set of its infinite paths is computable and has a computable right inverse. The equivalence proof for \(\text{C}_2^N \equiv_{sW} \hat{\text{C}}_2 \) exploits the fact that for finding an infinite path it is sufficient to make countably many binary decisions (regarding the question which subtree is infinite) and vice versa. \(\square \)

Proposition (B., Gherardi and Marcone 2012)

\(\text{C}_2^* \equiv_W \text{K}_N <_W \text{C}_N. \)

Here \(\text{K}_N \) denotes compact choice on \(\mathbb{N} \), where besides the negative information on the set \(A \subseteq \mathbb{N} \) also an upper bound is provided.
Theorem (B. and Gherardi 2011)

\[\text{WKL} \equiv_{sW} C_{2^N} \equiv_{sW} \hat{C}_2. \]

Proof. The equivalence \(\text{WKL} \equiv_{sW} C_{2^N} \) follows since the map

\[[\cdot] : \text{Tr} \to \mathcal{A}_-(2^N), \; T \mapsto [T] \]

which maps a binary tree to the set of its infinite paths is computable and has a computable right inverse. The equivalence proof for \(C_{2^N} \equiv_{sW} \hat{C}_2 \) exploits the fact that for finding an infinite path it is sufficient to make countably many binary decisions (regarding the question which subtree is infinite) and vice versa. □

Proposition (B., Gherardi and Marcone 2012)

\[C^*_2 \equiv_W K_N <_W C_N. \]

Here \(K_N \) denotes compact choice on \(\mathbb{N} \), where besides the negative information on the set \(A \subseteq \mathbb{N} \) also an upper bound is provided.
Theorem (B. and Gherardi 2011)

\[\text{WKL} \equiv_{\text{sW}} C_{2^\mathbb{N}} \equiv_{\text{sW}} \widehat{C}_2. \]

Proof. The equivalence \(\text{WKL} \equiv_{\text{sW}} C_{2^\mathbb{N}} \) follows since the map

\[[\] : \text{Tr} \to A_-(2^\mathbb{N}), \ T \mapsto [T] \]

which maps a binary tree to the set of its infinite paths is computable and has a computable right inverse. The equivalence proof for \(C_{2^\mathbb{N}} \equiv_{\text{sW}} \widehat{C}_2 \) exploits the fact that for finding an infinite path it is sufficient to make countably many binary decisions (regarding the question which subtree is infinite) and vice versa. \(\square \)

Proposition (B., Gherardi and Marcone 2012)

\[C_2^* \equiv_{\text{W}} K_{\mathbb{N}} <_{\text{W}} C_{\mathbb{N}}. \]

Here \(K_{\mathbb{N}} \) denotes compact choice on \(\mathbb{N} \), where besides the negative information on the set \(A \subseteq \mathbb{N} \) also an upper bound is provided.
The positive choice problem $PC_X :\subseteq \mathcal{A}_-(X) \Rightarrow X$, $A \mapsto A$ of a computable metric space X with a Borel measure μ is the restriction of C_X to $\text{dom}(PC_X) := \{ A \subseteq X : \mu(A) > 0 \}$.

We use the usual uniform measure on $2^\mathbb{N}$ and the Lebesgue measure on $[0, 1]$.

Proposition (B., Gherardi and Hölzl 2015)

$PC_{2^\mathbb{N}} \equivSW WWKL$.

Proposition (B. and Pauly 2010)

$WWKL <W WKL$.

We have $\text{id}_{2^\mathbb{N}} \not\leqSW WWKL$. Hence $WWKL$ is not a cylinder.

We have $C_2 \leqW WWKL$. Hence $WWKL \equivW WKL$.
Positive Choice

- The positive choice problem $\text{PC}_X : \subseteq \mathcal{A}_+(X) \Rightarrow X, A \mapsto A$ of a computable metric space X with a Borel measure μ is the restriction of C_X to $\text{dom}(\text{PC}_X) := \{ A \subseteq X : \mu(A) > 0 \}$.
- We use the usual uniform measure on $2^\mathbb{N}$ and the Lebesgue measure on $[0, 1]$.

Proposition (B., Gherardi and Hölzl 2015)

$\text{PC}_{2^\mathbb{N}} \equiv_s \text{WWKL}$.

Proposition (B. and Pauly 2010)

$\text{WWKL} <_W \text{WKL}$.

- We have $\text{id}_{\mathbb{N}^\mathbb{N}} \not\leq_s \text{WWKL}$. Hence WWKL is not a cylinder.
- We have $C_2 \leq_W \text{WWKL}$. Hence $\overline{\text{WWKL}} \equiv_W \text{WKL}$.
Positive Choice

- The positive choice problem $\text{PC}_X : \subseteq \mathcal{A}_-(X) \Rightarrow X, A \mapsto A$ of a computable metric space X with a Borel measure μ is the restriction of C_X to $\text{dom}(\text{PC}_X) := \{A \subseteq X : \mu(A) > 0\}$.
- We use the usual uniform measure on $2^\mathbb{N}$ and the Lebesgue measure on $[0, 1]$.

Proposition (B., Gherardi and Hölzl 2015)

$\text{PC}_{2^\mathbb{N}} \equiv_{\text{sw}} \text{WWKL}$.

Proposition (B. and Pauly 2010)

$\text{WWKL} \prec \text{WKL}$.

- We have $\text{id}_{\mathbb{N}^\mathbb{N}} \not\leq_{\text{sw}} \text{WWKL}$. Hence WWKL is not a cylinder.
- We have $C_2 \leq_{\text{w}} \text{WWKL}$. Hence $\text{WWKL} \equiv_{\text{w}} \text{WKL}$.
Positive Choice

- The positive choice problem $PC_X : \subseteq A_-(X) \Rightarrow X, A \mapsto A$ of a computable metric space X with a Borel measure μ is the restriction of C_X to $\text{dom}(PC_X) := \{A \subseteq X : \mu(A) > 0\}$.

- We use the usual uniform measure on $2^\mathbb{N}$ and the Lebesgue measure on $[0, 1]$.

Proposition (B., Gherardi and Hölzl 2015)

$PC_{2^\mathbb{N}} \equiv_s WWKL$.

Proposition (B. and Pauly 2010)

$WWKL \prec_W WKL$.

- We have $\text{id}_{\mathbb{N}^\mathbb{N}} \not\leq_s WWKL$. Hence $WWKL$ is not a cylinder.

- We have $C_2 \leq_W WWKL$. Hence $\overline{WWKL} \equiv_W WKL$.

Basic Complexity Classes

\[
C_{NN} \supseteq \text{lim } sW C_N
\]

\[
C_R \equiv w C_N \times C_{2^N}
\]

\[
WKL \equiv_{sW} C_{2^N} \equiv_{sW} \hat{C}_2
\]

\[
WWKL \equiv_{sW} PC_{2^N}
\]

\[
K_N \equiv_{sW} C_{2}^*
\]

\[
\text{LLPO} \equiv_{sW} C_2
\]
Turing Machines with Advice

Condition: \((\forall x \in \text{dom}(f)) \{r \in R : r \text{ does not fail with } x\} \neq \emptyset\)
Las Vegas Turing Machines

Condition: \((\forall x \in \text{dom}(f)) \mu\{ r \in R : r \text{ does not fail with } x \} > 0\)
Calibrating Computability with Choice

Theorem (B., de Brecht and Pauly 2012)

For \(R \subseteq \mathbb{N}^\mathbb{N} \) and \(f : \subseteq X \Rightarrow Y \) the following are equivalent:

- \(f \leq_W C_R \),
- \(f \) is computable on a Turing machine with advice from \(R \).

Corollary

- \(f \leq C_{\{0\}} \iff f \) is computable,
- \(f \leq_W C_N \iff f \) comp. with finitely many mind changes,
- \(f \leq_W C_{2^N} \iff f \) is non-deterministically computable,
- \(f \leq_W PC_{2^N} \iff f \) is Las Vegas computable,
- \(f \leq_W \widehat{C}_N \iff f \) is limit computable,
- \(f \leq_W C_{\mathbb{N}^\mathbb{N}} \iff f \) is effectively Borel measurable.

In the last case \(f \) is single-valued on computable Polish spaces.
Theorem (B., de Brecht and Pauly 2012)

For $R \subseteq \mathbb{N}^\mathbb{N}$ and $f : \subseteq X \Rightarrow Y$ the following are equivalent:

- $f \leq_w C_R$,
- f is computable on a Turing machine with advice from R.

Corollary

- $f \leq C_{\{0\}} \iff f$ is computable,
- $f \leq_w C_\mathbb{N} \iff f$ comp. with finitely many mind changes,
- $f \leq_w C_2^\mathbb{N} \iff f$ is non-deterministically computable,
- $f \leq_w PC_2^\mathbb{N} \iff f$ is Las Vegas computable,
- $f \leq_w \hat{C}_\mathbb{N} \iff f$ is limit computable,
- $f \leq_w C_{\mathbb{N}^\mathbb{N}} \iff f$ is effectively Borel measurable.

In the last case f is single-valued on computable Polish spaces.
Computational Classes

\[C_{\mathbb{N}} \]

- Effective Borel measurability

\[\text{lim} \equiv_{sW} \widehat{C_{\mathbb{N}}} \]

- Limit computation

\[\text{WKL} \equiv_{sW} C_{2^{\mathbb{N}}} \]

- Non-deterministic computation

\[\text{WWKL} \equiv_{sW} PC_{2^{\mathbb{N}}} \]

- Las Vegas computation

\[C_{\mathbb{N}} \]

- Finite mind change computation
Independent Choice Theorem

Theorem (B., de Brecht and Pauly 2012)

\[C_R \ast C_S \leq_W C_{R\times S} \text{ for all } R, S \subseteq \mathbb{N}^\mathbb{N}. \]

Proof. Run a Turing machine that simulates upon advice \((r, s)\) two consecutive machines with advice \(r\) and \(s\), respectively. □

Proposition

If \(s : R \to S\) is a computable surjection, then \(C_S \leq_W C_R\).

Corollary

\(C_R\) is closed under composition for \(R \in \{\mathbb{N}, 2^\mathbb{N}, \mathbb{N} \times 2^\mathbb{N}, \mathbb{N}^\mathbb{N}\}\).

Corollary (Gherardi and Marcone 2009, B. and Gherardi 2011)

\(WKL\) is closed under composition.
Theorem (B., de Brecht and Pauly 2012)

\[C_R \times C_S \leq_W C_{R \times S} \text{ for all } R, S \subseteq \mathbb{N}^\mathbb{N}. \]

Proof. Run a Turing machine that simulates upon advice \((r, s)\) two consecutive machines with advice \(r\) and \(s\), respectively. \(\square\)

Proposition

If \(s : R \to S\) is a computable surjection, then \(C_S \leq_W C_R\).

Corollary

\(C_R\) is closed under composition for \(R \in \{\mathbb{N}, 2^\mathbb{N}, \mathbb{N} \times 2^\mathbb{N}, \mathbb{N}^\mathbb{N}\}\).

Corollary (Gherardi and Marcone 2009, B. and Gherardi 2011)

\(WKL\) is closed under composition.
Independent Choice Theorem

Theorem (B., de Brecht and Pauly 2012)

\[C_R \ast C_S \leq_W C_{R \times S} \text{ for all } R, S \subseteq \mathbb{N}^N. \]

Proof. Run a Turing machine that simulates upon advice \((r, s)\) two consecutive machines with advice \(r\) and \(s\), respectively. \(\square\)

Proposition

If \(s : R \rightarrow S \) is a computable surjection, then \(C_S \leq_W C_R \).

Corollary

\(C_R \) is closed under composition for \(R \in \{\mathbb{N}, 2^\mathbb{N}, \mathbb{N} \times 2^\mathbb{N}, \mathbb{N}^\mathbb{N}\} \).

Corollary (Gherardi and Marcone 2009, B. and Gherardi 2011)

WKL is closed under composition.
Theorem (B., de Brecht and Pauly 2012)

\[C_R \times C_S \leq^W C_{R \times S} \text{ for all } R, S \subseteq \mathbb{N}^\mathbb{N}. \]

Proof. Run a Turing machine that simulates upon advice \((r, s)\) two consecutive machines with advice \(r\) and \(s\), respectively. □

Proposition

If \(s : R \rightarrow S\) *is a computable surjection, then* \(C_S \leq^W C_R\).

Corollary

\(C_R\) *is closed under composition for* \(R \in \{\mathbb{N}, 2^{\mathbb{N}}, \mathbb{N} \times 2^{\mathbb{N}}, \mathbb{N}^\mathbb{N}\}\).

Corollary (Gherardi and Marcone 2009, B. and Gherardi 2011)

\(WKL\) *is closed under composition.*
Theorem (B., de Brecht and Pauly 2012)

\[C_R \ast C_S \leq_W C_{R \times S} \text{ for all } R, S \subseteq \mathbb{N}^\mathbb{N}. \]

Proof. Run a Turing machine that simulates upon advice \((r, s)\) two consecutive machines with advice \(r\) and \(s\), respectively. \(\square\)

Proposition

If \(s : R \to S\) is a computable surjection, then \(C_S \leq_W C_R\).

Corollary

\(C_R\) is closed under composition for \(R \in \{\mathbb{N}, 2^\mathbb{N}, \mathbb{N} \times 2^\mathbb{N}, \mathbb{N}^\mathbb{N}\}\).

Corollary (Gherardi and Marcone 2009, B. and Gherardi 2011)

\(WKL\) is closed under composition.
Theorem (B., Gherardi and Hölzl 2015)

\[\text{PC}_R \times \text{PC}_S \leq_W \text{PC}_{R \times S} \] for \(R, S \subseteq \mathbb{N}^\mathbb{N} \) with \(\sigma \)-finite Borel measures and their product measure.

Proof. (Sketch) The proof proceeds along the lines of the case for closed choice plus an additional invocation of Fubini’s Theorem. □

Corollary

\(\text{PC}_R \) is closed under composition for \(R \in \{\mathbb{N}, \mathbb{N}^\mathbb{N}, \mathbb{N} \times 2^\mathbb{N}, 2^\mathbb{N} \} \).

Corollary

WWKL is closed under composition.

Corollary

Las Vegas computable functions are closed under composition.
Independent Choice Theorem

Theorem (B., Gherardi and Hölzl 2015)

\[PC_R \times PC_S \leq_W PC_{R \times S} \text{ for } R, S \subseteq \mathbb{N}^\mathbb{N} \text{ with } \sigma-\text{finite Borel measures and their product measure.} \]

Proof. (Sketch) The proof proceeds along the lines of the case for closed choice plus an additional invocation of Fubini’s Theorem. □

Corollary

\[PC_R \text{ is closed under composition for } R \in \{\mathbb{N}, 2^\mathbb{N}, \mathbb{N} \times 2^\mathbb{N}, \mathbb{N}^\mathbb{N}\}. \]

Corollary

\[\text{WWKL is closed under composition.} \]

Corollary

\[\text{Las Vegas computable functions are closed under composition.} \]
Theorem (B., Gherardi and Hölzl 2015)

$$PC_R \times PC_S \leq_W PC_{R \times S} \text{ for } R, S \subseteq \mathbb{N}^\mathbb{N} \text{ with } \sigma- \text{finite Borel measures and their product measure.}$$

Proof. (Sketch) The proof proceeds along the lines of the case for closed choice plus an additional invocation of Fubini’s Theorem. □

Corollary

$$PC_R \text{ is closed under composition for } R \in \{\mathbb{N}, 2^{\mathbb{N}}, \mathbb{N} \times 2^{\mathbb{N}}, \mathbb{N}^{\mathbb{N}}\}.$$
Theorem (B., Gherardi and Hölzl 2015)

\[\text{PC}_R \ast \text{PC}_S \leq_W \text{PC}_{R \times S} \text{ for } R, S \subseteq \mathbb{N}^\mathbb{N} \text{ with } \sigma\text{-finite Borel measures and their product measure.} \]

Proof. (Sketch) The proof proceeds along the lines of the case for closed choice plus an additional invocation of Fubini’s Theorem. □

Corollary

\[\text{PC}_R \text{ is closed under composition for } R \in \{ \mathbb{N}, 2^\mathbb{N}, \mathbb{N} \times 2^\mathbb{N}, \mathbb{N}^\mathbb{N} \}. \]

Corollary

\[\text{WWKL is closed under composition.} \]

Corollary

\[\text{Las Vegas computable functions are closed under composition.} \]
Theorem (B., de Brecht and Pauly 2012)

Let X be a computable Polish space. Then

- $C_X \leq_{SW} C_{\mathbb{N}^\mathbb{N}}$,
- $C_X \leq_{SW} C_{2^\mathbb{N}}$ if X is computably compact,
- $C_{2^\mathbb{N}} \leq_{SW} C_X$ if X is perfect,
- $C_X \leq_{SW} C_{\mathbb{N} \times 2^\mathbb{N}}$ if X is a computable K_σ–space,
- $C_X \equiv_{SW} C_{\mathbb{N}^\mathbb{N}}$ with respect to some oracle, if X is not K_σ.

Corollary

For all $n \geq 1$:

- $C_{[0,1]^n} \equiv_{SW} C_{2^\mathbb{N}}$
- $C_{\mathbb{R}^n} \equiv_{SW} C_{\mathbb{N} \times 2^\mathbb{N}} \equiv_{SW} C_{\mathbb{N}} \times C_{2^\mathbb{N}} \equiv_{SW} C_{\mathbb{N}} \ast C_{2^\mathbb{N}}$
- $C_{C[0,1]} \equiv_{SW} C_{\ell_2} \equiv_{SW} C_{\mathbb{N}^\mathbb{N}}$
Theorem (B., de Brecht and Pauly 2012)

Let X be a computable Polish space. Then

- $C_X \leq_{SW} C_{\mathbb{N}^\mathbb{N}}$,
- $C_X \leq_{SW} C_{2^\mathbb{N}}$ if X is computably compact,
- $C_{2^\mathbb{N}} \leq_{SW} C_X$ if X is perfect,
- $C_X \leq_{SW} C_{\mathbb{N} \times 2^\mathbb{N}}$ if X is a computable K_σ–space,
- $C_X \equiv_{SW} C_{\mathbb{N}^\mathbb{N}}$ with respect to some oracle, if X is not K_σ.

Corollary

For all $n \geq 1$:

- $C_{[0,1]^n} \equiv_{SW} C_{2^\mathbb{N}}$
- $C_{\mathbb{R}^n} \equiv_{SW} C_{\mathbb{N} \times 2^\mathbb{N}} \equiv_{SW} C_{\mathbb{N}} \times C_{2^\mathbb{N}} \equiv_{SW} C_{\mathbb{N}} \ast C_{2^\mathbb{N}}$
- $C_{C[0,1]} \equiv_{SW} C_{\ell_2} \equiv_{SW} C_{\mathbb{N}^\mathbb{N}}$
Choice for Computable Polish Spaces

- \(C_{\mathbb{N}} \equiv_{sW} C_{\ell_\infty} \equiv_{sW} C_{[0,1]} \)
- \(C_{\mathbb{N} \times 2} \equiv_{sW} C_{\mathbb{R}^n} \equiv_{sW} C_{2^\mathbb{N} \times \mathbb{N}} \)
- \(C_{\mathbb{N}} \equiv_{sW} C_{[0,1]^n} \equiv_{sW} C_{[0,1]^\mathbb{N}} \)
- \(C_{\mathbb{N}} \equiv_{sW} C_{\mathbb{Z}} \equiv_{sW} C_{\mathbb{Q}} \)

- Perfect non locally compact
- Perfect locally compact
- Perfect compact
- Countable discrete
- Finite

- \(C_1 \)
- \(C_2 \)
- \(C_3 \)
The following result is reminiscent of certain conservation results.

Theorem (B., de Brecht and Pauly 2012)

\[f \preceq_W C_{2^N} \ast g \implies f \preceq_W g \]

for single-valued \(f : \subseteq X \rightarrow Y \) on computable metric spaces \(X, Y \).

Proof. (Idea.) A non-deterministic computation that yields a unique result cannot really exploit the advice \(r \in 2^N \). The compact set of successful advices can be systematically searched in order to find a successful advice.

Corollary

\[f \preceq_W C_{2^N} \implies f \text{ computable (for } f \text{ as above).} \]

Corollary

\[C_N \not\preceq_W C_{2^N}. \]

\[\lim_N \equiv_W C_N \text{ is single-valued and non-computable.} \]
The following result is reminiscent of certain conservation results.

Theorem (B., de Brecht and Pauly 2012)

\[f \leq_W C_{2^N} \ast g \implies f \leq_W g \]

for single-valued \(f : \subseteq X \to Y \) on computable metric spaces \(X, Y \).

Proof. (Idea.) A non-deterministic computation that yields a unique result cannot really exploit the advice \(r \in 2^\mathbb{N} \). The compact set of successful advices can be systematically searched in order to find a successful advice. \(\square \)

Corollary

\[f \leq_W C_{2^N} \implies f \text{ computable (for } f \text{ as above).} \]

Corollary

\[C_N \not\leq_W C_{2^N}. \]

\[\lim_{N} \equiv^{sW} C_N \] is single-valued and non-computable.
The following result is reminiscent of certain conservation results.

Theorem (B., de Brecht and Pauly 2012)

\[f \leq W C_{2^\mathbb{N}} \ast g \implies f \leq W g \]

for single-valued \(f : \subseteq X \rightarrow Y \) on computable metric spaces \(X, Y \).

Proof. (Idea.) A non-deterministic computation that yields a unique result cannot really exploit the advice \(r \in 2^\mathbb{N} \). The compact set of successful advices can be systematically searched in order to find a successful advice. \(\square \)

Corollary

\[f \leq W C_{2^\mathbb{N}} \implies f \text{ computable (for } f \text{ as above).} \]

Corollary

\[C_{\mathbb{N}} \not\leq W C_{2^\mathbb{N}}. \]

\[\lim_{N} \equiv_{SW} C_{\mathbb{N}} \] is single-valued and non-computable.
The following result is reminiscent of certain conservation results.

Theorem (B., de Brecht and Pauly 2012)

\[f \leq_w C_{2^N} \ast g \implies f \leq_w g \]

for single-valued \(f : \subseteq X \to Y \) on computable metric spaces \(X, Y \).

Proof. (Idea.) A non-deterministic computation that yields a unique result cannot really exploit the advice \(r \in 2^N \). The compact set of successful advices can be systematically searched in order to find a successful advice.

Corollary

\[f \leq_w C_{2^N} \implies f \text{ computable (for } f \text{ as above).} \]

Corollary

\[C_N \not\leq_w C_{2^N}. \]

\(\lim_{N} \equiv_s W C_N \) is single-valued and non-computable.
Choice Elimination for Choice on Natural Numbers

- \(f \) is called a **fractal** if there is a \(F : \subseteq N^N \rightarrow N^N \) with \(F \equiv_W f \) and \(F|_U \equiv_W f \) for every open \(U \subseteq N^N \) with \(U \cap \text{dom}(F) \neq \emptyset \).
- \(f \) is called a **total fractal** if there is a total \(F \) as above.
- **Strong (total) fractals** are defined analogously with \(\equiv_{sW} \).

Theorem (Le Roux and Pauly 2015)

\[
f \leq_W C_N * g \implies f \leq_W g \text{ for total fractals } f.
\]

Proof. (Idea.) Replace \(f \) by a total fractal and apply the Baire Category Theorem to the sets \(A_n \) of inputs to \(F \) for which \(C_N \) yields the number \(n \) as a possible result. Then \(N^N = \bigcup_{n=0}^{\infty} A_n \) and one of the sets \(A_n \) is somewhere dense. The fractality condition yields the desired reduction. \(\square \)

Corollary (B. and Gherardi 2011)

\(\text{IVT} \not\leq_W C_N \) and hence \(\text{IVT}|_W C_N \).

It is clear that also \(\text{PC}_{2^N} \not\leq_W C_N \).
f is called a **fractal** if there is a $F : \subseteq \mathbb{N}^\mathbb{N} \rightrightarrows \mathbb{N}^\mathbb{N}$ with $F \equiv_W f$ and $F|_U \equiv_W f$ for every open $U \subseteq \mathbb{N}^\mathbb{N}$ with $U \cap \text{dom}(F) \neq \emptyset$.

f is called a **total fractal** if there is a total F as above.

strong (total) fractals are defined analogously with \equiv_{sW}.

Theorem (Le Roux and Pauly 2015)

$f \leq_W C_\mathbb{N} \ast g \implies f \leq_W g$ for total fractals f.

Proof. (Idea.) Replace f by a total fractal and apply the Baire Category Theorem to the sets A_n of inputs to F for which $C_\mathbb{N}$ yields the number n as a possible result. Then $\mathbb{N}^\mathbb{N} = \bigcup_{n=0}^\infty A_n$ and one of the sets A_n is somewhere dense. The fractality condition yields the desired reduction. □

Corollary (B. and Gherardi 2011)

$\text{IVT} \not\leq_W C_\mathbb{N}$ and hence $\text{IVT}|_W C_\mathbb{N}$.

It is clear that also $\text{PC}_{2^\mathbb{N}} \not\leq_W C_\mathbb{N}$.

43 / 120
Choice Elimination for Choice on Natural Numbers

- f is called a **fractal** if there is a $F : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}$ with $F \equiv_{_{W}} f$ and $F|_{U} \equiv_{_{W}} f$ for every open $U \subseteq \mathbb{N}^\mathbb{N}$ with $U \cap \text{dom}(F) \neq \emptyset$.

- f is called a **total fractal** if there is a total F as above.

- **Strong (total) fractals** are defined analogously with $\equiv_{_{SW}}$.

Theorem (Le Roux and Pauly 2015)

\[f \leq_{_{W}} \mathcal{C}_{\mathbb{N}} \ast g \implies f \leq_{_{W}} g \text{ for total fractals } f. \]

Proof. (Idea.) Replace f by a total fractal and apply the Baire Category Theorem to the sets A_{n} of inputs to F for which $\mathcal{C}_{\mathbb{N}}$ yields the number n as a possible result. Then $\mathbb{N}^\mathbb{N} = \bigcup_{n=0}^{\infty} A_{n}$ and one of the sets A_{n} is somewhere dense. The fractality condition yields the desired reduction. \(\square\)

Corollary (B. and Gherardi 2011)

\[\text{IVT} \not\leq_{_{W}} \mathcal{C}_{\mathbb{N}} \text{ and hence } \text{IVT}|_{_{W}} \mathcal{C}_{\mathbb{N}}. \]

It is clear that also $\text{PC}_{2^{\mathbb{N}}} \not\leq_{_{W}} \mathcal{C}_{\mathbb{N}}$.
Choice Elimination for Choice on Natural Numbers

- f is called a fractal if there is a $F : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}$ with $F \equiv_W f$ and $F|_U \equiv_W f$ for every open $U \subseteq \mathbb{N}^\mathbb{N}$ with $U \cap \text{dom}(F) \neq \emptyset$.
- f is called a total fractal if there is a total F as above.
- Strong (total) fractals are defined analogously with \equiv_{sW}.

Theorem (Le Roux and Pauly 2015)

\[f \leq_W C_{\mathbb{N}} * g \implies f \leq_W g \text{ for total fractals } f. \]

Proof. (Idea.) Replace f by a total fractal and apply the Baire Category Theorem to the sets A_n of inputs to F for which $C_{\mathbb{N}}$ yields the number n as a possible result. Then $\mathbb{N}^\mathbb{N} = \bigcup_{n=0}^{\infty} A_n$ and one of the sets A_n is somewhere dense. The fractality condition yields the desired reduction. □

Corollary (B. and Gherardi 2011)

$\text{IVT} \nleq_W C_{\mathbb{N}}$ and hence $\text{IVT} |_{W C_{\mathbb{N}}}$.

It is clear that also $\text{PC}_{2^\mathbb{N}} \nleq_W C_{\mathbb{N}}$. 43 / 120
Basic Complexity Classes

\[
C_{NN} \Downarrow
\]

\[
\lim \equiv_{SW} \hat{C}_N
\]

\[
C_R \equiv_{W} C_N \times C_{2N}
\]

\[
WKL \equiv_{SW} C_{2N} \equiv_{SW} \hat{C}_2
\]

\[
WWKL \equiv_{SW} PC_{2N}
\]

\[
K_N \equiv_{SW} C^*_N
\]

\[
\lim_N \equiv_{SW} C_N
\]

\[
LLPO \equiv_{SW} C_2
\]
Join Irreducibility

For $g_n : \subseteq X \Rightarrow Y$ we define
$$\bigsqcup_{n=0}^{\infty} g_n : \subseteq \mathbb{N} \times X \Rightarrow Y, (n, x) \mapsto g_n(x).$$

Definition

f is called **join irreducible**, if one of the following equivalent conditions hold:

- $f \equiv_W \bigsqcup_{n=0}^{\infty} g_n \Rightarrow (\exists n) f \equiv_W g_n.$
- $f \leq_W \bigsqcup_{n=0}^{\infty} g_n \Rightarrow (\exists n) f \leq_W g_n.$

Equivalence follows since the Weihrauch lattice is distributive.

Proposition (B., de Brecht and Pauly 2012)

Every fractal f is join irreducible.

Corollary

$$C_N \sqcup C_{2^N} <_W C_N \times C_{2^N}.$$

$$C_N \times C_{2^N} \equiv_W C_\mathbb{R}$$ is a fractal.
Join Irreducibility

For $g_n : \subseteq X \Rightarrow Y$ we define
\[\bigsqcup_{n=0}^{\infty} g_n : \subseteq \mathbb{N} \times X \Rightarrow Y, (n, x) \mapsto g_n(x). \]

Definition

f is called **join irreducible**, if one of the following equivalent conditions hold:

1. $f \equiv_W \bigsqcup_{n=0}^{\infty} g_n \Rightarrow (\exists n) f \equiv_W g_n$,
2. $f \leq_W \bigsqcup_{n=0}^{\infty} g_n \Rightarrow (\exists n) f \leq_W g_n$.

Equivalence follows since the Weihrauch lattice is distributive.

Proposition (B., de Brecht and Pauly 2012)

Every fractal f is join irreducible.

Corollary

$C_N \sqcup C_{2^N} \leq_W C_N \times C_{2^N}$.

$C_N \times C_{2^N} \equiv_W C_{\mathbb{R}}$ is a fractal.
Join Irreducibility

For $g_n : \subseteq X \Rightarrow Y$ we define
$$\bigsqcup_{n=0}^{\infty} g_n : \subseteq \mathbb{N} \times X \Rightarrow Y, (n, x) \mapsto g_n(x).$$

Definition

f is called **join irreducible**, if one of the following equivalent conditions hold:

- $f \equiv_W \bigsqcup_{n=0}^{\infty} g_n \implies (\exists n) f \equiv_W g_n$.
- $f \leq_W \bigsqcup_{n=0}^{\infty} g_n \implies (\exists n) f \leq_W g_n$.

Equivalence follows since the Weihrauch lattice is distributive.

Proposition (B., de Brecht and Pauly 2012)

Every fractal f is join irreducible.

Corollary

$$C_N \sqcup C_{2^N} \leq_W C_N \times C_{2^N}.$$

$$C_N \times C_{2^N} \equiv_W C_{\mathbb{R}}$$ is a fractal.
We consider:

- \(\min : \mathbb{N}^\mathbb{N} \to \mathbb{N} \), \(p \mapsto \min\{p(n) : n \in \mathbb{N}\} \),

- \(\max : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N} \), \(p \mapsto \max\{p(n) : n \in \mathbb{N}\} \).

Finding a minimum is simpler because the first element in the sequence is already an upper bound on the result and hence the search space is finite.

Proposition

\[\max \equiv_{sW} C_N \quad \text{and} \quad \min \equiv_{sW} K_N \equiv_{sW} C_2^*. \]

This suggests the following correspondence:

- \(B\Sigma_1^0 \) (\(= \) boundedness for \(\Sigma_1^0 \) formulas) corresponds to \(K_N \),

- \(I\Sigma_1^0 \) (\(= \) induction for \(\Sigma_1^0 \) formulas) corresponds to \(C_N \).
We consider:

▶ \(\text{min} : \mathbb{N}^\mathbb{N} \to \mathbb{N}, \, p \mapsto \min\{p(n) : n \in \mathbb{N}\} \),

▶ \(\text{max} : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}, \, p \mapsto \max\{p(n) : n \in \mathbb{N}\} \).

Finding a minimum is simpler because the first element in the sequence is already an upper bound on the result and hence the search space is finite.

Proposition

\[\text{max} \equiv_{sW} C_\mathbb{N} \text{ and } \text{min} \equiv_{sW} K_\mathbb{N} \equiv_{sW} C_2^* . \]

This suggests the following correspondence:

▶ \(B\Sigma_1^0 \) (= boundedness for \(\Sigma_1^0 \) formulas) corresponds to \(K_\mathbb{N} \),

▶ \(I\Sigma_1^0 \) (= induction for \(\Sigma_1^0 \) formulas) corresponds to \(C_\mathbb{N} \).
We consider:

- \(\min : \mathbb{N}^\mathbb{N} \to \mathbb{N}, p \mapsto \min\{ p(n) : n \in \mathbb{N} \} \),
- \(\max : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}, p \mapsto \max\{ p(n) : n \in \mathbb{N} \} \).

Finding a minimum is simpler because the first element in the sequence is already an upper bound on the result and hence the search space is finite.

Proposition

\(\max \equiv_{sW} C_\mathbb{N} \) and \(\min \equiv_{sW} K_\mathbb{N} \equiv_{sW} C^*_2 \).

This suggests the following correspondence:

- \(B\Sigma^0_1 \) (= boundedness for \(\Sigma^0_1 \) formulas) corresponds to \(K_\mathbb{N} \),
- \(I\Sigma^0_1 \) (= induction for \(\Sigma^0_1 \) formulas) corresponds to \(C_\mathbb{N} \).
We consider:

- \(\min : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}, \ p \mapsto \min\{p(n) : n \in \mathbb{N}\} \),
- \(\max : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}, \ p \mapsto \max\{p(n) : n \in \mathbb{N}\} \).

Finding a minimum is simpler because the first element in the sequence is already an upper bound on the result and hence the search space is finite.

Proposition

\[\max \equiv_{sW} C_\mathbb{N} \quad \text{and} \quad \min \equiv_{sW} K_\mathbb{N} \equiv_{sW} C_2^*. \]

This suggests the following correspondence:

- \(\mathcal{B} \Sigma_1^0 \) (= boundedness for \(\Sigma_1^0 \) formulas) corresponds to \(K_\mathbb{N} \),
- \(\mathcal{I} \Sigma_1^0 \) (= induction for \(\Sigma_1^0 \) formulas) corresponds to \(C_\mathbb{N} \).
Basic Complexity Classes and Reverse Mathematics

- $C_{\mathbb{N}}$
- $\lim \equiv_{sW} \widehat{C_N}$
- $C_R \equiv_{sW} C_N \times C_{2^N}$
- $WKL \equiv_{sW} C_{2^N} \equiv_{sW} \widehat{C_2}$
- $\text{WWKL} \equiv_{sW} \text{PC}_{2^N}$
- $K_N \equiv_{sW} C_2^*$
- C_1

ATR$_0$

ACA$_0$

WKL$_0 + I\Sigma^0_1$

WKL$_0$

WWKL$_0$

I\Sigma^0_1

B\Sigma^0_1

RCA$_0$
The Classification of Theorems
Choice on Natural Numbers

Theorem (B. and Gherardi 2012)

The following problems and theorems are Weihrauch equivalent:

- The choice problem C_N on natural numbers.
- The Baire Category Theorem BCT_1.
- The Banach Inverse Mapping Theorem IMT.
- The Open Mapping Theorem.
- The Closed Graph Theorem.
- The Uniform Boundedness Theorem.

All for infinite dimensional computable normed spaces (in case of BCT_1 even for all perfect computable metric spaces).

All members of the equivalence class share the following features:

- All members map computable inputs to (some) computable outputs.
- All members are not uniformly computable.
- All members are computable with finitely many mind changes.
- All members have parallelizations that are equivalent to the limit map and they are closed under composition.
Theorem (B. and Gherardi 2012)

The following problems and theorems are Weihrauch equivalent:

- The choice problem C_N on natural numbers.
- The Baire Category Theorem BCT_1.
- The Banach Inverse Mapping Theorem IMT.
- The Open Mapping Theorem.
- The Closed Graph Theorem.
- The Uniform Boundedness Theorem.

All for infinite dimensional computable normed spaces (in case of BCT_1 even for all perfect computable metric spaces).

All members of the equivalence class share the following features:

- All members map computable inputs to (some) computable outputs.
- All members are not uniformly computable.
- All members are computable with finitely many mind changes.
- All members have parallelizations that are equivalent to the limit map and they are closed under composition.
The Baire Category Theorem

Theorem (Baire Category Theorem)

Every complete metric space X *cannot be written as a countable union* $X = \bigcup_{i=0}^{\infty} A_i$ *of nowhere dense closed sets* $A_i \subseteq X$.

For perfect computable complete metric space X we define:

- $\text{BCT}_0 : \subseteq \mathcal{A}(X)^\mathbb{N} \Rightarrow \mathbb{N}$, $(A_i)_{i \in \mathbb{N}} \mapsto X \setminus \bigcup_{i=0}^{\infty} A_i$ with $\text{dom}(\text{BCT}_0) = \{(A_i)_{i \in \mathbb{N}} : A_i^o = \emptyset\}$.

- $\text{BCT}_1 : \subseteq \mathcal{A}(X)^\mathbb{N} \Rightarrow \mathbb{N}$, $(A_i)_{i \in \mathbb{N}} \mapsto \{n \in \mathbb{N} : A_n^o \neq \emptyset\}$ with $\text{dom}(\text{BCT}_1) = \{(A_i)_{i \in \mathbb{N}} : X = \bigcup_{i=0}^{\infty} A_i\}$.

The strong Weihrauch equivalence class does not depend on the underlying space, but on the logical form.

Theorem (B. and Gherardi 2011)

$\text{BCT}_1 \equiv_{sW} C_\mathbb{N}$ *and* $\text{BCT}_0 \equiv_W \text{id}$.
The Baire Category Theorem

Theorem (Baire Category Theorem)

Every complete metric space X cannot be written as a countable union $X = \bigcup_{i=0}^{\infty} A_i$ of nowhere dense closed sets $A_i \subseteq X$.

For perfect computable complete metric space X we define:

- $\text{BCT}_0 : \subseteq \mathcal{A}_{-}(X)^{\mathbb{N}} \ni (A_i)_{i \in \mathbb{N}} \mapsto X \setminus \bigcup_{i=0}^{\infty} A_i$ with $\text{dom}(\text{BCT}_0) = \{(A_i)_{i \in \mathbb{N}} : A_i^\circ = \emptyset\}$.

- $\text{BCT}_1 : \subseteq \mathcal{A}_{-}(X)^{\mathbb{N}} \ni (A_i)_{i \in \mathbb{N}} \mapsto \{n \in \mathbb{N} : A_n^\circ \neq \emptyset\}$ with $\text{dom}(\text{BCT}_1) = \{(A_i)_{i \in \mathbb{N}} : X = \bigcup_{i=0}^{\infty} A_i\}$.

The strong Weihrauch equivalence class does not depend on the underlying space, but on the logical form.

Theorem (B. and Gherardi 2011)

$\text{BCT}_1 \equiv_{sW} \text{C}_\mathbb{N}$ and $\text{BCT}_0 \equiv_{W} \text{id}$.
The Baire Category Theorem

Theorem (Baire Category Theorem)

Every complete metric space X cannot be written as a countable union $X = \bigcup_{i=0}^{\infty} A_i$ of nowhere dense closed sets $A_i \subseteq X$.

For perfect computable complete metric space X we define:

- $\text{BCT}_0 : \subseteq A_-(X)^\mathbb{N} \nrightarrow X, (A_i)_{i\in\mathbb{N}} \mapsto X \setminus \bigcup_{i=0}^{\infty} A_i$ with $\text{dom}(\text{BCT}_0) = \{(A_i)_{i\in\mathbb{N}} : A_i^o = \emptyset\}$.
- $\text{BCT}_1 : \subseteq A_-(X)^\mathbb{N} \nrightarrow \mathbb{N}, (A_i)_{i\in\mathbb{N}} \mapsto \{n \in \mathbb{N} : A_n^o \neq \emptyset\}$ with $\text{dom}(\text{BCT}_1) = \{(A_i)_{i\in\mathbb{N}} : X = \bigcup_{i=0}^{\infty} A_i\}$.

The strong Weihrauch equivalence class does not depend on the underlying space, but on the logical form.

Theorem (B. and Gherardi 2011)

$\text{BCT}_1 \equiv_{\text{sW}} C_\mathbb{N}$ and $\text{BCT}_0 \equiv_{\text{W}} \text{id}$.
Proof.

Proof idea for $\text{BCT}_1 \equiv_W C_N$.

“$\text{BCT}_1 \leq_W C_N$” Given (A_i), the set

$$\{\langle k, n \rangle : \emptyset \neq B_k \subseteq A_n\}$$

is co-c.e. in all parameters. Hence one can find a number $\langle k, n \rangle$ in this set using C_N. In this case $n \in \text{BCT}_1(A_i)$.

“$C_N \leq_W \text{BCT}_1$” Given a sequence $(n_i)_{i \in \mathbb{N}}$ that enumerates a set of natural numbers, we compute the sequence (A_i) of closed subsets $A_i \subseteq X$ with

$$A_i := \begin{cases} \emptyset & \text{if } \exists i \ n = n_i \\ X & \text{otherwise} \end{cases}$$

This sequence is computable in (n_i) and each $n \in \text{BCT}_1(n_i)$ has the property that n does not appear in (n_i).
The Baire Category Theorem

Proof.

Proof idea for $\text{BCT}_1 \equiv_W \text{C}_N$.

“$\text{BCT}_1 \leq_W \text{C}_N$” Given (A_i), the set

$$\{ \langle k, n \rangle : \emptyset \neq B_k \subseteq A_n \}$$

is co-c.e. in all parameters. Hence one can find a number $\langle k, n \rangle$ in this set using C_N. In this case $n \in \text{BCT}_1(A_i)$.

“$\text{C}_N \leq_W \text{BCT}_1$” Given a sequence $(n_i)_{i \in \mathbb{N}}$ that enumerates a set of natural numbers, we compute the sequence (A_i) of closed subsets $A_i \subseteq X$ with

$$A_i := \begin{cases} \emptyset & \text{if } (\exists i) \ n = n_i \\ X & \text{otherwise} \end{cases}$$

This sequence is computable in (n_i) and each $n \in \text{BCT}_1(n_i)$ has the property that n does not appear in (n_i). \square
Banach’s Inverse Mapping Theorem

Theorem (Banach’s Inverse Mapping Theorem)

Every bijective bounded linear operator $T : X \rightarrow Y$ on Banach spaces X, Y has a bounded inverse $T^{-1} : Y \rightarrow X$.

For computable Banach spaces X, Y we define

$\text{IMT} : C(X, Y) \rightarrow C(Y, X), T \mapsto T^{-1}$ with $\text{dom}(\text{IMT}) = \{T : T \text{ linear}\}$.

The strong Weihrauch equivalence depends on the underlying spaces.

Theorem (B. and Gherardi 2011)

$\text{IMT} \equiv_{sW} C_N$ for infinite dimensional computable Banach spaces.

Corollary (B. 2009)

Every bijective computable linear operator $T : X \rightarrow Y$ on computable Banach spaces X, Y has a computable inverse T^{-1}.
Banach’s Inverse Mapping Theorem

Theorem (Banach’s Inverse Mapping Theorem)

Every bijective bounded linear operator $T : X \to Y$ *on Banach spaces* X, Y *has a bounded inverse* $T^{-1} : Y \to X$.

For computable Banach spaces X, Y we define

- $\text{IMT} : \subseteq C(X, Y) \to C(Y, X)$, $T \mapsto T^{-1}$ with $\text{dom}(\text{IMT}) = \{ T : T \text{ linear} \}$.

The strong Weihrauch equivalence depends on the underlying spaces.

Theorem (B. and Gherardi 2011)

$\text{IMT} \equiv_{sW} C_N$ *for infinite dimensional computable Banach spaces*.

Corollary (B. 2009)

Every bijective computable linear operator $T : X \to Y$ *on computable Banach spaces* X, Y *has a computable inverse* T^{-1}.
Banach’s Inverse Mapping Theorem

Theorem (Banach’s Inverse Mapping Theorem)

Every bijective bounded linear operator $T : X \to Y$ on Banach spaces X, Y has a bounded inverse $T^{-1} : Y \to X$.

For computable Banach spaces X, Y we define

- $\text{IMT} : \subseteq \mathcal{C}(X, Y) \to \mathcal{C}(Y, X), T \mapsto T^{-1}$ with $\text{dom}(\text{IMT}) = \{ T : T \text{ linear} \}$.

The strong Weihrauch equivalence depends on the underlying spaces.

Theorem (B. and Gherardi 2011)

$\text{IMT} \equiv_{\text{sW}} \mathcal{C}_N$ for infinite dimensional computable Banach spaces.

Corollary (B. 2009)

Every bijective computable linear operator $T : X \to Y$ on computable Banach spaces X, Y has a computable inverse T^{-1}.
Banach’s Inverse Mapping Theorem

Theorem (Banach’s Inverse Mapping Theorem)

Every bijective bounded linear operator $T : X \to Y$ *on Banach spaces* X, Y *has a bounded inverse* $T^{-1} : Y \to X$.

For computable Banach spaces X, Y we define

- $\text{IMT} : \subseteq \mathcal{C}(X, Y) \to \mathcal{C}(Y, X), T \mapsto T^{-1}$ with $\text{dom}(\text{IMT}) = \{ T : T \text{ linear} \}$.

The strong Weihrauch equivalence depends on the underlying spaces.

Theorem (B. and Gherardi 2011)

$\text{IMT} \equiv_{sW} \mathcal{C}_\mathbb{N}$ *for infinite dimensional computable Banach spaces*.

Corollary (B. 2009)

Every bijective computable linear operator $T : X \to Y$ *on computable Banach spaces* X, Y *has a computable inverse* T^{-1}.
Theorem

The following problems and theorems are Weihrauch equivalent:

- The choice problem $C_{2^\mathbb{N}}$ on Cantor space $2^\mathbb{N}$.
- Weak König’s Lemma WKL.
- The Heine-Borel Theorem HB_1.
- The Separation Problem for Σ^0_1 sets. (Gherardi and Marcone 2009)
- The Hahn-Banach Theorem HBT. (Gherardi and Marcone 2009)
- The Brouwer-Fixed Point Theorem BFT_n for dimension $n \geq 2$. (B., Le Roux, J.S. Miller and Pauly 2012)

All members of the equivalence class share the following features:

- All members map computable inputs to (some) low outputs.
- All members are neither uniformly nor non-uniformly computable.
- All members are non-deterministically computable.
- All members are closed under composition and parallelization.
The following problems and theorems are Weihrauch equivalent:

- The choice problem $C_{2^\mathbb{N}}$ on Cantor space $2^\mathbb{N}$.
- Weak König’s Lemma WKL.
- The Heine-Borel Theorem HB_1.
- The Separation Problem for Σ^0_1 sets. (Gherardi and Marcone 2009)
- The Hahn-Banach Theorem HBT. (Gherardi and Marcone 2009)
- The Brouwer-Fixed Point Theorem BFT_n for dimension $n \geq 2$. (B., Le Roux, J.S. Miller and Pauly 2012)

All members of the equivalence class share the following features:

- All members map computable inputs to (some) low outputs.
- All members are neither uniformly nor non-uniformly computable.
- All members are non-deterministically computable.
- All members are closed under composition and parallelization.
The Heine-Borel Theorem

<table>
<thead>
<tr>
<th>Theorem (Heine-Borel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Every countable open cover ((U_i)_i) of the unit interval ([0, 1]) has a finite subcover.</td>
</tr>
</tbody>
</table>

Two different logical formalizations:

- **HB\(_0\)**: \(\subseteq \mathcal{O}([0, 1])^\mathbb{N} \Rightarrow \mathbb{N}, (U_i)_i \mapsto \{n \in \mathbb{N} : [0, 1] \subseteq \bigcup_{i=0}^n U_i\}\),
 \[\text{dom}(HB_0) := \{(U_i)_i : [0, 1] \subseteq \bigcup_{i=0}^\infty U_i\}\].

- **HB\(_1\)**: \(\subseteq \mathcal{O}([0, 1])^\mathbb{N} \Rightarrow [0, 1], (U_i)_i \mapsto [0, 1] \setminus \bigcup_{i=0}^\infty U_i\),
 \[\text{dom}(HB_1) := \{(U_i)_i : (\forall n) [0, 1] \not\subseteq \bigcup_{i=0}^n U_i\}\].

The set \(\mathcal{O}(X)\) of open subsets of \(X\) is represented as \(\mathcal{A}_-(X)\), using complements.

Proposition

\(HB_0 \equiv^W \text{id is computable} \ HB_1 \equiv^W \text{WKL} \equiv^W \text{C}_{2^\mathbb{N}}\).
The Heine-Borel Theorem

Theorem (Heine-Borel)

Every countable open cover \((U_i)_i\) of the unit interval \([0, 1]\) has a finite subcover.

Two different logical formalizations:

- **HB\(_0\)**: \(\subseteq \mathcal{O}([0, 1])^\mathbb{N} \Rightarrow \mathbb{N}, (U_i)_i \mapsto \{n \in \mathbb{N} : [0, 1] \subseteq \bigcup_{i=0}^n U_i\}\),
 \(\text{dom}(HB_0) := \{(U_i)_i : [0, 1] \subseteq \bigcup_{i=0}^\infty U_i\}\).
- **HB\(_1\)**: \(\subseteq \mathcal{O}([0, 1])^\mathbb{N} \Rightarrow [0, 1], (U_i)_i \mapsto [0, 1] \setminus \bigcup_{i=0}^\infty U_i\),
 \(\text{dom}(HB_1) := \{(U_i)_i : (\forall n) [0, 1] \not\subseteq \bigcup_{i=0}^n U_i\}\).

The set \(\mathcal{O}(X)\) of open subsets of \(X\) is represented as \(\mathcal{A}-(X)\), using complements.

Proposition

\(HB_0 \equiv _W \text{ id \ is computable } HB_1 \equiv _W \text{ WKL } \equiv _W \text{ C}_2^\mathbb{N}\).
Theorem (Heine-Borel)

Every countable open cover \((U_i)_i\) of the unit interval \([0, 1]\) has a finite subcover.

Two different logical formalizations:

- **HB\(_0\)**: \(\subseteq O([0, 1])^\mathbb{N} \Rightarrow \mathbb{N}, (U_i)_i \mapsto \{ n \in \mathbb{N} : [0, 1] \subseteq \bigcup_{i=0}^{n} U_i \}\),
 \(\text{dom}(HB_0) := \{(U_i)_i : [0, 1] \subseteq \bigcup_{i=0}^{\infty} U_i \}\).

- **HB\(_1\)**: \(\subseteq O([0, 1])^\mathbb{N} \Rightarrow [0, 1], (U_i)_i \mapsto [0, 1] \setminus \bigcup_{i=0}^{\infty} U_i\),
 \(\text{dom}(HB_1) := \{(U_i)_i : (\forall n) [0, 1] \not\subseteq \bigcup_{i=0}^{n} U_i \}\).

The set \(O(X)\) of open subsets of \(X\) is represented as \(A_-(X)\), using complements.

Proposition

HB\(_0\) \(\equiv_W \text{id}\) is computable HB\(_1\) \(\equiv_W \text{WKL} \equiv_W C_2^\mathbb{N}\).
The Heine-Borel Theorem

Theorem (Heine-Borel)

Every countable open cover \((U_i)_i\) of the unit interval \([0, 1]\) has a finite subcover.

Two different logical formalizations:

- **\(\text{HB}_0\)**: \(\subseteq \mathcal{O}([0, 1])^\mathbb{N} \Rightarrow \mathbb{N}, (U_i)_i \mapsto \{n \in \mathbb{N} : [0, 1] \subseteq \bigcup_{i=0}^{n} U_i\}\),
 \(\text{dom}(\text{HB}_0) := \{(U_i)_i : [0, 1] \subseteq \bigcup_{i=0}^{\infty} U_i\}\).

- **\(\text{HB}_1\)**: \(\subseteq \mathcal{O}([0, 1])^\mathbb{N} \Rightarrow [0, 1], (U_i)_i \mapsto [0, 1] \setminus \bigcup_{i=0}^{\infty} U_i\),
 \(\text{dom}(\text{HB}_1) := \{(U_i)_i : (\forall n) [0, 1] \not\subseteq \bigcup_{i=0}^{n} U_i\}\).

The set \(\mathcal{O}(X)\) of open subsets of \(X\) is represented as \(\mathcal{A}_-(X)\), using complements.

Proposition

\(\text{HB}_0 \equiv_{\mathsf{W}} \text{id} \) is computable \(\text{HB}_1 \equiv_{\mathsf{W}} \text{WKL} \equiv_{\mathsf{W}} C_{2^\mathbb{N}}\).
Theorem (Brouwer Fixed Point Theorem)

Every continuous map $f : [0, 1]^n \rightarrow [0, 1]^n$ *has a fixed point* $x \in [0, 1]^n$, *i.e.*, $f(x) = x$.

- **BFT**$_n : C([0, 1]^n, [0, 1]^n) \Rightarrow [0, 1]^n, f \mapsto \{x : f(x) = x\}$.

- **Connected Choice** $CC_X : \subseteq A_\perp(X) \Rightarrow X, A \mapsto A$ *is the restriction of closed choice* C_X *to connected sets.*

Theorem (B., Le Roux and Pauly 2012)

$BFT_n \equiv_{SW} CC_{[0,1]^n}$ *for all* $n \in \mathbb{N}$.
Theorem (Brouwer Fixed Point Theorem)

Every continuous map \(f : [0, 1]^n \to [0, 1]^n \) has a fixed point \(x \in [0, 1]^n \), i.e., \(f(x) = x \).

\[\text{BFT}_n : C([0, 1]^n, [0, 1]^n) \ni [0, 1]^n, f \mapsto \{ x : f(x) = x \}. \]

Connected Choice \(\text{CC}_X : \subseteq A_\perp(X) \ni X, A \mapsto A \) is the restriction of closed choice \(C_X \) to connected sets.

Theorem (B., Le Roux and Pauly 2012)

\[\text{BFT}_n \equiv_{\text{SW}} \text{CC}_{[0,1]^n} \text{ for all } n \in \mathbb{N}. \]
The Brouwer Fixed Point Theorem

Theorem (Brouwer Fixed Point Theorem)

Every continuous map \(f : [0, 1]^n \to [0, 1]^n \) *has a fixed point* \(x \in [0, 1]^n \), *i.e.,* \(f(x) = x \).

- **BFT\(_n\)** : \(C([0, 1]^n, [0, 1]^n) \supseteq [0, 1]^n, f \mapsto \{ x : f(x) = x \} \).
- **Connected Choice** \(CC_X : \subseteq A _ (X) \supseteq X, A \mapsto A \) *is the restriction of closed choice* \(C_X \) *to connected sets.*

Theorem (B., Le Roux and Pauly 2012)

\[\text{BFT}_n \equiv_{\text{sw}} \text{CC}_{[0,1]^n} \text{ for all } n \in \mathbb{N}. \]
The Brouwer Fixed Point Theorem

Theorem (Brouwer Fixed Point Theorem)

Every continuous map $f : [0, 1]^n \rightarrow [0, 1]^n$ has a fixed point $x \in [0, 1]^n$, i.e., $f(x) = x$.

- $\text{BFT}_n : C([0, 1]^n, [0, 1]^n) \Rightarrow [0, 1]^n, f \mapsto \{x : f(x) = x\}$.
- **Connected Choice** $\text{CC}_X : \subseteq A_\bot(X) \Rightarrow X, A \mapsto A$ is the restriction of closed choice C_X to connected sets.

Theorem (B., Le Roux and Pauly 2012)

$\text{BFT}_n \equiv_{\text{sw}} \text{CC}_{[0,1]^n}$ for all $n \in \mathbb{N}$.
Proposition (B., Le Roux and Pauly 2012)

The map

\[A \mapsto (A \times [0, 1] \times \{0\}) \cup (A \times A \times [0, 1]) \cup ([0, 1] \times A \times \{1\}) \]

is computable and maps any non-empty closed \(A \subseteq [0, 1] \) to a connected non-empty closed \(A \subseteq [0, 1]^3 \).

Theorem (B., Le Roux, J.S. Miller and Pauly 2012)

\[CC_{[0,1]^n} \equiv_{sW} C_{[0,1]} \equiv_{sW} C_{2^\mathbb{N}} \text{ for all } n \geq 2. \]

The proof for \(n \geq 3 \) follows from the Proposition, but the case \(n = 2 \) needs a more involved and completely different construction due to J.S. Miller.
Proposition (B., Le Roux and Pauly 2012)

The map

\[A \mapsto (A \times [0, 1] \times \{0\}) \cup (A \times A \times [0, 1]) \cup ([0, 1] \times A \times \{1\}) \]

is computable and maps any non-empty closed \(A \subseteq [0, 1] \) to a connected non-empty closed \(A \subseteq [0, 1]^3 \).

Theorem (B., Le Roux, J.S. Miller and Pauly 2012)

\(\text{CC}_{[0,1]^n} \equiv_{\text{SW}} \text{C}_{[0,1]} \equiv_{\text{SW}} \text{C}_{2^\mathbb{N}} \) for all \(n \geq 2 \).

The proof for \(n \geq 3 \) follows from the Proposition, but the case \(n = 2 \) needs a more involved and completely different construction due to J.S. Miller.
Proposition (B., Le Roux and Pauly 2012)

The map

\[A \mapsto (A \times [0, 1] \times \{0\}) \cup (A \times A \times [0, 1]) \cup ([0, 1] \times A \times \{1\}) \]

is computable and maps any non-empty closed \(A \subseteq [0, 1] \) to a connected non-empty closed \(A \subseteq [0, 1]^3 \).

Theorem (B., Le Roux, J.S. Miller and Pauly 2012)

\(\text{CC}_{[0,1]^n} \equiv_{\text{SW}} \text{C}_{[0,1]} \equiv_{\text{SW}} \text{C}_{2^\mathbb{N}} \) for all \(n \geq 2 \).

The proof for \(n \geq 3 \) follows from the Proposition, but the case \(n = 2 \) needs a more involved and completely different construction due to J.S. Miller.
The Brouwer Fixed Point Theorem

<table>
<thead>
<tr>
<th>Corollary (B., Le Roux, J.S. Miller, Pauly 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{BFT}n \equiv{sW} C_{2^N}$ for all $n \geq 2$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary (Baigger 1985, Orevkov 1963)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists a computable function $f : [0, 1]^n \rightarrow [0, 1]^n$ that has no computable fixed point $x \in [0, 1]^n$ for every $n \geq 2$.**</td>
</tr>
</tbody>
</table>

However, there is always a low fixed point.

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists a non-empty connected co-c.e. closed subset $A \subseteq [0, 1]^n$ without computable point for every $n \geq 2$.**</td>
</tr>
</tbody>
</table>
The Brouwer Fixed Point Theorem

Corollary (B., Le Roux, J.S. Miller, Pauly 2012)

\[\text{BFT}_n \equiv_{sW} C_{2^N} \text{ for all } n \geq 2. \]

Corollary (Baigger 1985, Orevkov 1963)

There exists a computable function \(f : [0, 1]^n \to [0, 1]^n \) that has no computable fixed point \(x \in [0, 1]^n \) for every \(n \geq 2 \).

However, there is always a low fixed point.

Corollary

There exists a non-empty connected co-c.e. closed subset \(A \subseteq [0, 1]^n \) without computable point for every \(n \geq 2 \).
The Brouwer Fixed Point Theorem

Corollary (B., Le Roux, J.S. Miller, Pauly 2012)

\[\text{BFT}_n \equiv_{\text{SW}} C_{2^N} \text{ for all } n \geq 2. \]

Corollary (Baigger 1985, Orevkov 1963)

There exists a computable function \(f : [0, 1]^n \rightarrow [0, 1]^n \) that has no computable fixed point \(x \in [0, 1]^n \) for every \(n \geq 2 \).

However, there is always a low fixed point.

Corollary

There exists a non-empty connected co-c.e. closed subset \(A \subseteq [0, 1]^n \) without computable point for every \(n \geq 2 \).
The Intermediate Value Theorem

Theorem (B. and Gherardi 2011)

\[\text{IVT} \equiv_{sW} \text{CC}_{[0,1]} \]

Corollary

\[\hat{\text{IVT}} \equiv_{sW} \text{WKL} \]

Corollary (Pour-El and Richards 1989)

There are computable \(f_n : [0, 1] \to \mathbb{R} \) with \(f_n(0) \cdot f_n(1) < 0 \) and without computable \(x_n \in [0, 1] \) such that \(f_n(x_n) = 0 \) for all \(n \in \mathbb{N} \).

Corollary (B. and Gherardi 2011)

\[\text{IVT} \upharpoonright_{\text{W}} \text{BCT}_1 \]

“The Baire Category Theorem proves that the Baire Category Theorem does not compute the Intermediate Value Theorem.”
The Intermediate Value Theorem

Theorem (B. and Gherardi 2011)

\[\text{IVT} \equiv_{SW} \text{CC}_{[0,1]} \]

Corollary

\[\widehat{\text{IVT}} \equiv_{SW} \text{WKL} \]

Corollary (Pour-El and Richards 1989)

There are computable \(f_n : [0, 1] \to \mathbb{R} \) with \(f_n(0) \cdot f_n(1) < 0 \) and without computable \(x_n \in [0, 1] \) such that \(f_n(x_n) = 0 \) for all \(n \in \mathbb{N} \).

Corollary (B. and Gherardi 2011)

\[\text{IVT} \mid_{W} \text{BCT}_1 \]

“The Baire Category Theorem proves that the Baire Category Theorem does not compute the Intermediate Value Theorem.”
The Intermediate Value Theorem

Theorem (B. and Gherardi 2011)

$\text{IVT} \equiv_{sW} \text{CC}_{[0,1]}$.

Corollary

$\hat{\text{IVT}} \equiv_{sW} \text{WKL}$.

Corollary (Pour-El and Richards 1989)

There are computable $f_n : [0, 1] \rightarrow \mathbb{R}$ with $f_n(0) \cdot f_n(1) < 0$ and without computable $x_n \in [0, 1]$ such that $f_n(x_n) = 0$ for all $n \in \mathbb{N}$.

Corollary (B. and Gherardi 2011)

$\text{IVT} \models_{W} \text{BCT}_1$.

“The Baire Category Theorem proves that the Baire Category Theorem does not compute the Intermediate Value Theorem.”
The Intermediate Value Theorem

Theorem (B. and Gherardi 2011)

\[\text{IVT} \equiv_{\text{SW}} \text{CC}_{[0,1]} \]

Corollary

\[\widehat{\text{IVT}} \equiv_{\text{SW}} \text{WKL} \]

Corollary (Pour-El and Richards 1989)

There are computable \(f_n : [0, 1] \to \mathbb{R} \) with \(f_n(0) \cdot f_n(1) < 0 \) and without computable \(x_n \in [0, 1] \) such that \(f_n(x_n) = 0 \) for all \(n \in \mathbb{N} \).

Corollary (B. and Gherardi 2011)

\[\text{IVT} \models_{\text{W}} \text{BCT}_1 \]

“The Baire Category Theorem proves that the Baire Category Theorem does not compute the Intermediate Value Theorem.”
Frostman’s Lemma is a result from geometric measure theory that guarantees the existence of certain measures that are supported on a given closed set.

Theorem (Fouché and Pauly 2015)

The following problems and theorems are Weihrauch equivalent:

- The choice problem C_R on Euclidean space \mathbb{R}.
- Frostman’s Lemma.

All members of the equivalence class share the following features:

- All members map computable inputs to (some) low outputs.
- All members are neither uniformly nor non-uniformly computable.
- All members are non-deterministically computable with finite mind changes.
- All members are closed under composition and not parallelizable.

Problem

Suggest other natural theorems equivalent to C_R!
Frostman’s Lemma is a result from geometric measure theory that guarantees the existence of certain measures that are supported on a given closed set.

Theorem (Fouché and Pauly 2015)

The following problems and theorems are Weihrauch equivalent:

- The choice problem $\mathcal{C}_\mathbb{R}$ on Euclidean space \mathbb{R}.
- Frostman’s Lemma.

All members of the equivalence class share the following features:

- All members map computable inputs to (some) low outputs.
- All members are neither uniformly nor non-uniformly computable.
- All members are non-deterministically computable with finite mind changes.
- All members are closed under composition and not parallelizable.

Problem

Suggest other natural theorems equivalent to $\mathcal{C}_\mathbb{R}$!
Frostman’s Lemma is a result from geometric measure theory that guarantees the existence of certain measures that are supported on a given closed set.

Theorem (Fouché and Pauly 2015)

The following problems and theorems are Weihrauch equivalent:

- The choice problem $C_\mathbb{R}$ on Euclidean space \mathbb{R}.
- Frostman’s Lemma.

All members of the equivalence class share the following features:

- All members map computable inputs to (some) low outputs.
- All members are neither uniformly nor non-uniformly computable.
- All members are non-deterministically computable with finite mind changes.
- All members are closed under composition and not parallelizable.

Problem

Suggest other natural theorems equivalent to $C_\mathbb{R}$!
Unique Choice

Unique Choice \(UC_X : \subseteq A_-(X) \Rightarrow X \) is the restriction of closed choice \(C_X \) to

\[
\text{dom}(UC_X) := \{ A \subseteq X : |A| = 1 \}.
\]

Proposition (B., Gherardi and Marcone 2012)

\(UC_N \equiv_{sW} C_N \).

Corollary (B., de Brecht and Pauly 2012)

\(UC_{2^N} \equiv_{sW} \text{id} \) and \(UC_{R} \equiv_{sW} C_N \).

Follows with the help of elimination of \(C_{2^N} \) for single-valued functions.
Unique Choice

- Unique Choice $UC_X : \subseteq A_-(X) \Rightarrow X$ is the restriction of closed choice C_X to

$$\text{dom}(UC_X) := \{ A \subseteq X : |A| = 1 \}.$$

Proposition (B., Gherardi and Marcone 2012)

$UC_N \equiv_{SW} C_N.$

Corollary (B., de Brecht and Pauly 2012)

$UC_{2N} \equiv_{SW} \text{id}$ and $UC_R \equiv_{SW} C_N.$

Follows with the help of elimination of C_{2N} for single-valued functions.
Unique Choice

- **Unique Choice** $\text{UC}_X : \subseteq A_-(X) \Rightarrow X$ is the restriction of closed choice C_X to

 $$\text{dom}(\text{UC}_X) := \{ A \subseteq X : |A| = 1 \}.$$

Proposition (B., Gherardi and Marcone 2012)

$\text{UC}_N \equiv_{sW} C_N$.

Corollary (B., de Brecht and Pauly 2012)

$\text{UC}_{2N} \equiv_{sW} \text{id}$ and $\text{UC}_R \equiv_{sW} C_N$.

Follows with the help of elimination of C_{2N} for single-valued functions.
All or Unique Choice and Robust Division

- **All-or-Unique Choice** \(\text{AUC}_X : \subseteq \mathcal{A}_-(X) \Rightarrow X, A \mapsto A \) is the restriction of closed choice \(\mathcal{C}_X \) to

 \[
 \text{dom} (\text{AUC}_X) := \{ A \subseteq X : A = X \text{ or } |A| = 1 \}.
 \]

- \(\text{AUC}_N \equiv_{SW} \mathcal{C}_N \).

- **Robust Division** is the mathematical problem

 \[
 \text{RDIV} : [0, 1] \times [0, 1] \Rightarrow [0, 1], (x, y) \mapsto \begin{cases} \{ \frac{x}{\max(x,y)} \} & \text{if } y \neq 0 \\ [0, 1] & \text{if } y = 0 \end{cases}
 \]

- Robust division \(\text{RDIV} \) can be used to solve linear equations in compact domains: \(ax = b \).

- Likewise \(\text{RDIV}^* \) can be used to solve linear equations in compact domain of arbitrary finite dimension.

Proposition

\[
\text{RDIV} \equiv_{SW} \text{AUC}_{[0,1]}
\]
All or Unique Choice and Robust Division

- **All-or-Unique Choice** $\text{AUC}_X : \subseteq \mathcal{A}_-(X) \ni X, A \mapsto A$ is the restriction of closed choice C_X to
 $$\text{dom}(\text{AUC}_X) := \{ A \subseteq X : A = X \text{ or } |A| = 1 \}.$$

- \(AUC_N \equiv_{sW} C_N \).

- **Robust Division** is the mathematical problem
 $$\text{RDIV} : [0, 1] \times [0, 1] \Rightarrow [0, 1], (x, y) \mapsto \begin{cases} \left\{ \frac{x}{\max(x, y)} \right\} & \text{if } y \neq 0 \\ [0, 1] & \text{if } y = 0 \end{cases}$$

- Robust division RDIV can be used to solve linear equations in compact domains: $ax = b$.

- Likewise RDIV^* can be used to solve linear equations in compact domain of arbitrary finite dimension.

Proposition

$$\text{RDIV} \equiv_{sW} \text{AUC}_{[0,1]}.$$
All or Unique Choice and Robust Division

- All-or-Unique Choice $AUC_X \subseteq A_\bot(X) \Rightarrow X, A \mapsto A$ is the restriction of closed choice C_X to

$$\text{dom}(AUC_X) := \{A \subseteq X : A = X \text{ or } |A| = 1\}.$$

- $AUC_N \equiv_{sW} C_N$.

- Robust Division is the mathematical problem

$$\text{RDIV} : [0, 1] \times [0, 1] \Rightarrow [0, 1], (x, y) \mapsto \begin{cases} \frac{x}{\max(x, y)} & \text{if } y \neq 0 \\ [0, 1] & \text{if } y = 0 \end{cases}$$

- Robust division RDIV can be used to solve linear equations in compact domains: $ax = b$.

- Likewise RDIV^* can be used to solve linear equations in compact domain of arbitrary finite dimension.

Proposition

$\text{RDIV} \equiv_{sW} AUC_{[0,1]}$.
All or Unique Choice and Robust Division

- **All-or-Unique Choice** $\text{AUC}_X : \subseteq \mathcal{A}_-(X) \ni X, A \mapsto A$ is the restriction of closed choice C_X to

 \[
 \text{dom}(\text{AUC}_X) := \{ A \subseteq X : A = X \text{ or } |A| = 1 \}.
 \]

- $\text{AUC}_N \equiv_{sW} C_N$.

- **Robust Division** is the mathematical problem

 \[
 \text{RDIV} : [0, 1] \times [0, 1] \ni [0, 1], (x, y) \mapsto \begin{cases} \{ \frac{x}{\max(x, y)} \} & \text{if } y \neq 0 \\ [0, 1] & \text{if } y = 0 \end{cases}
 \]

- Robust division RDIV can be used to solve linear equations in compact domains: $ax = b$.

- Likewise RDIV^* can be used to solve linear equations in compact domain of arbitrary finite dimension.

Proposition

$\text{RDIV} \equiv_{sW} \text{AUC}_{[0,1]}$.
All or Unique Choice and Robust Division

- **All-or-Unique Choice** \(\text{AUC}_X \subseteq \mathcal{A}(X) \Rightarrow X, A \mapsto A \) is the restriction of closed choice \(C_X \) to

\[\text{dom}(\text{AUC}_X) := \{ A \subseteq X : A = X \text{ or } |A| = 1 \} \]

- \(\text{AUC}_N \equiv_{\text{SW}} C_N \).

- **Robust Division** is the mathematical problem

\[\text{RDIV} : [0, 1] \times [0, 1] \Rightarrow [0, 1], (x, y) \mapsto \begin{cases} \frac{x}{\max(x, y)} & \text{if } y \neq 0 \\ [0, 1] & \text{if } y = 0 \end{cases} \]

- Robust division \(\text{RDIV} \) can be used to solve linear equations in compact domains: \(ax = b \).

- Likewise \(\text{RDIV}^* \) can be used to solve linear equations in compact domain of arbitrary finite dimension.

Proposition

\(\text{RDIV} \equiv_{\text{SW}} \text{AUC}_{[0, 1]} \).
Nash Equilibria

- A bi-matrix game is a pair $A, B \in \mathbb{R}^{m \times n}$ of $m \times n$–matrices.
- A vector $s = (s_1, ..., s_m) \in \mathbb{R}^m$ with $s_i \geq 0$ for all $i = 1, ..., m$ and $\sum_{j=1}^{m} s_j = 1$ is called a mixed strategy.
- By S^m we denote the set of mixed strategies of dimension m.
- A Nash equilibrium is a pair $(x, y) \in S^n \times S^m$ such that $(\forall w \in S^n) x^T Ay \geq w^T Ay$ and $(\forall z \in S^m) x^T Bz \geq x^T Bz$.

Theorem (Nash 1951)

Every bi-matrix game admits a Nash equilibrium.

- $NASH_{n,m} : \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \Rightarrow \mathbb{R}^n \times \mathbb{R}^m$, where $(A, B) \mapsto \{(x, y) : (x, y) \text{ is a Nash equilibrium for } (A, B)\}$.
- $NASH := \bigcup_{n,m \in \mathbb{N}} NASH_{n,m}$.

Theorem (Pauly 2010)

$NASH \equiv_w RDIV^* \equiv_w AUC^*_{[0,1]}$.
Nash Equilibria

▶ A **bi-matrix game** is a pair \(A, B \in \mathbb{R}^{m \times n} \) of \(m \times n \)-matrices.

▶ A vector \(s = (s_1, \ldots, s_m) \in \mathbb{R}^m \) with \(s_i \geq 0 \) for all \(i = 1, \ldots, m \) and \(\sum_{j=1}^{m} s_j = 1 \) is called a **mixed strategy**.

▶ By \(S^m \) we denote the set of mixed strategies of dimension \(m \).

▶ A **Nash equilibrium** is a pair \((x, y) \in S^n \times S^m\) such that \((\forall w \in S^n) x^T Ay \geq w^T Ay\) and \((\forall z \in S^m) x^T By \geq x^T Bz\).

Theorem (Nash 1951)

Every bi-matrix game admits a Nash equilibrium.

▶ \(\text{NASH}_{n,m} : \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \Rightarrow \mathbb{R}^n \times \mathbb{R}^m \), where

\((A, B) \mapsto \{(x, y) : (x, y) \text{ is a Nash equilibrium for } (A, B)\}\).

▶ \(\text{NASH} := \bigsqcup_{n,m \in \mathbb{N}} \text{NASH}_{n,m} \).

Theorem (Pauly 2010)

\(\text{NASH} \equiv W \text{ RDIV}^* \equiv W \text{ AUC}^*[0,1] \).
A bi-matrix game is a pair $A, B \in \mathbb{R}^{m \times n}$ of $m \times n$–matrices.

A vector $s = (s_1, \ldots, s_m) \in \mathbb{R}^m$ with $s_i \geq 0$ for all $i = 1, \ldots, m$ and $\sum_{j=1}^{m} s_j = 1$ is called a mixed strategy.

By S^m we denote the set of mixed strategies of dimension m.

A Nash equilibrium is a pair $(x, y) \in S^n \times S^m$ such that $(\forall w \in S^n) \ x^T Ay \geq w^T Ay$ and $(\forall z \in S^m) \ x^T By \geq x^T Bz$.

Theorem (Nash 1951)

Every bi-matrix game admits a Nash equilibrium.

Theorem (Pauly 2010)

$\text{NASH} \equiv W \text{RDIV}^* \equiv W \text{AUC}^*_{[0,1]}.$
A bi-matrix game is a pair $A, B \in \mathbb{R}^{m \times n}$ of $m \times n$–matrices.

A vector $s = (s_1, \ldots, s_m) \in \mathbb{R}^m$ with $s_i \geq 0$ for all $i = 1, \ldots, m$ and $\sum_{j=1}^{m} s_j = 1$ is called a mixed strategy.

By S^m we denote the set of mixed strategies of dimension m.

A Nash equilibrium is a pair $(x, y) \in S^n \times S^m$ such that $(\forall w \in S^n) x^T Ay \geq w^T Ay$ and $(\forall z \in S^m) x^T By \geq x^T Bz$.

Theorem (Nash 1951)

Every bi-matrix game admits a Nash equilibrium.

$\text{NASH}_{n,m} : \mathbb{R}^{m \times n} \times \mathbb{R}^{m \times n} \rightarrow \mathbb{R}^n \times \mathbb{R}^m$, where $(A, B) \mapsto \{(x, y) : (x, y) \text{ is a Nash equilibrium for } (A, B)\}$.

$\text{NASH} := \bigsqcup_{n, m \in \mathbb{N}} \text{NASH}_{n,m}$.

Theorem (Pauly 2010)

$\text{NASH} \equiv \text{W} \text{RDIV}^* \equiv \text{W} \text{AUC}^*_{[0,1]}$.
A Las Vegas Algorithm for Robust Division

Proposition

Robust division RDIV is Las Vegas computable.

1. Given $x, y \in [0, 1]$ and a random advice $r \in [0, 1]$, we aim to compute the fraction $z = \frac{x}{\max(x, y)}$.
2. We guess that r is a correct solution, i.e., $r = z$ if $y > 0$, and we produce approximations of r (rational intervals $(a, b) \ni r$).
3. Simultaneously, we try to find out whether $y > 0$, which we will eventually recognize, if this is correct.
4. If we find that $y > 0$, then we can compute the true result $z = \frac{x}{\max(x, y)}$ and produce approximations of it.
5. If at some stage we find that the best approximation (a, b) of r that was already produced as output is incompatible with z, i.e., if $z \not\in (a, b)$, then we indicate a failure.

Corollary

$\text{NASH} \equiv_w \text{RDIV}^* \leq_w \text{WWKL}$.
Proposition

Robust division RDIV is Las Vegas computable.

1. Given $x, y \in [0, 1]$ and a random advice $r \in [0, 1]$, we aim to compute the fraction $z = \frac{x}{\max(x, y)}$.
2. We guess that r is a correct solution, i.e., $r = z$ if $y > 0$, and we produce approximations of r (rational intervals $(a, b) \ni r$).
3. Simultaneously, we try to find out whether $y > 0$, which we will eventually recognize, if this is correct.
4. If we find that $y > 0$, then we can compute the true result $z = \frac{x}{\max(x, y)}$ and produce approximations of it.
5. If at some stage we find that the best approximation (a, b) of r that was already produced as output is incompatible with z, i.e., if $z \notin (a, b)$, then we indicate a failure.

Corollary

$\text{NASH} \equiv_{W} \text{RDIV}^* \leq_{W} \text{WWKL}$.
A Probabilistic Algorithm for Zero Finding

1. A continuous function $f : [0, 1] \rightarrow \mathbb{R}$ with $f(0) \cdot f(1) < 0$ is given as input.

2. Guess a binary sequence or, equivalently, a bit $b \in \{0, 1\}$ and a point $x \in [0, 1]$.

3. Interpret the guess $b = 1$ such that the zero set $f^{-1}\{0\}$ contains no open intervals and use the trisection method to compute a zero $z \in [0, 1]$ with $f(z) = 0$ in this case (disregarding x).

4. Interpret the guess $b = 0$ such that the zero set $f^{-1}\{0\}$ does contain an open interval and check whether $f(x) = 0$ in this case. Stop after finite time if this test fails and output x otherwise.

Warning: This is not a Las Vegas algorithm! But it yields:

Theorem

$\text{IVT} \leq_w \text{WWKL}'$.
A Probabilistic Algorithm for Zero Finding

1. A continuous function $f : [0, 1] \rightarrow \mathbb{R}$ with $f(0) \cdot f(1) < 0$ is given as input.

2. Guess a binary sequence or, equivalently, a bit $b \in \{0, 1\}$ and a point $x \in [0, 1]$.

3. Interpret the guess $b = 1$ such that the zero set $f^{-1}\{0\}$ contains no open intervals and use the trisection method to compute a zero $z \in [0, 1]$ with $f(z) = 0$ in this case (disregarding x).

4. Interpret the guess $b = 0$ such that the zero set $f^{-1}\{0\}$ does contain an open interval and check whether $f(x) = 0$ in this case. Stop after finite time if this test fails and output x otherwise.

Warning: This is not a Las Vegas algorithm! But it yields:

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVT \leq_W WWKL'</td>
</tr>
</tbody>
</table>

64 / 120
There is no Las Vegas Algorithm for Zero Finding

Theorem

$\text{IVT} \not\leq_W \text{WWKL}.$

Proof. (Idea) The proof is based on a finite extension construction: under the assumption that there is an algorithm for the reduction, one can create an instance (a function f) by finite extension that forces the reduction to translate this function into a tree that has measure zero.

Corollary

$\text{IVT} |_W \text{WWKL}.$

The inverse result $\text{WWKL} \not\leq_W \text{IVT}$ is easy to see: IVT maps computable inputs to computable outputs, WWKL does not.
There is no Las Vegas Algorithm for Zero Finding

Theorem

\[\text{IVT} \not\leq_W \text{WWKL}. \]

Proof. (Idea) The proof is based on a finite extension construction: under the assumption that there is an algorithm for the reduction, one can create an instance (a function \(f \)) by finite extension that forces the reduction to translate this function into a tree that has measure zero.

\[\square \]

Corollary

\[\text{IVT} \mid_W \text{WWKL}. \]

The inverse result \(\text{WWKL} \not\leq_W \text{IVT} \) is easy to see: \(\text{IVT} \) maps computable inputs to computable outputs, \(\text{WWKL} \) does not.
There is no Las Vegas Algorithm for Zero Finding

Theorem

\[\text{IVT} \not\leq_{W} \text{WWKL}. \]

Proof. (Idea) The proof is based on a finite extension construction: under the assumption that there is an algorithm for the reduction, one can create an instance (a function \(f \)) by finite extension that forces the reduction to translate this function into a tree that has measure zero. □

Corollary

\[\text{IVT} |_{W} \text{WWKL}. \]

The inverse result \(\text{WWKL} \not\leq_{W} \text{IVT} \) is easy to see: \(\text{IVT} \) maps computable inputs to computable outputs, \(\text{WWKL} \) does not.
<table>
<thead>
<tr>
<th>Proposition (B., Gherardi and Hölzl 2015)</th>
<th>(C_2 \times AUC_{[0,1]} \not\leq_W CC_{[0,1]}).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corollary (B., Le Roux and Pauly 2012)</td>
<td>(CC_{[0,1]} \equiv_W IVT) is not idempotent.</td>
</tr>
<tr>
<td></td>
<td>Also (AUC_{[0,1]}) is not idempotent. Since (C_2 \times AUC_{[0,1]} \leq_W AUC^*_{[0,1]}):</td>
</tr>
<tr>
<td>Corollary</td>
<td>(AUC^*{[0,1]} \not\leq_W CC{[0,1]}).</td>
</tr>
<tr>
<td>Corollary</td>
<td>(\text{NASH} \mid_W IVT).</td>
</tr>
<tr>
<td></td>
<td>Follows since (IVT \not\leq_W C_N) but (\text{NASH} \not\leq_W C_N).</td>
</tr>
<tr>
<td>Proposition (B., Gherardi and Hölzl 2015)</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
</tr>
<tr>
<td>$C_2 \times AUC_{[0,1]} \not\leq_W CC_{[0,1]}$.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary (B., Le Roux and Pauly 2012)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CC_{[0,1]} \equiv_W IVT$ is not idempotent.</td>
</tr>
</tbody>
</table>

Also $AUC_{[0,1]}$ is not idempotent. Since $C_2 \times AUC_{[0,1]} \leq_W AUC^*_{[0,1]}$:

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$AUC^*{[0,1]} \not\leq_W CC{[0,1]}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$NASH \mid_W IVT$.</td>
</tr>
</tbody>
</table>

Follows since $IVT \not\leq_W C_N$ but $NASH \not\leq_W C_N$.

Proposition (B., Gherardi and Hölzl 2015)
\[C_2 \times \text{AUC}_{[0,1]} \not\leq_{W} \text{CC}_{[0,1]} \].

Corollary (B., Le Roux and Pauly 2012)
\[\text{CC}_{[0,1]} \equiv W \text{IVT} \text{ is not idempotent.} \]

Also \(\text{AUC}_{[0,1]} \) is not idempotent. Since \(C_2 \times \text{AUC}_{[0,1]} \leq_{W} \text{AUC}^*_{[0,1]} \):

Corollary
\[\text{AUC}^*_{[0,1]} \not\leq_{W} \text{CC}_{[0,1]} \].

Corollary
\[\text{NASH} \mid_{W} \text{IVT}. \]

Follows since \(\text{IVT} \not\leq_{W} C_N \) but \(\text{NASH} \not\leq_{W} C_N \).
Proposition (B., Gherardi and Hölzl 2015)

\[C_2 \times \text{AUC}_{[0,1]} \not\leq \text{W} \text{CC}_{[0,1]} \].

Corollary (B., Le Roux and Pauly 2012)

\[\text{CC}_{[0,1]} \equiv \text{W} \text{IVT} \text{ is not idempotent.} \]

Also \(\text{AUC}_{[0,1]} \) is not idempotent. Since \(C_2 \times \text{AUC}_{[0,1]} \leq \text{W} \text{AUC}^*_{[0,1]} \):

Corollary

\[\text{AUC}^*_{[0,1]} \not\leq \text{W} \text{CC}_{[0,1]} \].

Corollary

\[\text{NASH} \mid \text{W} \text{IVT} \].

Follows since \(\text{IVT} \not\leq \text{W} \text{C}_N \) but \(\text{NASH} \not\leq \text{W} \text{C}_N \).
Nash Equilibria and the Intermediate Value Theorem

\[\text{lim} \equiv_{sW} \hat{C}_N \]

\[C_R \equiv_{sW} C_N \times C_{2^N} \]

\[\text{WKL} \equiv_{sW} C_{2^N} \quad \text{BCT}_1 \equiv_{sW} C_N \]

\[\text{WWKL} \equiv_{sW} PC_{2^N} \]

\[\text{IVT} \equiv_{sW} CC_{[0,1]} \quad \text{NASH} \equiv_{sW} AUC^*_{[0,1]} \]

\[K_N \equiv_{sW} C_{2^*} \quad \text{RDIV} \equiv_{sW} AUC_{[0,1]} \]

\[\text{LLPO} \equiv_{sW} C_2 \]

\[\text{ACC}_N \]
All or Co-Unique Choice and Diagonal Non-Computability

- **All-or-Co-Unique Choice** $\text{ACC}_X : \subseteq A_\rightarrow(X) \Rightarrow X, A \mapsto A$ is the restriction of closed choice C_X to

$$\text{dom}(\text{ACC}_X) := \{ A \subseteq X : A = X \text{ or } |X \setminus A| = 1 \}.$$

- $\text{ACC}_X \equiv_{sW} \text{id}$ for perfect computable metric spaces.
- $\text{ACC}_2 = C_2$ and $\text{ACC}_n \equiv_{sW} \text{LLPO}_n$ for $n \geq 2$.

Proposition (Weihrauch 1992)

$\text{ACC}_{n+1} <_W \text{ACC}_n$ for all $n \geq 2$.

- **Diagonally non-computable functions** for $X \subseteq \mathbb{N}$:

$\text{DNC}_X : \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}, p \mapsto \{ q \in \mathbb{N}^\mathbb{N} : (\forall n) \varphi^p_n(n) \neq q(n) \}$.

Theorem (Higuchi, Kihara 2014 and B., Hendtlass, Kreuzer 2015)

$\text{DNC}_n \equiv_{sW} \text{ACC}_n$ for all $n \geq 2$ and $\text{DNC}_\mathbb{N} \equiv_{sW} \text{ACC}_\mathbb{N}$.

Corollary (Jockusch 1989)

$\text{DNC}_\mathbb{N} <_W \text{DNC}_{n+1} <_W \text{DNC}_n$ for all $n \geq 2$.

68 / 120
All or Co-Unique Choice and Diagonal Non-Computability

- **All-or-Co-Unique Choice** $\text{ACC}_X \subseteq A_-(X) \Rightarrow X, A \mapsto A$ is the restriction of closed choice C_X to
 \[
 \text{dom}(\text{ACC}_X) := \{A \subseteq X : A = X \text{ or } |X \setminus A| = 1\}.
 \]
- **ACC$_X$** $\equiv_{sW} \text{id}$ for perfect computable metric spaces.
- **ACC$_2 = C_2$** and **ACC$_n \equiv_{sW} \text{LLPO}_n$** for $n \geq 2$.

Proposition (Weihrauch 1992)

$\text{ACC}_{n+1} <_W \text{ACC}_n$ for all $n \geq 2$.

- Diagonally non-computable functions for $X \subseteq \mathbb{N}$:
 $\text{DNC}_X : \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}, p \mapsto \{q \in \mathbb{N}^\mathbb{N} : (\forall n) \varphi^p_n(n) \neq q(n)\}$.

Theorem (Higuchi, Kihara 2014 and B., Hendtlass, Kreuzer 2015)

$\text{DNC}_n \equiv_{sW} \overline{\text{ACC}}_n$ for all $n \geq 2$ and $\text{DNC}_\mathbb{N} \equiv_{sW} \overline{\text{ACC}}_\mathbb{N}$.

Corollary (Jockusch 1989)

$\text{DNC}_\mathbb{N} <_W \text{DNC}_{n+1} <_W \text{DNC}_n$ for all $n \geq 2$.
All or Co-Unique Choice and Diagonal Non-Computability

- All-or-Co-Unique Choice $\text{ACC}_X : \subseteq \mathcal{A}(X) \Rightarrow X$, $A \mapsto A$ is the restriction of closed choice C_X to
 $$\text{dom}(\text{ACC}_X) := \{A \subseteq X : A = X \text{ or } |X \setminus A| = 1\}.$$
- $\text{ACC}_X \equiv_{s\mathcal{W}} \text{id}$ for perfect computable metric spaces.
- $\text{ACC}_2 = C_2$ and $\text{ACC}_n \equiv_{s\mathcal{W}} \text{LLPO}_n$ for $n \geq 2$.

Proposition (Weihrauch 1992)

$\text{ACC}_{n+1} <_W \text{ACC}_n$ for all $n \geq 2$.

- Diagonally non-computable functions for $X \subseteq \mathbb{N}$:
 $$\text{DNC}_X : \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}, p \mapsto \{q \in \mathbb{N}^\mathbb{N} : (\forall n) \varphi_n^p(n) \neq q(n)\}.$$

Theorem (Higuchi, Kihara 2014 and B., Hendtlass, Kreuzer 2015)

$\text{DNC}_n \equiv_{s\mathcal{W}} \widehat{\text{ACC}}_n$ for all $n \geq 2$ and $\text{DNC}_\mathbb{N} \equiv_{s\mathcal{W}} \widehat{\text{ACC}}_\mathbb{N}$.

Corollary (Jockusch 1989)

$\text{DNC}_\mathbb{N} <_W \text{DNC}_{n+1} <_W \text{DNC}_n$ for all $n \geq 2$.

68 / 120
All or Co-Unique Choice and Diagonal Non-Computability

- **All-or-Co-Unique Choice** $\text{ACC}_X : \subseteq A_-(X) \Rightarrow X, A \mapsto A$ is the restriction of closed choice C_X to
 \[\text{dom}(\text{ACC}_X) := \{ A \subseteq X : A = X \text{ or } |X \setminus A| = 1 \}. \]

- $\text{ACC}_X \equiv_{\text{sW}} \text{id}$ for perfect computable metric spaces.
- $\text{ACC}_2 = C_2$ and $\text{ACC}_n \equiv_{\text{sW}} \text{LLPO}_n$ for $n \geq 2$.

Proposition (Weihrauch 1992)

$\text{ACC}_{n+1} <_W \text{ACC}_n$ for all $n \geq 2$.

- **Diagonally non-computable functions** for $X \subseteq \mathbb{N}$:
 $\text{DNC}_X : \mathbb{N}^\mathbb{N} \Rightarrow X^\mathbb{N}, p \mapsto \{ q \in X^\mathbb{N} : (\forall n) \\varphi^p(n) \neq q(n) \}$.

Theorem (Higuchi, Kihara 2014 and B., Hendtlass, Kreuzer 2015)

$\text{DNC}_n \equiv_{\text{sW}} \widehat{\text{ACC}}_n$ for all $n \geq 2$ and $\text{DNC}_\mathbb{N} \equiv_{\text{sW}} \widehat{\text{ACC}}_\mathbb{N}$.

Corollary (Jockusch 1989)

$\text{DNC}_\mathbb{N} <_W \text{DNC}_{n+1} <_W \text{DNC}_n$ for all $n \geq 2$.

68 / 120
All or Co-Unique Choice and Diagonal Non-Computability

- **All-or-Co-Unique Choice** $\text{ACC}_X : \subseteq A_\perp(X) \Rightarrow X, A \mapsto A$ is the restriction of closed choice C_X to
 \[
 \text{dom}(\text{ACC}_X) := \{ A \subseteq X : A = X \text{ or } |X \setminus A| = 1 \}.
 \]
- $\text{ACC}_X \equiv_{sW} \text{id}$ for perfect computable metric spaces.
- $\text{ACC}_2 = C_2$ and $\text{ACC}_n \equiv_{sW} \text{LLPO}_n$ for $n \geq 2$.

Proposition (Weihrauch 1992)

$\text{ACC}_{n+1} <_W \text{ACC}_n$ for all $n \geq 2$.

- **Diagonally non-computable functions** for $X \subseteq \mathbb{N}$:
 $\text{DNC}_X : \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}, p \mapsto \{ q \in X^\mathbb{N} : (\forall n) \varphi^p(n) \neq q(n) \}$.

Theorem (Higuchi, Kihara 2014 and B., Hendtlass, Kreuzer 2015)

$\text{DNC}_n \equiv_{sW} \widehat{\text{ACC}_n}$ for all $n \geq 2$ and $\text{DNC}_\mathbb{N} \equiv_{sW} \widehat{\text{ACC}_\mathbb{N}}$.

Corollary (Jockusch 1989)

$\text{DNC}_\mathbb{N} <_W \text{DNC}_{n+1} <_W \text{DNC}_n$ for all $n \geq 2$.
All or Co-Unique Choice and Diagonal Non-Computability

- **All-or-Co-Unique Choice** \(\text{ACC}_X : \subseteq A_\neg(X) \Rightarrow X, A \mapsto A\) is the restriction of closed choice \(C_X\) to
 \[
 \text{dom}(\text{ACC}_X) := \{A \subseteq X : A = X \text{ or } |X \setminus A| = 1\}.
 \]
- **ACC\(_X\) \(\equiv\) sW id** for perfect computable metric spaces.
- **ACC\(_2 = C_2\) and ACC\(_n \equiv\) sW LLPO\(_n\)** for \(n \geq 2\).

Proposition (Weihrauch 1992)

\[\text{ACC}_{n+1} \prec_w \text{ACC}_n \text{ for all } n \geq 2.\]

- **Diagonally non-computable functions** for \(X \subseteq \mathbb{N}\):
 \(\text{DNC}_X : \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}, p \mapsto \{q \in \mathbb{N}^\mathbb{N} : (\forall n) \varphi^p_n(n) \neq q(n)\}\).

Theorem (Higuchi, Kihara 2014 and B., Hendtlass, Kreuzer 2015)

\[\text{DNC}_n \equiv\) sW \(\widehat{\text{ACC}}_n \text{ for all } n \geq 2 \text{ and } \text{DNC}_\mathbb{N} \equiv\) sW \(\widehat{\text{ACC}}_\mathbb{N}\).\]

Corollary (Jockusch 1989)

\[\text{DNC}_\mathbb{N} \prec_w \text{DNC}_{n+1} \prec_w \text{DNC}_n \text{ for all } n \geq 2.\]
▫ All-or-Co-Unique Choice $\text{ACC}_X : \subseteq A_-(X) \Rightarrow X, A \mapsto A$ is the restriction of closed choice C_X to
\[
\text{dom}(\text{ACC}_X) := \{ A \subseteq X : A = X \text{ or } |X \setminus A| = 1 \}.
\]
▫ $\text{ACC}_X \equiv_{\text{sW}} \text{id}$ for perfect computable metric spaces.
▫ $\text{ACC}_2 = C_2$ and $\text{ACC}_n \equiv_{\text{sW}} \text{LLPO}_n$ for $n \geq 2$.

Proposition (Weihrauch 1992)

$\text{ACC}_{n+1} \ll W \text{ ACC}_n$ for all $n \geq 2$.

▫ Diagonally non-computable functions for $X \subseteq \mathbb{N}$:
\[
\text{DNC}_X : \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N}, p \mapsto \{ q \in \mathbb{N}^\mathbb{N} : (\forall n) \varphi^P_n(n) \neq q(n) \}.
\]

Theorem (Higuchi, Kihara 2014 and B., Hendtlass, Kreuzer 2015)

$\text{DNC}_n \equiv_{\text{sW}} \widehat{\text{ACC}_n}$ for all $n \geq 2$ and $\text{DNC}_N \equiv_{\text{sW}} \widehat{\text{ACC}_N}$.

Corollary (Jockusch 1989)

$\text{DNC}_N \ll W \text{ DNC}_{n+1} \ll W \text{ DNC}_n$ for all $n \geq 2$.
PA, Diagonal Non-Computability and WKL

- **PA**: $\mathcal{D} \ni \mathcal{D}, a \leftrightarrow \{b : b \gg a\}$ is the problem of Peano arithmetic.

Corollary

$\text{PA} \prec W \text{DNC}_n$ for all $n \geq 2$.

- **WKL**$_n$ $\subseteq \text{Tr}_n \ni n^\mathbb{N}, T \leftrightarrow [T]$ denotes Weak König’s Lemma for big n–ary trees.

- A tree $T \subseteq n^* = \{0, 1, \ldots, n - 1\}^*$ is called big, if it satisfies the following condition: if w is a node of T which is on an infinite path, then all but at most one successor nodes are on an infinite path of T too.

Theorem (B., Hendtlass and Kreuzer 2015)

$\text{WKL}_n \equiv_{sW} \text{DNC}_n$ for all $n \geq 2$.
PA, Diagonal Non-Computability and WKL

- **PA**: $D \Rightarrow D$, $a \mapsto \{b : b \gg a\}$ is the problem of Peano arithmetic.

Corollary

$\text{PA} \prec_W \text{DNC}_n$ for all $n \geq 2$.

- **WKL$_n$**: $\subseteq \text{Tr}_n \Rightarrow n^\mathbb{N}$, $T \mapsto [T]$ denotes Weak König’s Lemma for big n-ary trees.

- A tree $T \subseteq n^* = \{0, 1, ..., n - 1\}^*$ is called big, if it satisfies the following condition: if w is a node of T which is on an infinite path, then all but at most one successor nodes are on an infinite path of T too.

Theorem (B., Hendtlass and Kreuzer 2015)

WKL$_n \equiv_{sW} \text{DNC}_n$ for all $n \geq 2$.
PA, Diagonal Non-Computability and WKL

▷ **PA**: $\mathcal{D} \ni \mathcal{D}, a \mapsto \{b : b \gg a\}$ is the problem of Peano arithmetic.

Corollary

$\text{PA} \prec_{W} \text{DNC}_n$ for all $n \geq 2$.

▷ **WKL**$_n : \subseteq \text{Tr}_n \ni n^\mathbb{N}, T \mapsto [T]$ denotes Weak Kőnig’s Lemma for big n–ary trees.

▷ A tree $T \subseteq n^* = \{0, 1, ..., n − 1\}^*$ is called big, if it satisfies the following condition: if w is a node of T which is on an infinite path, then all but at most one successor nodes are on an infinite path of T too.

Theorem (B., Hendtlass and Kreuzer 2015)

$\text{WKL}_n \equiv_{sW} \text{DNC}_n$ for all $n \geq 2$.
PA, Diagonal Non-Computability and WKL

- **PA**: $\mathcal{D} \implies \mathcal{D}, a \mapsto \{b : b \gg a\}$ is the problem of Peano arithmetic.

Corollary

$\text{PA} <_W \text{DNC}_n$ for all $n \geq 2$.

- **WKL**$_n$: $\subseteq \text{Tr}_n \implies n^\mathbb{N}, T \mapsto [T]$ denotes Weak Kőnig’s Lemma for big n–ary trees.
- A tree $T \subseteq n^* = \{0, 1, ..., n-1\}^*$ is called big, if it satisfies the following condition: if w is a node of T which is on an infinite path, then all but at most one successor nodes are on an infinite path of T too.

Theorem (B., Hendtlass and Kreuzer 2015)

$\text{WKL}_n \equiv_{sW} \text{DNC}_n$ for all $n \geq 2$.
\[
\text{lim} \equiv_{sW} \widehat{C_N}
\]

\[
\text{DNC}_2 \equiv_{sW} \text{WKL} \equiv_{sW} \widehat{\text{ACC}_2}
\]

\[
\text{DNC}_3 \equiv_{sW} \text{WKL}_3 \equiv_{sW} \widehat{\text{ACC}_3}
\]

\[
\text{DNC}_{n+1} \equiv_{sW} \text{WKL}_{n+1} \equiv_{sW} \widehat{\text{ACC}_{n+1}}
\]

\[
\text{PA} \rightarrow \text{DNC}_N \equiv_{sW} \widehat{\text{ACC}_N}
\]

\[
\text{NON} \rightarrow \text{ACC}_N
\]

\[
\text{C}_N \rightarrow \text{ACC}_2 \equiv_{sW} \text{LLPO}
\]

\[
\text{ACC}_3 \equiv_{sW} \text{LLPO}_3
\]

\[
\text{ACC}_{n+1} \equiv_{sW} \text{LLPO}_{n+1}
\]
Dense Realization and All or Co-Unique Choice

- $f : \subseteq X \Rightarrow Y$ is called densely realized, if $f^r(p)$ is dense in $\text{dom}(\delta_Y)$ for every $p \in \text{dom}(f \delta_X)$.
- f is densely realized if Y is densely represented, i.e., $\delta_Y^{-1}(y)$ is dense in $\text{dom}(\delta_Y)$ for every $y \in Y$.
- The set \mathcal{D} of Turing degrees with its standard representation $\delta_D : \mathbb{N}^\mathbb{N} \rightarrow \mathcal{D}, p \mapsto [p]$ is densely realized.
- In particular, every Π_2 statement that claims the existence of a Turing degree translates into a densely realized problem.
- $\text{PA} : \mathcal{D} \Rightarrow \mathcal{D}, a \mapsto \{ b : b \gg a \}$ is densely realized.
- $\text{NON} : \mathcal{D} \Rightarrow \mathcal{D}, a \mapsto \{ b : b \not\leq_T a \}$ is densely realized.

Proposition (B., Hendtlass and Kreuzer 2015)

If f is densely realized, then $\text{ACC}_N \not\leq_W f$.

- ACC_N is the weakest choice principles studied so far.
- All typical theorems from analysis are above ACC_N.

71 / 120
Dense Realization and All or Co-Unique Choice

1. $f : \subseteq X \Rightarrow Y$ is called densely realized, if $f^\uparrow(p)$ is dense in $\text{dom}(\delta_Y)$ for every $p \in \text{dom}(f \delta_X)$.

2. f is densely realized if Y is densely represented, i.e., $\delta_Y^{-1}(y)$ is dense in $\text{dom}(\delta_Y)$ for every $y \in Y$.

3. The set D of Turing degrees with its standard representation $\delta_D : \mathbb{N}^\mathbb{N} \rightarrow D, p \mapsto [p]$ is densely realized.

4. In particular, every Π_2 statement that claims the existence of a Turing degree translates into a densely realized problem.

5. PA : $D \Rightarrow D, a \mapsto \{b : b \gg a\}$ is densely realized.

6. NON : $D \Rightarrow D, a \mapsto \{b : b \not\leq_T a\}$ is densely realized.

Proposition (B., Hendtlass and Kreuzer 2015)

If f is densely realized, then $\text{ACC}_N \not\leq_W f$.

1. ACC_N is the weakest choice principles studied so far.

2. All typical theorems from analysis are above ACC_N.

Dense Realization and All or Co-Unique Choice

- \(f : \subseteq X \Rightarrow Y \) is called densely realized, if \(f^r(p) \) is dense in \(\text{dom}(\delta_Y) \) for every \(p \in \text{dom}(f \delta_X) \).
- \(f \) is densely realized if \(Y \) is densely represented, i.e., \(\delta_Y^{-1}(y) \) is dense in \(\text{dom}(\delta_Y) \) for every \(y \in Y \).
- The set \(D \) of Turing degrees with its standard representation \(\delta_D : \mathbb{N}^\mathbb{N} \rightarrow D, p \mapsto [p] \) is densely realized.
- In particular, every \(\Pi_2 \) statement that claims the existence of a Turing degree translates into a densely realized problem.
- PA : \(D \Rightarrow D, a \mapsto \{b : b \gg a\} \) is densely realized.
- NON : \(D \Rightarrow D, a \mapsto \{b : b \not\leq_T a\} \) is densely realized.

Proposition (B., Hendtlass and Kreuzer 2015)

If \(f \) is densely realized, then \(\text{ACC}_N \not\leq_W f \).

- \(\text{ACC}_N \) is the weakest choice principles studied so far.
- All typical theorems from analysis are above \(\text{ACC}_N \).
Dense Realization and All or Co-Unique Choice

- $f : \subseteq X \Rightarrow Y$ is called densely realized, if $f^r(p)$ is dense in $\text{dom}(\delta_Y)$ for every $p \in \text{dom}(f \delta_X)$.
- f is densely realized if Y is densely represented, i.e., $\delta_Y^{-1}(y)$ is dense in $\text{dom}(\delta_Y)$ for every $y \in Y$.
- The set \mathcal{D} of Turing degrees with its standard representation $\delta_D : \mathbb{N}^\mathbb{N} \to \mathcal{D}, p \mapsto [p]$ is densely realized.
- In particular, every Π_2 statement that claims the existence of a Turing degree translates into a densely realized problem.
- $\text{PA} : \mathcal{D} \Rightarrow \mathcal{D}, a \mapsto \{b : b \gg a\}$ is densely realized.
- $\text{NON} : \mathcal{D} \Rightarrow \mathcal{D}, a \mapsto \{b : b \not\leq_T a\}$ is densely realized.

Proposition (B., Hendtlass and Kreuzer 2015)

If f is densely realized, then $\text{ACC}_\mathbb{N} \not\leq_W f$.

- $\text{ACC}_\mathbb{N}$ is the weakest choice principles studied so far.
- All typical theorems from analysis are above $\text{ACC}_\mathbb{N}$.
Dense Realization and All or Co-Unique Choice

- \(f : \subseteq X \rightarrow Y \) is called densely realized, if \(f^r(p) \) is dense in \(\text{dom}(\delta_Y) \) for every \(p \in \text{dom}(f\delta_X) \).
- \(f \) is densely realized if \(Y \) is densely represented, i.e., \(\delta_Y^{-1}(y) \) is dense in \(\text{dom}(\delta_Y) \) for every \(y \in Y \).
- The set \(D \) of Turing degrees with its standard representation \(\delta_D : \mathbb{N}^\mathbb{N} \rightarrow D, p \mapsto [p] \) is densely realized.
- In particular, every \(\Pi_2 \) statement that claims the existence of a Turing degree translates into a densely realized problem.
- \(\text{PA} : D \rightarrow D, a \mapsto \{ b : b \gg a \} \) is densely realized.
- \(\text{NON} : D \rightarrow D, a \mapsto \{ b : b \not\leq_T a \} \) is densely realized.

Proposition (B., Hendtlass and Kreuzer 2015)

If \(f \) is densely realized, then \(\text{ACC}_N \not\leq_W f \).

- \(\text{ACC}_N \) is the weakest choice principles studied so far.
- All typical theorems from analysis are above \(\text{ACC}_N \).
Dense Realization and All or Co-Unique Choice

- $f : \subseteq X \Rightarrow Y$ is called densely realized, if $f^r(p)$ is dense in $\text{dom}(\delta_Y)$ for every $p \in \text{dom}(f\delta_X)$.

- f is densely realized if Y is densely represented, i.e., $\delta_Y^{-1}(y)$ is dense in $\text{dom}(\delta_Y)$ for every $y \in Y$.

- The set \mathcal{D} of Turing degrees with its standard representation $\delta_D : \mathbb{N}^\mathbb{N} \rightarrow \mathcal{D}, p \mapsto [p]$ is densely realized.

- In particular, every Π_2 statement that claims the existence of a Turing degree translates into a densely realized problem.

- PA : $\mathcal{D} \Rightarrow \mathcal{D}, a \mapsto \{b : b \gg a\}$ is densely realized.

- NON : $\mathcal{D} \Rightarrow \mathcal{D}, a \mapsto \{b : b \not\leq_T a\}$ is densely realized.

Proposition (B., Hendtlass and Kreuzer 2015)

If f is densely realized, then $\text{ACC}_N \not\leq_W f$.

- ACC_N is the weakest choice principles studied so far.

- All typical theorems from analysis are above ACC_N.

Dense Realization and All or Co-Unique Choice

- $f : \subseteq X \Rightarrow Y$ is called **densely realized**, if $f^r(p)$ is dense in $\text{dom}(\delta_Y)$ for every $p \in \text{dom}(f\delta_X)$.
- f is densely realized if Y is **densely represented**, i.e., $\delta_Y^{-1}(y)$ is dense in $\text{dom}(\delta_Y)$ for every $y \in Y$.
- The set \mathcal{D} of Turing degrees with its standard representation $\delta_D : \mathbb{N}^\mathbb{N} \rightarrow \mathcal{D}, p \mapsto [p]$ is densely realized.
- In particular, every Π_2 statement that claims the existence of a Turing degree translates into a densely realized problem.
- PA : $\mathcal{D} \Rightarrow \mathcal{D}$, $a \mapsto \{b : b \gg a\}$ is densely realized.
- NON : $\mathcal{D} \Rightarrow \mathcal{D}$, $a \mapsto \{b : b \nleq_T a\}$ is densely realized.

Proposition (B., Hendtlass and Kreuzer 2015)

If f is densely realized, then $\text{ACC}_\mathbb{N} \nleq_W f$.

- $\text{ACC}_\mathbb{N}$ is the weakest choice principles studied so far.
- All typical theorems from analysis are above $\text{ACC}_\mathbb{N}$.
Jumps
Basic Complexity Classes and Reverse Mathematics

\[\text{lim} \equiv_{sW} \hat{C}_N \]

\[C_R \equiv_{sW} C_N \times C_2^N \]

\[\text{WKL} \equiv_{sW} C_{2^N} \equiv_{sW} C_2 \]

\[\text{WWKL} \equiv_{sW} PC_{2^N} \]

\[\text{lim}_N \equiv_{sW} C_N \]

\[\text{K}_N \equiv_{sW} C_2^* \]

\[C_1 \]

\[\text{ATR}_0 \]

\[\text{ACA}_0 \]

\[\text{WKL}_0 + \text{I}_1^0 \]

\[\text{WKL}_0 \]

\[\text{WWKL}_0 \]

\[\text{I}_1^0 \]

\[\text{B}_1^0 \]

\[\text{RCA}_0 \]
Limits and LPO

- $\lim_X : \subseteq X^\mathbb{N} \to X, (x_n)_n \mapsto \lim_{n \to \infty} x_n$ denotes the limit operation of a Hausdorff space X.

- $\lim : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}, \langle p_0, p_1, p_2, ... \rangle \mapsto \lim_{n \to \infty} p_n$ denotes the limit operation of Baire space $\mathbb{N}^\mathbb{N}$ with encoded input.

Proposition (B. 2005)

$\lim \equiv_{sW} \lim_X$ for all perfect computable metric spaces X.

- LPO : $\mathbb{N}^\mathbb{N} \to \mathbb{N}, p \mapsto \begin{cases} 1 & \text{if } (\forall n) p(n) = 0 \\ 0 & \text{otherwise} \end{cases}$

 denotes the limited principle of omniscience.

- $C_2 \equiv_{sW} LLPO \leq_{W} \text{RDIV} \leq_{W} \text{LPO} \leq_{W} C_\mathbb{N}$.

Proposition (B. and Gherardi 2011)

$\hat{\text{LPO}} \equiv_{sW} \hat{C}_\mathbb{N} \equiv_{sW} \hat{\lim}$.
Limits and LPO

- \(\lim_X \subseteq X^\mathbb{N} \to X, (x_n)_n \mapsto \lim_{n \to \infty} x_n \) denotes the limit operation of a Hausdorff space \(X \).

- \(\lim : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}, \langle p_0, p_1, p_2, \ldots \rangle \mapsto \lim_{n \to \infty} p_n \) denotes the limit operation of Baire space \(\mathbb{N}^\mathbb{N} \) with encoded input.

Proposition (B. 2005)

\(\lim \equiv sW \lim_X \) for all perfect computable metric spaces \(X \).

- \(\text{LPO} : \mathbb{N}^\mathbb{N} \to \mathbb{N}, p \mapsto \begin{cases} 1 & \text{if } (\forall n) p(n) = 0 \\ 0 & \text{otherwise} \end{cases} \)

denotes the limited principle of omniscience.

- \(C_2 \equiv sW \text{LLPO} \leq sW \text{RDIV} \leq sW \text{LPO} \leq sW C_{\mathbb{N}}. \)

Proposition (B. and Gherardi 2011)

\(\hat{\text{LPO}} \equiv sW \hat{C}_{\mathbb{N}} \equiv sW \lim. \)
Limits and LPO

- $\lim_X : \subseteq X^\mathbb{N} \to X, (x_n)_n \mapsto \lim_{n \to \infty} x_n$ denotes the limit operation of a Hausdorff space X.
- $\lim : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}, \langle p_0, p_1, p_2, ... \rangle \mapsto \lim_{n \to \infty} p_n$ denotes the limit operation of Baire space $\mathbb{N}^\mathbb{N}$ with encoded input.

Proposition (B. 2005)

$\lim \equiv_{sW} \lim_X$ for all perfect computable metric spaces X.

- $\text{LPO} : \mathbb{N}^\mathbb{N} \to \mathbb{N}, p \mapsto \begin{cases} 1 & \text{if } (\forall n) p(n) = 0 \\ 0 & \text{otherwise} \end{cases}$
 denotes the limited principle of omniscience.
- $C_2 \equiv_{sW} \text{LLPO} \leq_{W} \text{RDIV} \leq_{W} \text{LPO} \leq_{W} C_\mathbb{N}$.

Proposition (B. and Gherardi 2011)

$\widehat{\text{LPO}} \equiv_{sW} \widehat{C_\mathbb{N}} \equiv_{sW} \lim$.
Limits and LPO

- \(\lim_X : \subseteq X^\mathbb{N} \to X, (x_n)_n \mapsto \lim_{n \to \infty} x_n \) denotes the limit operation of a Hausdorff space \(X \).

- \(\lim : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}, \langle p_0, p_1, p_2, \ldots \rangle \mapsto \lim_{n \to \infty} p_n \) denotes the limit operation of Baire space \(\mathbb{N}^\mathbb{N} \) with encoded input.

Proposition (B. 2005)

\[\lim \equiv_{sW} \lim_X \] for all perfect computable metric spaces \(X \).

- \(\text{LPO} : \mathbb{N}^\mathbb{N} \to \mathbb{N}, p \mapsto \begin{cases} 1 & \text{if } (\forall n) p(n) = 0 \\ 0 & \text{otherwise} \end{cases} \) denotes the limited principle of omniscience.

- \(C_2 \equiv_{sW} \text{LLPO} \leq_W \text{RDIV} \leq_W \text{LPO} \leq_W C_\mathbb{N} \).

Proposition (B. and Gherardi 2011)

\[\widehat{\text{LPO}} \equiv_{sW} \widehat{C_\mathbb{N}} \equiv_{sW} \text{lim}. \]
The following problems and theorems are Weihrauch equivalent:

- The parallelization $\widehat{C_N}$ of the choice problem on natural numbers.
- The limit problem $\lim : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}, \langle p_0, p_1, p_2, \ldots \rangle \mapsto \lim_{n \to \infty} p_n$.
- The differentiability problem $d : \subseteq C[0, 1] \to C[0, 1], f \mapsto f'$ (von Stein 1989).
- The Monotone Convergence Theorem MCT.
- The Fréchet-Riesz Theorem for Hilbert spaces. (follows from B. and Yoshikawa 2006)
- The Radon-Nikodym Theorem. (Hoyrup, Rojas, Weihrauch 2012)

All members of the equivalence class share the following features:

- All members map computable inputs to (some) limit computable outputs.
- All members are neither uniformly nor non-uniformly computable, but limit computable.
- All members are closed under parallelization, but not under composition.
Parallelized Choice on Natural Numbers

Theorem

The following problems and theorems are Weihrauch equivalent:

- The parallelization $\widehat{C_N}$ of the choice problem on natural numbers.
- The limit problem $\lim : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}, \langle p_0, p_1, p_2, \ldots \rangle \mapsto \lim_{n \to \infty} p_n$.
- The differentiability problem $d : \subseteq C[0, 1] \to C[0, 1], f \mapsto f'$ (von Stein 1989).
- The Monotone Convergence Theorem **MCT**.
- The Fréchet-Riesz Theorem for Hilbert spaces. (follows from B. and Yoshikawa 2006)
- The Radon-Nikodym Theorem. (Hoyrup, Rojas, Weihrauch 2012)

All members of the equivalence class share the following features:

- All members map computable inputs to (some) lim. comp. outputs.
- All members are neither uniformly nor non-uniformly computable, but limit computable.
- All members are closed under parallelization, but not under composition.
A Dichotomy for Linear Operators

Theorem (B. 1999)

Let X, Y be computable Banach spaces and $T : \subseteq X \rightarrow Y$ a densely defined linear operator with a c.e. closed graph. Then:

- $T \leq \text{id}$ \iff T computable \iff T bounded.
- $\lim \leq \text{id}$ \iff T unbounded.

Corollary (von Stein 1992)

$d \equiv \text{id}$, where $d : \subseteq C[0, 1] \rightarrow C[0, 1], f \mapsto f'$

Corollary (First Main Theorem of Pour-El and Richards 1989)

An unbounded $T : \subseteq X \rightarrow Y$ as above admits a computable $x \in \text{dom}(T)$ such that $T(x)$ is not computable.

Corollary (Myhill 1971)

There exists a computable and continuously differentiable $f : [0, 1] \rightarrow \mathbb{R}$ such that f' is not computable.
A Dichotomy for Linear Operators

Theorem (B. 1999)

Let X, Y be computable Banach spaces and $T : \subseteq X \to Y$ a densely defined linear operator with a c.e. closed graph. Then:

- $T \leq_W \text{id} \iff T$ computable $\iff T$ bounded.
- $\lim \leq_W T \iff T$ unbounded.

Corollary (von Stein 1992)

d $\equiv_W \lim$, where $d : \subseteq C[0, 1] \to C[0, 1], f \mapsto f'$

Corollary (First Main Theorem of Pour-El and Richards 1989)

An unbounded $T : \subseteq X \to Y$ as above admits a computable $x \in \text{dom}(T)$ such that $T(x)$ is not computable.

Corollary (Myhill 1971)

There exists a computable and continuously differentiable $f : [0, 1] \to \mathbb{R}$ such that f' is not computable.
A Dichotomy for Linear Operators

Theorem (B. 1999)

Let X, Y be computable Banach spaces and $T : \subseteq X \to Y$ a densely defined linear operator with a c.e. closed graph. Then:

- $T \leq_{W} \text{id} \iff T$ computable $\iff T$ bounded.
- $\lim \leq_{W} T \iff T$ unbounded.

Corollary (von Stein 1992)

$d \equiv_{W} \lim$, where $d : \subseteq \mathcal{C}[0, 1] \to \mathcal{C}[0, 1], f \mapsto f'$

Corollary (First Main Theorem of Pour-El and Richards 1989)

An unbounded $T : \subseteq X \to Y$ as above admits a computable $x \in \text{dom}(T)$ such that $T(x)$ is not computable.

Corollary (Myhill 1971)

There exists a computable and continuously differentiable $f : [0, 1] \to \mathbb{R}$ such that f' is not computable.
A Dichotomy for Linear Operators

<table>
<thead>
<tr>
<th>Theorem (B. 1999)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Let X, Y be computable Banach spaces and $T : \subseteq X \to Y$ a densely defined linear operator with a c.e. closed graph. Then:</td>
</tr>
<tr>
<td>$\exists T \leq W \text{ id} \iff T \text{ computable} \iff T \text{ bounded.}$</td>
</tr>
<tr>
<td>$\exists \lim \leq W T \iff T \text{ unbounded.}$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary (von Stein 1992)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d \equiv W \lim,$ where $d : \subseteq \mathcal{C}[0, 1] \to \mathcal{C}[0, 1], f \mapsto f'$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary (First Main Theorem of Pour-El and Richards 1989)</th>
</tr>
</thead>
<tbody>
<tr>
<td>An unbounded $T : \subseteq X \to Y$ as above admits a computable $x \in \text{dom}(T)$ such that $T(x)$ is not computable.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary (Myhill 1971)</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists a computable and continuously differentiable $f : [0, 1] \to \mathbb{R}$ such that f' is not computable.</td>
</tr>
</tbody>
</table>
For every representation $\delta : \subseteq \mathbb{N}^\mathbb{N} \rightarrow X$ we define the jump $\delta' : \subseteq \mathbb{N}^\mathbb{N} \rightarrow X$ by $\delta' := \delta \circ \lim$.

$X' = (X, \delta')$ denotes the corresponding represented space.

For $f : \subseteq X \Rightarrow Y$ we define its jump by $f' : \subseteq X' \Rightarrow Y, x \mapsto f(x)$.

For instance $\text{id}' \equiv_{sW} \lim, \text{id}'' \equiv_{sW} \lim \circ \lim$, etc.

Proposition (B., Gherardi and Marcone 2011)

$f \leq_{sW} g \implies f' \leq_{sW} g'$ and $f \leq_{sW} f'$.

$f <_{W} f'$ does not hold in general: $f \equiv_{sW} f'$ for a constant f.

$f <_{W} g$ is compatible with: $f' \equiv_{W} g'$, $f' <_{W} g'$ and $g' <_{W} f'$.

Proposition (B., Gherardi and Marcone 2011)

$f' \equiv_{W} f' \times \lim \equiv_{W} f \ast \lim$, if f is a cylinder.

f is a cylinder $\iff f'$ is a cylinder.
Jumps

- For every representation $\delta : \subseteq \mathbb{N}^\mathbb{N} \to X$ we define the jump $\delta' : \subseteq \mathbb{N}^\mathbb{N} \to X$ by $\delta' := \delta \circ \lim$.

- $X' = (X, \delta')$ denotes the corresponding represented space.

- For $f : \subseteq X \Rightarrow Y$ we define its jump by $f' : \subseteq X' \Rightarrow Y, x \mapsto f(x)$.

- For instance $\text{id}' =_{sW} \lim, \text{id}'' =_{sW} \lim \circ \lim$, etc.

Proposition (B., Gherardi and Marcone 2011)

\[f \leq_{sW} g \implies f' \leq_{sW} g' \quad \text{and} \quad f \leq_{sW} f'. \]

- $f <_{W} f'$ does not hold in general: $f =_{sW} f'$ for a constant f.

- $f <_{W} g$ is compatible with: $f' =_{W} g'$, $f' <_{W} g'$ and $g' <_{W} f'$.

Proposition (B., Gherardi and Marcone 2011)

\[f' =_{W} f' \times \lim =_{W} f \ast \lim, \text{ if } f \text{ is a cylinder.} \]

- f is a cylinder $\implies f'$ is a cylinder.
Jumps

- For every representation \(\delta : \subseteq \mathbb{N}^\mathbb{N} \to X \) we define the jump \(\delta' : \subseteq \mathbb{N}^\mathbb{N} \to X \) by \(\delta' := \delta \circ \lim \).
- \(X' = (X, \delta') \) denotes the corresponding represented space.
- For \(f : \subseteq X \Rightarrow Y \) we define its jump by \(f' : \subseteq X' \Rightarrow Y, x \mapsto f(x) \).
- For instance \(\text{id}' \equiv_{\text{sw}} \lim, \text{id}'' \equiv_{\text{sw}} \lim \circ \lim \), etc.

Proposition (B., Gherardi and Marcone 2011)

\[f \leq_{\text{sw}} g \implies f' \leq_{\text{sw}} g' \text{ and } f \leq_{\text{sw}} f'. \]

- \(f <_{\text{sw}} f' \) does not hold in general: \(f \equiv_{\text{sw}} f' \) for a constant \(f \).
- \(f <_{\text{sw}} g \) is compatible with: \(f' \equiv_{\text{w}} g', f' <_{\text{w}} g' \) and \(g' <_{\text{w}} f' \).

Proposition (B., Gherardi and Marcone 2011)

- \(f' \equiv_{\text{w}} f' \times \lim \equiv_{\text{w}} f \ast \lim \), if \(f \) is a cylinder.
- \(f \) is a cylinder \(\implies \) \(f' \) is a cylinder.
For every representation $\delta : \subseteq \mathbb{N}^\mathbb{N} \to X$ we define the jump $\delta' : \subseteq \mathbb{N}^\mathbb{N} \to X$ by $\delta' := \delta \circ \text{lim}$.

$X' = (X, \delta')$ denotes the corresponding represented space.

For $f : \subseteq X \Rightarrow Y$ we define its jump by $f' : \subseteq X' \Rightarrow Y, x \mapsto f(x)$.

For instance $\text{id}' \equiv_{sW} \text{lim}$, $\text{id}'' \equiv_{sW} \text{lim} \circ \text{lim}$, etc.

Proposition (B., Gherardi and Marcone 2011)

$$f \leq_{sW} g \implies f' \leq_{sW} g' \text{ and } f \leq_{sW} f'.$$

$\text{f <}_W f'$ does not hold in general: $f \equiv_{sW} f'$ for a constant f.

$f <_W g$ is compatible with: $f' \equiv_W g'$, $f' <_W g'$ and $g' <_W f'$.

Proposition (B., Gherardi and Marcone 2011)

$f' \equiv_W f' \times \text{lim} \equiv_W f \ast \text{lim}$, if f is a cylinder.

f is a cylinder $\iff f'$ is a cylinder.
Jumps

- For every representation $\delta : \subseteq \mathbb{N}^\mathbb{N} \to X$ we define the jump $\delta' : \subseteq \mathbb{N}^\mathbb{N} \to X$ by $\delta' := \delta \circ \lim$.
- $X' = (X, \delta')$ denotes the corresponding represented space.
- For $f : \subseteq X \Rightarrow Y$ we define its jump by $f' : \subseteq X' \Rightarrow Y, x \mapsto f(x)$.
- For instance $\text{id}' \equiv_{SW} \lim, \text{id}'' \equiv_{SW} \lim \circ \lim$, etc.

Proposition (B., Gherardi and Marcone 2011)

\[f \leq_{SW} g \implies f' \leq_{SW} g' \text{ and } f \leq_{SW} f'. \]

- $f <_{SW} f'$ does not hold in general: $f \equiv_{SW} f'$ for a constant f.
- $f <_{SW} g$ is compatible with: $f' \equiv_{W} g'$, $f' <_{W} g'$ and $g' <_{W} f'$.

Proposition (B., Gherardi and Marcone 2011)

- $f' \equiv_{W} f' \times \lim \equiv_{W} f \times \lim$, if f is a cylinder.
- f is a cylinder $\implies f'$ is a cylinder.
For every representation $\delta : \subseteq \mathbb{N}^\mathbb{N} \to X$ we define the jump $\delta' : \subseteq \mathbb{N}^\mathbb{N} \to X$ by $\delta' := \delta \circ \lim$.

$X' = (X, \delta')$ denotes the corresponding represented space.

For $f : \subseteq X \Rightarrow Y$ we define its jump by $f' : \subseteq X' \Rightarrow Y, x \mapsto f(x)$.

For instance $\text{id}' \equiv_{sW} \lim$, $\text{id}'' \equiv_{sW} \lim \circ \lim$, etc.

Proposition (B., Gherardi and Marcone 2011)

$f \leq_{sW} g \implies f' \leq_{sW} g'$ and $f \leq_{sW} f'$.

$f <_W f'$ does not hold in general: $f \equiv_{sW} f'$ for a constant f.

$f <_W g$ is compatible with: $f' \equiv_W g'$, $f' <_W g'$ and $g' <_W f'$.

Proposition (B., Gherardi and Marcone 2011)

$f' \equiv_W f' \times \lim \equiv_W f \times \lim$, if f is a cylinder.

f is a cylinder $\implies f'$ is a cylinder.
For every representation \(\delta : \subseteq \mathbb{N}^\mathbb{N} \to X \) we define the jump \(\delta' : \subseteq \mathbb{N}^\mathbb{N} \to X \) by \(\delta' := \delta \circ \text{lim} \).

\(X' = (X, \delta') \) denotes the corresponding represented space.

For \(f : \subseteq X \Rightarrow Y \) we define its jump by \(f' : \subseteq X' \Rightarrow Y, x \mapsto f(x) \).

For instance \(\text{id}' \equiv_s \text{lim}, \text{id}'' \equiv_s \text{lim} \circ \text{lim} \), etc.

Proposition (B., Gherardi and Marcone 2011)

\[f \leq_s \text{W} g \implies f' \leq_s \text{W} g' \text{ and } f \leq_s \text{W} f' \]

\(f <_\text{W} f' \) does not hold in general: \(f \equiv_s \text{W} f' \) for a constant \(f \).

\(f <_\text{W} g \) is compatible with: \(f' \equiv_\text{W} g' \), \(f' <_\text{W} g' \) and \(g' <_\text{W} f' \).

Proposition (B., Gherardi and Marcone 2011)

\[f' \equiv_\text{W} f' \times \text{lim} \equiv_\text{W} f \times \text{lim}, \text{ if } f \text{ is a cylinder.} \]

\(f \) is a cylinder \(\implies f' \) is a cylinder.
Jumps and the Algebraic Structure

Proposition (B., Gherardi and Marcone 2011)

- \((f \circ g)' = f \circ g' \)
- \((f \times g)' \equiv_{SW} f' \times g' \)
- \(\hat{f}' \equiv_{SW} \hat{f}' \)
- \((f \sqcap g)' \equiv_{SW} f' \sqcap g' \)
- \((f \sqcup g)' \leq_{SW} f' \sqcup g' \)
- \(f^* \leq_{SW} f'^* \)

Proposition (B., Gherardi and Marcone 2011)

- \(f \) strongly idempotent \(\implies f' \) strongly idempotent,
- \(f \) idempotent cylinder \(\implies f' \) idempotent cylinder,
- \(f' \) is a strong fractal and hence join irreducible for every \(f \).

In particular, not every \(f \) with \(\lim \leq_{W} f \) is a jump.
Proposition (B., Gherardi and Marcone 2011)

- \((f \circ g)' = f \circ g'\)
- \((f \times g)' \equiv_{SW} f' \times g'\)
- \(\hat{f}' \equiv_{SW} \hat{f}'\)
- \((f \sqcap g)' \equiv_{SW} f' \sqcap g'\)
- \((f \sqcup g)' \leq_{SW} f' \sqcup g'\)
- \(f^*' \leq_{SW} f'^*\)

Proposition (B., Gherardi and Marcone 2011)

- \(f\) strongly idempotent \(\implies f'\) strongly idempotent,
- \(f\) idempotent cylinder \(\implies f'\) idempotent cylinder,
- \(f'\) is a strong fractal and hence join irreducible for every \(f\).

In particular, not every \(f\) with \(\lim \leq_W f\) is a jump.
Jumps and the Algebraic Structure

Proposition (B., Gherardi and Marcone 2011)

▷ \((f \circ g)' = f \circ g'\)
▷ \((f \times g)' \equiv_{sW} f' \times g'\)
▷ \(\hat{f}' \equiv_{sW} \hat{f}'\)
▷ \((f \cap g)' \equiv_{sW} f' \cap g'\)
▷ \((f \cup g)' \leq_{sW} f' \cup g'\)
▷ \(f^* \leq_{sW} f'^*\)

Proposition (B., Gherardi and Marcone 2011)

▷ \(f \text{ strongly idempotent} \implies f' \text{ strongly idempotent},\)
▷ \(f \text{ idempotent cylinder} \implies f' \text{ idempotent cylinder},\)
▷ \(f' \text{ is a strong fractal and hence join irreducible for every } f.\)

In particular, not every \(f\) with \(\lim \leq_W f\) is a jump.
The Weihrauch Lattice refines the Borel Hierarchy

- \(f^{(0)} := f \) and \(f^{(n+1)} := (f^{(n)})' \) for all \(n \in \mathbb{N} \).

Theorem (B. 2005)

\[
f \leq_W \text{id}^{(n)} \iff f \text{ is effectively } \Sigma^0_{n+1} \text{-measurable for all } n \in \mathbb{N}.
\]

<table>
<thead>
<tr>
<th>reducibility</th>
<th>hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>many-one</td>
<td>arithmetical</td>
</tr>
<tr>
<td>Weihrauch</td>
<td>effective Borel</td>
</tr>
</tbody>
</table>
The Weihrauch Lattice refines the Borel Hierarchy

- \(f(0) := f \) and \(f(n+1) := (f(n))' \) for all \(n \in \mathbb{N} \).

Theorem (B. 2005)

\[
\text{\(f \leq \text{id}^{(n)} \rightleftharpoons f \text{ is effectively } \Sigma^0_{n+1} - \text{measurable for all } n \in \mathbb{N}. \)}
\]

<table>
<thead>
<tr>
<th>reducibility</th>
<th>hierarchy</th>
</tr>
</thead>
<tbody>
<tr>
<td>many-one</td>
<td>arithmetical</td>
</tr>
<tr>
<td>Weihrauch</td>
<td>effective Borel</td>
</tr>
</tbody>
</table>
The Weihrauch Lattice refines the Borel Hierarchy

Theorem (B. 2005)

\[f \leq_W \text{id}^{(n)} \iff f \text{ is effectively } \Sigma^0_{n+1} \text{-measurable for all } n \in \mathbb{N}. \]
The Cluster Point Problem

- \(\text{CL}_X : \subseteq X^\mathbb{N} \Rightarrow X, (x_n)_n \mapsto \{x : x \text{ is a cluster point of } (x_n)_n\} \) is called the **cluster point problem** of a topological space \(X \).

Theorem (B., Gherardi and Marcone 2011)

\[\text{CL}_X \equiv_{\text{sW}} C'_X \text{ for every computable metric space } X. \]

Proof. (Idea) This can be proved by showing that the jump of \(\psi_- \) is equivalent to the cluster point representation of \(\mathcal{A}_-(X) \). One direction follows since

\[X^\mathbb{N} \to \mathcal{A}_-(X), (x_n)_n \mapsto \{x : x \text{ is a cluster point of } (x_n)_n\} \]

is limit computable. The other direction is more involved. \(\square \)

Example

- \(C'_2 \equiv_{\text{sW}} \text{CL}_2 \) is the infinite pigeonhole principle,
- \(C'_{2^\mathbb{N}} \equiv_{\text{sW}} \text{CL}_{2^\mathbb{N}} \) is the Bolzano-Weierstraß Theorem of \(2^\mathbb{N} \),
- \(C'_{\mathbb{N}^\mathbb{N}} \equiv_{\text{sW}} C_{\mathbb{N}^\mathbb{N}} \) is a fixed point of the jump.
The Cluster Point Problem

- CL$_X : \subseteq X^\mathbb{N} \Rightarrow X,(x_n)_n \mapsto \{x : x$ is a cluster point of $(x_n)_n\}$ is called the cluster point problem of a topological space X.

Theorem (B., Gherardi and Marcone 2011)

CL$_X \equiv_{sW} C'_X$ for every computable metric space X.

Proof. (Idea) This can be proved by showing that the jump of ψ_- is equivalent to the cluster point representation of $A_-(X)$. One direction follows since

$$X^\mathbb{N} \rightarrow A_-(X),(x_n)_n \mapsto \{x : x$ is a cluster point of $(x_n)_n\}$$

is limit computable. The other direction is more involved. □

Example

- $C'_2 \equiv_{sW} CL_2$ is the infinite pigeonhole principle,
- $C'_{2^\mathbb{N}} \equiv_{sW} CL_{2^\mathbb{N}}$ is the Bolzano-Weierstraß Theorem of $2^\mathbb{N}$,
- $C'_{\mathbb{N}^\mathbb{N}} \equiv_{sW} C_{\mathbb{N}^\mathbb{N}}$ is a fixed point of the jump.
The Cluster Point Problem

- $\text{CL}_X : \subseteq X^\mathbb{N} \Rightarrow X, (x_n)_n \mapsto \{x : x \text{ is a cluster point of } (x_n)_n\}$ is called the cluster point problem of a topological space X.

Theorem (B., Gherardi and Marcone 2011)

$\text{CL}_X \equiv_{sW} C'_X$ for every computable metric space X.

Proof. (Idea) This can be proved by showing that the jump of ψ_- is equivalent to the cluster point representation of $A_-(X)$. One direction follows since

$$X^\mathbb{N} \rightarrow A_-(X), (x_n)_n \mapsto \{x : x \text{ is a cluster point of } (x_n)_n\}$$

is limit computable. The other direction is more involved. □

Example

- $C'_2 \equiv_{sW} \text{CL}_2$ is the infinite pigeonhole principle,
- $C'_{2^\mathbb{N}} \equiv_{sW} \text{CL}_{2^\mathbb{N}}$ is the Bolzano-Weierstraß Theorem of $2^\mathbb{N}$,
- $C'_{\mathbb{N}^\mathbb{N}} \equiv_{sW} C_{\mathbb{N}^\mathbb{N}}$ is a fixed point of the jump.
The Cluster Point Problem

- \(\text{CL}_X : \subseteq X^\mathbb{N} \Rightarrow X, (x_n)_n \mapsto \{ x : x \text{ is a cluster point of } (x_n)_n \} \) is called the cluster point problem of a topological space \(X \).

Theorem (B., Gherardi and Marcone 2011)

\[\text{CL}_X \equiv_{sW} C'_X \text{ for every computable metric space } X. \]

Proof. (Idea) This can be proved by showing that the jump of \(\psi_- \) is equivalent to the cluster point representation of \(A_-(X) \). One direction follows since

\[X^\mathbb{N} \rightarrow A_-(X), (x_n)_n \mapsto \{ x : x \text{ is a cluster point of } (x_n)_n \} \]

is limit computable. The other direction is more involved. \(\square \)

Example

- \(C'_2 \equiv_{sW} \text{CL}_2 \) is the infinite pigeonhole principle,
- \(C'_{2^\mathbb{N}} \equiv_{sW} \text{CL}_{2^\mathbb{N}} \) is the Bolzano-Weierstraß Theorem of \(2^\mathbb{N} \),
- \(C'_{\mathbb{N}\mathbb{N}} \equiv_{sW} C_{\mathbb{N}\mathbb{N}} \) is a fixed point of the jump.
The Jump of Choice on Cantor Space

- \(\text{BWT}_X : \subseteq X^\mathbb{N} \Rightarrow X, (x_n)_n \mapsto \{x : x \text{ is a cluster point of } (x_n)_n\} \) is \(\text{CL}_X \) rest. to \(\text{dom}(\text{BWT}_X) := \{(x_n)_n : \{x_n : n \in \mathbb{N}\} \text{ is compact}\} \).

The following problems and theorems are strongly Weihrauch equivalent:

- The jump \(C_{2^\mathbb{N}}' \) of choice on Cantor space \(2^\mathbb{N} \).
- The jump of Weak König’s Lemma \(\text{WKL}' \).
- König’s Lemma \(\text{KL} \). (B. and Rakotoniaina 2015)
- The Bolzano-Weierstraß Theorem \(\text{BWT}_\mathbb{R} \) on \(\mathbb{R} \). (B., Gherardi, Marcone 2011)

All members of the equivalence class share the following features:

- All members map computable inputs to (some) outputs that are low relative to the halting problem.
- All members are neither uniformly nor non-uniformly limit computable.
- All members are closed parallelization, but not under composition.
The Jump of Choice on Cantor Space

- \(\text{BWT}_X : \subseteq X^\mathbb{N} \Rightarrow X, (x_n)_n \mapsto \{ x : x \text{ is a cluster point of } (x_n)_n \} \) is \(\text{CL}_X \) rest. to \(\text{dom}(\text{BWT}_X) := \{(x_n)_n : \{x_n : n \in \mathbb{N}\} \text{ is compact}\} \).

Theorem

The following problems and theorems are strongly Weihrauch equivalent:

- **The jump** \(C'_{2^\mathbb{N}} \) of choice on Cantor space \(2^\mathbb{N} \).
- **The jump of Weak König’s Lemma** \(\text{WKL}' \).
- **König’s Lemma** \(\text{KL} \). (B. and Rakotoniaina 2015)
- **The Bolzano-Weierstraß Theorem** \(\text{BWT}_\mathbb{R} \) on \(\mathbb{R} \). (B., Gherardi, Marcone 2011)

All members of the equivalence class share the following features:

- All members map computable inputs to (some) outputs that are low relative to the halting problem.
- All members are neither uniformly nor non-uniformly limit computable.
- All members are closed parallelization, but not under composition.
The Jump of Choice on Cantor Space

- $\text{BWT}_X : \subseteq X^\mathbb{N} \Rightarrow X, (x_n)_n \mapsto \{x : x \text{ is a cluster point of } (x_n)_n\}$ is CL$_X$ rest. to $\text{dom}(\text{BWT}_X) := \{(x_n)_n : \{x_n : n \in \mathbb{N}\} \text{ is compact}\}$.

Theorem

The following problems and theorems are strongly Weihrauch equivalent:

- The jump $C'_{2\mathbb{N}}$ of choice on Cantor space $2^\mathbb{N}$.
- The jump of Weak König's Lemma WKL$'$.
- König's Lemma KL. (B. and Rakotoniaina 2015)
- The Bolzano-Weierstraß Theorem BWT$_\mathbb{R}$ on \mathbb{R}. (B., Gherardi, Marcone 2011)

All members of the equivalence class share the following features:

- All members map computable inputs to (some) outputs that are low relative to the halting problem.
- All members are neither uniformly nor non-uniformly limit computable.
- All members are closed parallelization, but not under composition.
The Bolzano-Weierstraß Theorem

Proposition (B., Gherardi, Marcone 2011)

- \(\text{WKL} \,'
\(\equiv \text{sw} \) \(\text{BWT}_X \) for perfect computable metric spaces \(X \).
- \(K'_N \equiv \text{sw} \) \(\text{BWT}_N \).

Proposition (B. and Rakotoniaina 2015)

\[
K_{N}^{(n)} \leq_{\text{SW}} C_{N}^{(n)} \leq_{\text{SW}} K_{N}^{(n+1)} \quad \text{for all } n \in \mathbb{N}.
\]

Proof. (Idea) This follows from

\[
K_N \leq_{\text{SW}} C_N \equiv_{\text{SW}} \lim_N \leq_{\text{SW}} \text{BWT}_N \equiv_{\text{SW}} K'_N.
\]

Corollary (B., Gherardi and Hölz 2015)

\(C_{2}^{(n)} \) is \(\Sigma_{n+2}^{0} \)-measurable but not \(\Sigma_{n+1}^{0} \)-measurable for all \(n \in \mathbb{N} \).
The Bolzano-Weierstraß Theorem

Proposition (B., Gherardi, Marcone 2011)

- \(\text{WKL}' \equiv_{sW} \text{BWT}_X \) for perfect computable metric spaces \(X \).
- \(K'_N \equiv_{sW} \text{BWT}_N \).

Proposition (B. and Rakotoniaina 2015)

\[K^{(n)}_N \leq_{sW} C^{(n)}_N \leq_{sW} K^{(n+1)}_N \] for all \(n \in \mathbb{N} \).

Proof. (Idea) This follows from

\[K_N \leq_{sW} C_N \equiv_{sW} \lim_N \leq_{sW} \text{BWT}_N \equiv_{sW} K'_N. \]

- \(\text{B} \Sigma^0_1 \leftarrow \text{I} \Sigma^0_1 \leftarrow \text{B} \Sigma^0_2 \leftarrow \text{I} \Sigma^0_2 \ldots \) corresponds to
- \(K_N \leq_{sW} C_N \leq_{sW} K'_N \leq_{sW} C'_N \leq_{sW} \ldots \).

Corollary (B., Gherardi and Hölzl 2015)

\(C^{(n)}_2 \) is \(\Sigma^0_{n+2} \)-measurable but not \(\Sigma^0_{n+1} \)-measurable for all \(n \in \mathbb{N} \).
The Bolzano-Weierstraß Theorem

Proposition (B., Gherardi, Marcone 2011)

- \(\text{WKL}' \equiv_{sW} \text{BWT}_X \) for perfect computable metric spaces \(X \).
- \(K'_N \equiv_{sW} \text{BWT}_N \).

Proposition (B. and Rakotoniaina 2015)

\[
K^{(n)}_N \leq_{sW} C^{(n)}_N \leq_{sW} K^{(n+1)}_N \text{ for all } n \in \mathbb{N}.
\]

Proof. (Idea) This follows from

\[
K_N \leq_{sW} C_N \equiv_{sW} \text{lim}_N \leq_{sW} \text{BWT}_N \equiv_{sW} K'_N.
\]

- \(B\Sigma^0_1 \leftarrow I\Sigma^0_1 \leftarrow B\Sigma^0_2 \leftarrow I\Sigma^0_2 \ldots \) corresponds to
- \(K_N \leq_{sW} C_N \leq_{sW} K'_N \leq_{sW} C'_N \leq_{sW} \ldots \)

Corollary (B., Gherardi and Hölzl 2015)

\(C^{(n)}_2 \) is \(\Sigma^0_{n+2} \)-measurable but not \(\Sigma^0_{n+1} \)-measurable for all \(n \in \mathbb{N} \).
The Bolzano-Weierstraß Theorem

Proposition (B., Gherardi, Marcone 2011)

- $\text{WKL}' \equiv_{sW} \text{BWT}_X$ for perfect computable metric spaces X.
- $K'_N \equiv_{sW} \text{BWT}_N$.

Proposition (B. and Rakotoniaina 2015)

$K^{(n)}_N \leq_{sW} C^{(n)}_N \leq_{sW} K^{(n+1)}_N$ for all $n \in \mathbb{N}$.

Proof. (Idea) This follows from $K_N \leq_{sW} C_N \equiv_{sW} \lim_N \leq_{sW} \text{BWT}_N \equiv_{sW} K'_N$.

- $B\Sigma^0_1 \leftarrow I\Sigma^0_1 \leftarrow B\Sigma^0_2 \leftarrow I\Sigma^0_2 \ldots$ corresponds to
- $K_N \leq_{sW} C_N \leq_{sW} K'_N \leq_{sW} C'_N \leq_{sW} \ldots$.

Corollary (B., Gherardi and Hölzl 2015)

$C^{(n)}_2$ is Σ^0_{n+2}–measurable but not Σ^0_{n+1}–measurable for all $n \in \mathbb{N}$.
The Bolzano-Weierstraß Theorem

Proposition (B., Gherardi, Marcone 2011)

- $\text{WKL}' \equiv_{\text{sW}} \text{BWT}_X$ for perfect computable metric spaces X.
- $K'_N \equiv_{\text{sW}} \text{BWT}_N$.

Proposition (B. and Rakotoniaina 2015)

$K^{(n)}_N \leq_{\text{sW}} C^{(n)}_N \leq_{\text{sW}} K^{(n+1)}_N$ for all $n \in \mathbb{N}$.

Proof. (Idea) This follows from $K_N \leq_{\text{sW}} C_N \equiv_{\text{sW}} \lim N \leq_{\text{sW}} \text{BWT}_N \equiv_{\text{sW}} K'_N$.

- $\text{B} \Sigma^0_1 \leftarrow \text{I} \Sigma^0_1 \leftarrow \text{B} \Sigma^0_2 \leftarrow \text{I} \Sigma^0_2 \ldots$ corresponds to
- $K_N \leq_{\text{sW}} C_N \leq_{\text{sW}} K'_N \leq_{\text{sW}} C'_N \leq_{\text{sW}} \ldots$.

Corollary (B., Gherardi and Hölzl 2015)

$C^{(n)}_2$ is Σ^{0}_{n+2}–measurable but not Σ^{0}_{n+1}–measurable for all $n \in \mathbb{N}$.

Higher Complexity Classes

\[\text{ATR}_0 \quad \text{\(\rightarrow \)} \quad C_{NN} \]

\[\text{\(\Sigma_4^0 \)} \quad \text{\(\rightarrow \)} \quad \text{lim''} \]

\[\text{\(\Sigma_3^0 \)} \quad \text{\(\rightarrow \)} \quad \text{\(\text{\(\text{C}_{\text{IR}}' \))} \rightarrow \text{\(\text{C}_{\text{IR}}'' \))} \rightarrow \text{\(\text{WKL''} \equiv_{\text{sw}} C_{2N}'' \))} \rightarrow \text{\(\text{K''} \))} \rightarrow \text{\(\text{LPO''} \))} \rightarrow \text{\(\text{I\Sigma_3^0} \))} \]

\[\text{\(\Sigma_3^0 \)} \quad \text{\(\rightarrow \)} \quad \text{lim'} \]

\[\text{\(\Sigma_2^0 \)} \quad \text{\(\rightarrow \)} \quad \text{lim} \]

\[\text{\(\rightarrow \)} \quad \text{WKL' \equiv_{\text{sw}} C_{2N'} \) \rightarrow \text{\(\text{K'} \) \rightarrow \text{\(\text{LPO'} \))} \rightarrow \text{\(\text{I\Sigma_2^0} \))} \]

\[\text{\(\rightarrow \)} \quad \text{ATR_0 \equiv_{\text{sw}} C_{2N} \) \rightarrow \text{\(\text{K} \) \rightarrow \text{\(\text{LPO} \))} \rightarrow \text{\(\text{I\Sigma_1^0} \))} \]
The Cluster Point Problem in the Role of Induction

- We recall that $\text{DNC}_{n+1} <_W \text{DNC}_n$ for all $n \geq 2$.
- R. Friedberg proved that non-uniformly the corresponding Turing degrees coincide.
- Dorais, Hirst and Shafer (2015) refined this construction and analyzed it in reverse mathematics.

Proposition (B., Hendtlass, Kreuzer 2015)

$\text{DNC}_2 \leq_W \text{DNC}_n \ast C'_N$ for all $n \geq 2$.

- The proof is a uniform version of the construction of Dorais, Hirst and Shafer (2015).

Question

How can $(\text{DNC}_{n+1} \rightarrow \text{DNC}_n)$ be characterized?

The result above only implies $(\text{DNC}_{n+1} \rightarrow \text{DNC}_n) \leq_W C'_N$.
We recall that $\text{DNC}_{n+1} \prec_W \text{DNC}_n$ for all $n \geq 2$.

R. Friedberg proved that non-uniformly the corresponding Turing degrees coincide.

Dorais, Hirst and Shafer (2015) refined this construction and analyzed it in reverse mathematics.

Proposition (B., Hendtlass, Kreuzer 2015)

$$\text{DNC}_2 \preceq_W \text{DNC}_n \ast \mathcal{C}_N' \text{ for all } n \geq 2.$$

The proof is a uniform version of the construction of Dorais, Hirst and Shafer (2015).

Question

How can $(\text{DNC}_{n+1} \rightarrow \text{DNC}_n)$ be characterized?

The result above only implies $(\text{DNC}_{n+1} \rightarrow \text{DNC}_n) \preceq_W \mathcal{C}_N'$.

The Cluster Point Problem in the Role of Induction

- We recall that \(\text{DNC}_{n+1} <_W \text{DNC}_n \) for all \(n \geq 2 \).
- R. Friedberg proved that non-uniformly the corresponding Turing degrees coincide.
- Dorais, Hirst and Shafer (2015) refined this construction and analyzed it in reverse mathematics.

Proposition (B., Hendtlass, Kreuzer 2015)

\[
\text{DNC}_2 \leq_W \text{DNC}_n * C'_N \text{ for all } n \geq 2.
\]

- The proof is a uniform version of the construction of Dorais, Hirst and Shafer (2015).

Question

How can \((\text{DNC}_{n+1} \rightarrow \text{DNC}_n)\) be characterized?

The result above only implies \((\text{DNC}_{n+1} \rightarrow \text{DNC}_n) \leq_W C'_N\).
The Cluster Point Problem in the Role of Induction

- We recall that $\text{DNC}_{n+1} <_W \text{DNC}_n$ for all $n \geq 2$.
- R. Friedberg proved that non-uniformly the corresponding Turing degrees coincide.
- Dorais, Hirst and Shafer (2015) refined this construction and analyzed it in reverse mathematics.

Proposition (B., Hendtlass, Kreuzer 2015)

$$\text{DNC}_2 \leq_W \text{DNC}_n \ast C'_N \text{ for all } n \geq 2.$$

- The proof is a uniform version of the construction of Dorais, Hirst and Shafer (2015).

Question

How can $(\text{DNC}_{n+1} \rightarrow \text{DNC}_n)$ be characterized?

The result above only implies $(\text{DNC}_{n+1} \rightarrow \text{DNC}_n) \leq_W C'_N$.
We define the cardinality $\#f$ as the supremum of all cardinalities $|M|$ of sets $M \subseteq \text{dom}(f)$ such that the sets $f(x)$ with $x \in M$ are pairwise disjoint.

Proposition (B., Gherardi and Hölzl 2015)

$f \leq_{SW} g \implies \#f \leq \#g$.

Proposition

If $f : \subseteq X \Rightarrow \mathbb{N}$ is a strong fractal and $\text{range}(g)$ compact, then $f \leq_W g \implies f \leq_{SW} g$.

Corollary (B., Gherardi and Marcone 2012)

- $\text{BWT}_n <_W \text{BWT}_{n+1} <_W \text{BWT}_N <_W \text{BWT}_R$ for all $n \in \mathbb{N}$,
- $\lim_n <_W \lim_{n+1} <_W \lim_N <_W \lim_R$ for all $n \in \mathbb{N}$.
We define the cardinality $\#f$ as the supremum of all cardinalities $|M|$ of sets $M \subseteq \text{dom}(f)$ such that the sets $f(x)$ with $x \in M$ are pairwise disjoint.

Proposition (B., Gherardi and Hölzl 2015)

$$f \leq_{SW} g \implies \#f \leq \#g.$$

Proposition

If $f : \subseteq X \Rightarrow \mathbb{N}$ is a strong fractal and $\text{range}(g)$ compact, then $f \leq_{W} g \implies f \leq_{SW} g$.

Corollary (B., Gherardi and Marcone 2012)

- $\text{BWT}_n <_W \text{BWT}_{n+1} <_W \text{BWT}_N <_W \text{BWT}_R$ for all $n \in \mathbb{N}$,
- $\lim_n <_W \lim_{n+1} <_W \lim_N <_W \lim_R$ for all $n \in \mathbb{N}$.

We define the cardinality $\# f$ as the supremum of all cardinalities $|M|$ of sets $M \subseteq \text{dom}(f)$ such that the sets $f(x)$ with $x \in M$ are pairwise disjoint.

Proposition (B., Gherardi and Hölzl 2015)

$$f \leq_{SW} g \implies \# f \leq \# g.$$

Proposition

*If $f : X \Rightarrow \mathbb{N}$ is a strong fractal and $\text{range}(g)$ compact, then

$$f \leq_W g \implies f \leq_{SW} g.$$*

Corollary (B., Gherardi and Marcone 2012)

- $\text{BWT}_n <_W \text{BWT}_{n+1} <_W \text{BWT}_N <_W \text{BWT}_R$ for all $n \in \mathbb{N}$,
- $\lim_n <_W \lim_{n+1} <_W \lim_N <_W \lim_R$ for all $n \in \mathbb{N}$.
We define the cardinality $\#f$ as the supremum of all cardinalities $|M|$ of sets $M \subseteq \text{dom}(f)$ such that the sets $f(x)$ with $x \in M$ are pairwise disjoint.

Proposition (B., Gherardi and Hölzl 2015)

$f \leq_{SW} g \implies \#f \leq \#g$.

Proposition

If $f : \subseteq X \Rightarrow \mathbb{N}$ is a strong fractal and $\text{range}(g)$ compact, then $f \leq_W g \implies f \leq_{SW} g$.

Corollary (B., Gherardi and Marcone 2012)

- $\text{BWT}_n <_W \text{BWT}_{n+1} <_W \text{BWT}_\mathbb{N} <_W \text{BWT}_\mathbb{R}$ for all $n \in \mathbb{N}$,
- $\lim_n <_W \lim_{n+1} <_W \lim_\mathbb{N} <_W \lim_\mathbb{R}$ for all $n \in \mathbb{N}$.
Cohesiveness and the Bolzano-Weierstraß Theorem

- \(\text{WBWT}_X \subseteq X^\mathbb{N} \Rightarrow X', (x_n)_n \mapsto \text{BWT}_X \) is called the Weak Bolzano Weierstraß Theorem of \(X \).

- \(\text{COH} : (2^\mathbb{N})^\mathbb{N} \Rightarrow 2^\mathbb{N} \) where \(\text{COH}(R_i) \) contains all infinite \(X \subseteq \mathbb{N} \) such that for all \(i \in \mathbb{N} \) one of the sets \(X \cap R_i \) or \(X \cap (\mathbb{N} \setminus R_i) \) is finite is called the Cohesiveness Problem.

Theorem (Kreuzer 2011)

\[\text{COH} \equiv_W \text{WBWT}_\mathbb{R}. \]

Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{WBWT}_X \equiv_W (\lim \rightarrow \text{BWT}_X) \text{ for all computable metric spaces } X. \]

Recall: \((\lim \rightarrow \text{BWT}_X) = \min\{h : \text{BWT}_X \leq_W \lim \ast h\} \).

Corollary

\[\text{COH} \equiv_W (\lim \rightarrow \text{KL}) \equiv_W (\lim \rightarrow \text{WKL}'). \]
Cohesiveness and the Bolzano-Weierstraß Theorem

- \(\text{WBWT}_X : \subseteq X^\mathbb{N} \Rightarrow X', (x_n)_n \mapsto \text{BWT}_X \) is called the Weak Bolzano Weierstraß Theorem of \(X \).

- \(\text{COH} : (2^\mathbb{N})^\mathbb{N} \Rightarrow 2^\mathbb{N} \) where \(\text{COH}(R_i) \) contains all infinite \(X \subseteq \mathbb{N} \) such that for all \(i \in \mathbb{N} \) one of the sets \(X \cap R_i \) or \(X \cap (\mathbb{N} \setminus R_i) \) is finite is called the Cohesiveness Problem.

Theorem (Kreuzer 2011)

\[\text{COH} \equiv_W \text{WBWT}_\mathbb{R}. \]

Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{WBWT}_X \equiv_W (\lim \rightarrow \text{BWT}_X) \text{ for all computable metric spaces } X. \]

Recall: \((\lim \rightarrow \text{BWT}_X) = \min\{ h : \text{BWT}_X \leq_W \lim \ast h \} \).

Corollary

\[\text{COH} \equiv_W (\lim \rightarrow \text{KL}) \equiv_W (\lim \rightarrow \text{WKL'}) \].
Cohesiveness and the Bolzano-Weierstraß Theorem

- \(WBWT_X : \subseteq X^\mathbb{N} \Rightarrow X', (x_n)_n \mapsto BWT_X \) is called the **Weak Bolzano Weierstraß Theorem** of \(X \).

- **COH** : \((2^\mathbb{N})^\mathbb{N} \Rightarrow 2^\mathbb{N}\) where \(\text{COH}(R_i) \) contains all infinite \(X \subseteq \mathbb{N} \) such that for all \(i \in \mathbb{N} \) one of the sets \(X \cap R_i \) or \(X \cap (\mathbb{N} \setminus R_i) \) is finite is called the **Cohesiveness Problem**.

Theorem (Kreuzer 2011)

\[\text{COH} \equiv_W WBWT_{\mathbb{R}}. \]

Theorem (B., Hendtlass and Kreuzer 2015)

\[WBWT_X \equiv_W (\lim \to BWT_X) \text{ for all computable metric spaces } X. \]

Recall: \((\lim \to BWT_X) = \min\{h : BWT_X \leq_W \lim \star h\} \).

Corollary

\[\text{COH} \equiv_W (\lim \to KL) \equiv_W (\lim \to WKL'). \]
Cohesiveness and the Bolzano-Weierstraß Theorem

- \(WBWT_X : \subseteq X^\mathbb{N} \Rightarrow X', (x_n)_n \mapsto BWT_X \) is called the **Weak Bolzano Weierstraß Theorem** of \(X \).
- \(\text{COH} : (2^\mathbb{N})^\mathbb{N} \Rightarrow 2^\mathbb{N} \) where \(\text{COH}(R_i) \) contains all infinite \(X \subseteq \mathbb{N} \) such that for all \(i \in \mathbb{N} \) one of the sets \(X \cap R_i \) or \(X \cap (\mathbb{N} \setminus R_i) \) is finite is called the **Cohesiveness Problem**.

- **Theorem (Kreuzer 2011)**
 \(\text{COH} \equiv_W \text{WBWT}_\mathbb{R} \).

- **Theorem (B., Hendtlass and Kreuzer 2015)**
 \(WBWT_X \equiv_W (\lim \rightarrow BWT_X) \) for all computable metric spaces \(X \).

 Recall: \((\lim \rightarrow BWT_X) = \min\{h : BWT_X \leq_W \lim \ast h\} \).

- **Corollary**
 \(\text{COH} \equiv_W (\lim \rightarrow KL) \equiv_W (\lim \rightarrow WKL') \).
Cohesiveness and the Bolzano-Weierstraß Theorem

- \(\text{WBWT}_X : \subseteq X^\mathbb{N} \Rightarrow X', (x_n)_n \mapsto \text{BWT}_X \) is called the Weak Bolzano Weierstraß Theorem of \(X \).
- \(\text{COH} : (2^\mathbb{N})^\mathbb{N} \Rightarrow 2^\mathbb{N} \) where \(\text{COH}(R_i) \) contains all infinite \(X \subseteq \mathbb{N} \) such that for all \(i \in \mathbb{N} \) one of the sets \(X \cap R_i \) or \(X \cap (\mathbb{N} \setminus R_i) \) is finite is called the Cohesiveness Problem.

Theorem (Kreuzer 2011)

\[\text{COH} \equiv_W \text{WBWT}_\mathbb{R}. \]

Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{WBWT}_X \equiv_W (\lim \rightarrow \text{BWT}_X) \text{ for all computable metric spaces } X. \]

Recall: \((\lim \rightarrow \text{BWT}_X) = \min\{ h : \text{BWT}_X \leq_W \lim * h \} \).

Corollary

\[\text{COH} \equiv_W (\lim \rightarrow \text{KL}) \equiv_W (\lim \rightarrow \text{WKL}'). \]
Cohesiveness

<table>
<thead>
<tr>
<th>Theorem (B., Hendtlass and Kreuzer 2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{WKL}' \equiv^W \text{lim } \ast \text{COH}$.</td>
</tr>
</tbody>
</table>

The proof uses a uniform double limit technique.

<table>
<thead>
<tr>
<th>Proposition (B., Hendtlass and Kreuzer 2015)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{COH} \equiv^W \text{WBWT}_2$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{COH} \leq^W \text{lim}$.</td>
</tr>
</tbody>
</table>

- COH and WBWT$_X$ for $|X| \geq 2$ are densely realized!

<table>
<thead>
<tr>
<th>Corollary</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{ACC}_N \not\leq^W \text{COH}$.</td>
</tr>
</tbody>
</table>
Cohesiveness

Theorem (B., Hendtlass and Kreuzer 2015)

$$WKL' \equiv_W \lim^* \text{COH}.$$

The proof uses a uniform double limit technique.

Proposition (B., Hendtlass and Kreuzer 2015)

$$\text{COH} \equiv_W \widehat{\text{WBWT}}_2.$$

Corollary

$$\text{COH} \leq_W \lim.$$

▶ COH and \(WBWT_X\) for \(|X| \geq 2\) are densely realized!

Corollary

$$\text{ACC}_N \not\leq_W \text{COH}.$$
Theorem (B., Hendtlass and Kreuzer 2015)
\[\text{WKL}' \equiv \text{W} \lim \ast \text{COH}. \]

The proof uses a uniform double limit technique.

Proposition (B., Hendtlass and Kreuzer 2015)
\[\text{COH} \equiv \text{W} \widehat{\text{WBWT}}_2. \]

Corollary
\[\text{COH} \leq \text{W} \lim. \]

- COH and WBWT\(X\) for \(|X| \geq 2\) are densely realized!

Corollary
\[\text{ACC}_N \not\leq \text{W} \text{COH}. \]
Cohesiveness

Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{WKL}' \equiv_{W} \text{lim } * \text{COH}. \]

The proof uses a uniform double limit technique.

Proposition (B., Hendtlass and Kreuzer 2015)

\[\text{COH} \equiv_{W} \overset{\text{WBWT}_2}{\text{WBWT}}. \]

Corollary

\[\text{COH} \leq_{W} \text{lim}. \]

- COH and WBWT\(_X\) for \(|X| \geq 2\) are densely realized!

Corollary

\[\text{ACC}_N \not\leq_{W} \text{COH}. \]
Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{WKL}' \equiv_W \text{lim}^* \text{COH}. \]

The proof uses a uniform double limit technique.

Proposition (B., Hendtlass and Kreuzer 2015)

\[\text{COH} \equiv_W \widehat{\text{WBWT}}_2. \]

Corollary

\[\text{COH} \leq_W \text{lim}. \]

- COH and WBWT\(_X\) for \(|X| \geq 2\) are densely realized!

Corollary

\[\text{ACC}_N \nleq_W \text{COH}. \]
On the Combinatorial “Core” of Problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Characterization</th>
<th>Core</th>
</tr>
</thead>
<tbody>
<tr>
<td>lim</td>
<td>$\text{lim} \equiv_{sW} \text{LPO}$</td>
<td>LPO</td>
</tr>
<tr>
<td>WKL</td>
<td>$\text{WKL} \equiv_{sW} \hat{C}_2$</td>
<td>$C_2 \equiv_{sW} \text{LLPO}$</td>
</tr>
<tr>
<td>KL</td>
<td>$\text{KL} \equiv_{sW} \hat{C}'_2$</td>
<td>$C'2 \equiv{sW} \text{IPP}$</td>
</tr>
<tr>
<td>COH</td>
<td>$\text{COH} \equiv_{sW} \text{WBWT}_2$</td>
<td>WBWT_2</td>
</tr>
<tr>
<td>DNC_n</td>
<td>$\text{DNC}n \equiv{sW} \text{ACC}_n$</td>
<td>$\text{ACC}n \equiv{sW} \text{LLPO}_n$</td>
</tr>
<tr>
<td>NASH</td>
<td>$\text{NASH} \equiv_{sW} \text{AUC}^*_{[0,1]}$</td>
<td>$\text{AUC}{[0,1]} \equiv{sW} \text{RDIV}$</td>
</tr>
<tr>
<td>K_N</td>
<td>$K_N \equiv_{sW} C^*_2$</td>
<td>$C_2 \equiv_{sW} \text{LLPO}$</td>
</tr>
</tbody>
</table>
Ramsey’s Theorem
Ramsey’s Theorem

Theorem (Ramsey 1930)

Every coloring \(c : [\mathbb{N}]^n \rightarrow k \) admits an infinite homogeneous set \(M \subseteq \mathbb{N} \).

- Here \([M]^n\) denotes the set of \(n\)–element subsets of \(M \subseteq \mathbb{N} \).
- We identify \(k \) with \(\{0, 1, \ldots, k - 1\} \) for all \(k \in \mathbb{N} \).
- A set \(M \subseteq \mathbb{N} \) is called homogeneous for the coloring \(c \), if there is some \(i \in k \) such that \(c(A) = i \) for all \(A \in [M]^n \).
- By \(C_{n,k} \) we denote the set of colorings \(c : [\mathbb{N}]^n \rightarrow k \).
- By \(RT_k^n : C_{n,k} \Rightarrow 2^\mathbb{N} \) we denote the corresponding multi-valued function, where \(RT_k^n(c) \) contains exactly all infinite homogeneous sets \(M \subseteq \mathbb{N} \) for \(c \).
- We also consider the case \(k = \mathbb{N} \), which corresponds to an unspecified but finite number of colors.
Ramsey’s Theorem

Theorem (Ramsey 1930)

Every coloring \(c : [\mathbb{N}]^n \rightarrow k \) *admits an infinite homogeneous set* \(M \subseteq \mathbb{N} \).

- Here \([M]^n\) denotes the set of *n*-element subsets of \(M \subseteq \mathbb{N} \).
- We identify \(k \) with \(\{0, 1, \ldots, k - 1\} \) for all \(k \in \mathbb{N} \).
- A set \(M \subseteq \mathbb{N} \) is called *homogeneous* for the coloring \(c \), if there is some \(i \in k \) such that \(c(A) = i \) for all \(A \in [M]^n \).
- By \(C_{n,k} \) we denote the set of colorings \(c : [\mathbb{N}]^n \rightarrow k \).
- By \(\text{RT}_{k}^{n} : C_{n,k} \Rightarrow 2^{\mathbb{N}} \) we denote the corresponding multi-valued function, where \(\text{RT}_{k}^{n}(c) \) contains exactly all infinite homogeneous sets \(M \subseteq \mathbb{N} \) for \(c \).
- We also consider the case \(k = \mathbb{N} \), which corresponds to an unspecified but finite number of colors.
Proposition (B. and Rakotoniaina 2015)

\[C_2^{(n)} \leq_W RT^n_2 \text{ for all } n \geq 1. \]

Proof. (Idea.) We note that \(C_2^{(n)} \equiv_{sW} BWT_2 \circ \lim_{2^N}^{[n-1]} \). Let \(p \in \text{dom}(BWT_2 \circ \lim_{2^N}^{[n-1]}) \) and \(q := \lim_{2^N}^{[n-1]}(p) \). Then

\[
q(i_0) = \lim_{i_1 \to \infty} \lim_{i_2 \to \infty} \ldots \lim_{i_{n-1} \to \infty} p(i_{n-1}, \ldots, i_0)
\]

for all \(i_0 \in \mathbb{N} \). We compute the coloring \(c : [\mathbb{N}]^n \to 2 \) with

\[
c\{i_0 < i_1 < \ldots < i_{n-1}\} := p(i_{n-1}, i_{n-2}, \ldots, i_1, i_0).
\]

For \(M \in RT^n_2 \) we obtain \(c(M) \in BWT_2(q) \).

Corollary

\[WKL^{(n)} \leq_W \widehat{RT}^n_k \text{ for all } n \geq 1, k \geq 2. \]
Proposition (B. and Rakotoniaina 2015)

\[C_2(n) \leq WRT^n \text{ for all } n \geq 1. \]

Proof. (Idea.) We note that \(C_2(n) \equiv_{SW} BWT_2 \circ \lim_{n \to \infty} [n-1] \). Let \(p \in \text{dom}(BWT_2 \circ \lim_{n \to \infty} [n-1]) \) and \(q := \lim_{n \to \infty} [n-1](p) \). Then

\[
q(i_0) = \lim_{i_1 \to \infty} \lim_{i_2 \to \infty} \ldots \lim_{i_{n-1} \to \infty} p(i_{n-1}, ..., i_0)
\]

for all \(i_0 \in \mathbb{N} \). We compute the coloring \(c : [\mathbb{N}]^n \to 2 \) with

\[
c\{i_0 < i_1 < \ldots < i_{n-1}\} := p(i_{n-1}, i_{n-2}, ..., i_1, i_0).
\]

For \(M \in RT^n_2 \) we obtain \(c(M) \in BWT_2(q) \).

Corollary

\[WKL^{(n)} \leq W \hat{RT}^n_k \text{ for all } n \geq 1, k \geq 2. \]
Theorem (B. and Rakotoniaina 2015)

\[\text{RT}_N^n \times \text{RT}_k^{n+1} \leq_{\text{SW}} \text{RT}_{k+1}^{n+1} \text{ for all } n, k \geq 1. \]

Proof. (Idea.) Given a coloring \(c_1 : [N]^n \to N \) with finite range and a coloring \(c_2 : [N]^{n+1} \to k \) we construct a coloring \(c^+ : [N]^{n+1} \to k+1 \) as follows:

\[
c^+(A) := \begin{cases}
c_2(A) & \text{if } A \text{ is homogeneous for } c_1 \\
k & \text{otherwise}
\end{cases}
\]

for all \(A \in [N]^{n+1} \). Then \(\text{RT}_2^{n+1}(c^+) \subseteq \text{RT}_N^n(c_1) \cap \text{RT}_k^{n+1}(c_2) \) and hence the desired reduction follows. \(\square \)

Corollary

\((\text{RT}_k^n)^* \leq_{\text{W}} \text{RT}_2^{n+1} \text{ for all } n, k \geq 1. \)
Products and Parallellization of Ramsey

Theorem (B. and Rakotoniaina 2015)

\[\text{RT}_N^n \times \text{RT}_{k}^{n+1} \leq_{sW} \text{RT}_{k+1}^{n+1} \quad \text{for all } n, k \geq 1. \]

Proof. (Idea.) Given a coloring \(c_1 : [N]^n \to N \) with finite range and a coloring \(c_2 : [N]^{n+1} \to k \) we construct a coloring \(c^+ : [N]^{n+1} \to k + 1 \) as follows:

\[
c^+(A) := \begin{cases}
 c_2(A) & \text{if } A \text{ is homogeneous for } c_1 \\
 k & \text{otherwise}
\end{cases}
\]

for all \(A \in [N]^{n+1} \). Then \(\text{RT}_{2}^{n+1}(c^+) \subseteq \text{RT}_N^n(c_1) \cap \text{RT}_{k}^{n+1}(c_2) \) and hence the desired reduction follows. □

Corollary

\((\text{RT}_k^n)^* \leq_{W} \text{RT}_2^{n+1} \quad \text{for all } n, k \geq 1. \)
Parallelization of Ramsey

Theorem (B. and Rakotoniaina 2015)

\[\hat{\text{RT}}_k^n \leq_{SW} \text{RT}_{2}^{n+2} \text{ for all } n, k \geq 1. \]

Proof. (Idea.) Given a sequence \((c_i)_i\) of colorings \(c_i : [\mathbb{N}]^n \to k\), we compute a sequence \((d_m)_m\) of colorings \(d_m \in C_{n,k^m}\) that capture the products \((\text{RT}_k^n)^m\) and a sequence \((d_m^+)_m\) of colorings \(d_m^+ : [\mathbb{N}]^{n+1} \to 2\) by

\[
d_m^+(A) := \begin{cases}
0 & \text{if } A \text{ is homogeneous for } d_m \\
1 & \text{otherwise}
\end{cases}
\]

for all \(A \in [\mathbb{N}]^{n+1}\). Now, in a final step we compute a coloring \(c : [\mathbb{N}]^{n+2} \to 2\) with

\[
c(\{m\} \cup A) := d_m^+(A)
\]

for all \(A \in [\mathbb{N}]^{n+1}\) and \(m < \min(A)\). Given an infinite homogeneous set \(M \in \text{RT}_{2}^{n+2}(c)\) we determine a sequence \((M_i)_i\) as follows: for each fixed \(i \in \mathbb{N}\) we first search for a number \(m > i\) in \(M\) and then we let \(M_i := \{x \in M : x > m\}\).
Corollary

For all $n \geq 2$ we obtain:

- $\lim\equiv^N W SRT^1_N$
- $\lim \leq^W SRT^3_2$
- $WKL' \leq^W RT^3_2$ (Hirschfeldt and Jockusch 2015)
- $WKL^{(n)} \leq^W SRT^{n+2}_2$

- A coloring $c : [\mathbb{N}]^n \to k$ is called stable, if $\lim_{i \to \infty} c(A \cup \{i\})$ exists for all $A \in [\mathbb{N}]^{n-1}$.
- SRT^*_k is the restriction of RT^*_k to stable colorings.
Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

\[
\text{RT}_k^n \leq_{W} \text{SRT}_k^n \ast \text{COH} \text{ for all } n, k \geq 1.
\]

Theorem

\[
\text{SRT}_k^{n+1} \leq_{W} \text{RT}_k^n \ast \lim \text{ for all } n, k \geq 1.
\]

Proof. (Idea.) In fact, we even proved \(\text{SRT}_k^{n+1} \equiv_{W} (\text{CRT}_k^n)' \). \(\square \)

Corollary

\[
\widehat{\text{RT}}_k^n \leq_{W} \text{RT}_k^n \ast \text{WKL}' \text{ for all } n, k \geq 1.
\]

Proof. (Idea.) We use \(\text{WKL}' \equiv_{W} \text{lim} \ast \text{COH} \). \(\square \)

Corollary

\[
\widehat{\text{RT}}_k^n =_{W} \text{WKL}^{(n)} \text{ for all } n \geq 1, k \geq 2.
\]

Corollary

\(\text{RT}_k^n \) is effectively \(\Sigma^0_{n+2} \)-, but not \(\Sigma^0_{n+1} \)-measurable for \(n, k \geq 2 \).
Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

\[\text{RT}_k^n \leq \text{WSRT}_k^n \ast \text{COH} \text{ for all } n, k \geq 1. \]

Theorem

\[\text{SRT}_{k}^{n+1} \leq \text{WRT}_k^n \ast \text{lim} \text{ for all } n, k \geq 1. \]

Proof. (Idea.) In fact, we even proved \(\text{SRT}_{k}^{n+1} \equiv_{\text{W}} \text{(CRT}_{k}^{n})' \). □

Corollary

\[\text{RT}_{k}^{n+1} \leq \text{WRT}_k^n \ast \text{WKL}' \text{ for all } n, k \geq 1. \]

Proof. (Idea.) We use \(\text{WKL}' \equiv_{\text{W}} \text{lim} \ast \text{COH}. \) □

Corollary

\[\text{RT}_{k}^{n} =_{\text{W}} \text{WKL}^{(n)} \text{ for all } n \geq 1, k \geq 2. \]

Corollary

\(\text{RT}_k^n \) is effectively \(\Sigma_{n+2}^0 \)-, but not \(\Sigma_{n+1}^0 \)-measurable for \(n, k \geq 2. \)
Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

\[
RT^n_k \leq_W SRT^n_k \ast \text{COH} \quad \text{for all } n, k \geq 1.
\]

\[
\text{Theorem}
\]

\[
SRT^{n+1}_k \leq_W RT^n_k \ast \lim \quad \text{for all } n, k \geq 1.
\]

Proof. (Idea.) In fact, we even proved \(SRT^{n+1}_k \equiv_W (CRT^n_k)' \). □

Corollary

\[
RT^{n+1}_k \leq_W RT^n_k \ast \text{WKL'} \quad \text{for all } n, k \geq 1.
\]

Proof. (Idea.) We use \(\text{WKL'} \equiv_W \lim \ast \text{COH} \). □

Corollary

\[
\widetilde{RT}^n_k \equiv_W \text{WKL}^{(n)} \quad \text{for all } n \geq 1, k \geq 2.
\]

Corollary

\(RT^n_k \) is effectively \(\Sigma^0_{n+2} \)-, but not \(\Sigma^0_{n+1} \)-measurable for \(n, k \geq 2 \).
Theorem (Cholak, Jockusch, Slaman 2009)

\[\text{RT}_k^n \leq_w \text{SRT}_k^n \ast \text{COH} \text{ for all } n, k \geq 1. \]

Theorem

\[\text{SRT}_{k}^{n+1} \leq_w \text{RT}_k^n \ast \lim \text{ for all } n, k \geq 1. \]

Proof. (Idea.) In fact, we even proved \(\text{SRT}_{k}^{n+1} \equiv_w \text{CRT}_k^n \). \(\square \)

Corollary

\[\text{RT}_k^{n+1} \leq_w \text{RT}_k^n \ast \text{WKL}' \text{ for all } n, k \geq 1. \]

Proof. (Idea.) We use \(\text{WKL}' \equiv_w \lim \ast \text{COH}. \) \(\square \)

Corollary

\[\hat{\text{RT}}_k^n \equiv_w \text{WKL}^{(n)} \text{ for all } n \geq 1, k \geq 2. \]

Corollary

\(\text{RT}_k^n \) is effectively \(\Sigma_{n+2}^0 \)-, but not \(\Sigma_{n+1}^0 \)-measurable for \(n, k \geq 2. \)
Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

\[\text{RT}_k^n \leq_{W} \text{SRT}_k^n \ast \text{COH} \text{ for all } n, k \geq 1. \]

Theorem

\[\text{SRT}_k^{n+1} \leq_{W} \text{RT}_k^n \ast \lim \text{ for all } n, k \geq 1. \]

Proof. (Idea.) In fact, we even proved \(\text{SRT}_k^{n+1} \equiv_{W} (\text{CRT}_k^n)' \).

\[\square \]

Corollary

\[\text{RT}_k^{n+1} \leq_{W} \text{RT}_k^n \ast \text{WKL}' \text{ for all } n, k \geq 1. \]

Proof. (Idea.) We use \(\text{WKL}' \equiv_{W} \lim \ast \text{COH} \).

\[\square \]

Corollary

\[\widehat{\text{RT}}_k^n \equiv_{W} \text{WKL}^{(n)} \text{ for all } n \geq 1, k \geq 2. \]

Corollary

\(\text{RT}_k^n \) is effectively \(\Sigma^0_{n+2} \)-, but not \(\Sigma^0_{n+1} \)-measurable for \(n, k \geq 2 \).
Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

\[\mathsf{RT}_k^n \leq_W \mathsf{SRT}_k^n \ast \mathsf{COH} \text{ for all } n, k \geq 1. \]

Theorem

\[\mathsf{SRT}_k^{n+1} \leq_W \mathsf{RT}_k^n \ast \lim \text{ for all } n, k \geq 1. \]

Proof. (Idea.) In fact, we even proved \(\mathsf{SRT}_k^{n+1} \equiv_W (\mathsf{CRT}_k^n)' \). □

Corollary

\[\mathsf{RT}_k^{n+1} \leq_W \mathsf{RT}_k^n \ast \mathsf{WKL}' \text{ for all } n, k \geq 1. \]

Proof. (Idea.) We use \(\mathsf{WKL}' \equiv_W \lim \ast \mathsf{COH} \). □

Corollary

\[\widehat{\mathsf{RT}}_k^n \equiv_W \mathsf{WKL}^{(n)} \text{ for all } n \geq 1, k \geq 2. \]

Corollary

\(\mathsf{RT}_k^n \) is effectively \(\Sigma_{n+2}^0 \)–, but not \(\Sigma_{n+1}^0 \)–measurable for \(n, k \geq 2 \).
Upper Bounds

Theorem (Cholak, Jockusch, Slaman 2009)

\[\text{RT}_k^n \leq \text{W SRT}_k^n \ast \text{COH} \text{ for all } n, k \geq 1. \]

Theorem

\[\text{SRT}_k^{n+1} \leq \text{W RT}_k^n \ast \text{lim} \text{ for all } n, k \geq 1. \]

Proof. (Idea.) In fact, we even proved \(\text{SRT}_k^{n+1} \equiv \text{W (CRT}_k^n)' \). □

Corollary

\[\text{RT}_k^{n+1} \leq \text{W RT}_k^n \ast \text{WKL}' \text{ for all } n, k \geq 1. \]

Proof. (Idea.) We use \(\text{WKL}' \equiv \text{W lim} \ast \text{COH}. \) □

Corollary

\[\widehat{\text{RT}}_k^n \equiv \text{W WKL}^{(n)} \text{ for all } n \geq 1, k \geq 2. \]

Corollary

\(\text{RT}_k^n \) is effectively \(\Sigma^0_{n+2} \)-, but not \(\Sigma^0_{n+1} \)-measurable for \(n, k \geq 2. \)
Ramsey’s Theorem and Cohesiveness

\[
\Sigma_4^0 \rightarrow \lim'' \rightarrow WKL'' \\
\rightarrow (RT_2^1)' \times \lim \\
\rightarrow SRT_2^2 \times COH \rightarrow \rightarrow SRT_2^2 \times COH \rightarrow \rightarrow SRT_2^2 \sqcup COH \rightarrow \rightarrow SRT_2^2 \rightarrow \rightarrow (CRT_2^1)'
\]

\[
\Sigma_3^0 \rightarrow \lim' \rightarrow WKL' \equiv_{sW} KL \\
\rightarrow C_2' \equiv_{sW} BWT_2 \rightarrow RT_2^1 = D_2^1
\]

\[
\Sigma_2^0 \rightarrow \lim \rightarrow COH \\
\rightarrow C_N \equiv_{sW} \lim N \rightarrow C_F
\]
The Squashing Theorem

Definition

\[f : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \] is called **finitely tolerant** if there is a computable
\[T : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N} \] such that for all \(p, q \in \text{dom}(f) \), \(r \in \mathbb{N}^\mathbb{N} \), \(k \in \mathbb{N} \):

\[
((\forall n \geq k)(p(n) = q(n)) \ \text{and} \ \ r \in f(q)) \implies T\langle r, k \rangle \in f(p).
\]

- \(f \) finitely tolerant \(\implies \) \(f \) fractal.
- \(\lim, BWT_n, BWT_N, BWT_{2^N}, RT^n_k, RT^n_N \) are finitely tolerant.

Theorem (Dorais, Dzhafarov, Hirst, Milet and Shafer 2016)

Let \(f, g : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \) and let \(f \) be finitely tolerant and total. Then
\[g \times f \leq_W f \implies \widehat{g} \leq_W f. \]

Note. \(BWT_N \) is not total.

Corollary

Under the same assumptions on \(f \) it holds that
\[f \text{ idempotent} \implies f \text{ parallelizable}. \]
The Squashing Theorem

Definition

\(f : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \) is called \textbf{finitely tolerant} if there is a computable \(T : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N} \) such that for all \(p, q \in \text{dom}(f), \ r \in \mathbb{N}^\mathbb{N}, \ k \in \mathbb{N}: ((\forall n \geq k)(p(n) = q(n)) \text{ and } r \in f(q)) \implies T\langle r, k \rangle \in f(p) \).

\[
\begin{align*}
\text{\(\triangleright \) } f \text{ finitely tolerant } \implies f \text{ fractal.} \\
\text{\(\triangleright \) } \text{lim, BWT}_n, \text{BWT}_n, \text{BWT}_2^n, \text{RT}_k^n, \text{RT}_N^n \text{ are finitely tolerant.}
\end{align*}
\]

Theorem (Dorais, Dzhafarov, Hirst, Milet\, and Shafer 2016)

Let \(f, g : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \) and let \(f \) be finitely tolerant and total. Then \(g \times f \leq_W f \implies \hat{g} \leq_W f \).

Note. \(\text{BWT}_N \) is not total.

Corollary

Under the same assumptions on \(f \) it holds that \(f \) idempotent \(\implies f \) parallelizable.
The Squashing Theorem

Definition

\(f : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \) is called finitely tolerant if there is a computable \(T : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N} \) such that for all \(p, q \in \text{dom}(f) \), \(r \in \mathbb{N}^\mathbb{N} \), \(k \in \mathbb{N} \):

\[\left((\forall n \geq k)(p(n) = q(n)) \text{ and } r \in f(q) \right) \Longrightarrow T\langle r, k \rangle \in f(p). \]

- \(f \) finitely tolerant \(\Longrightarrow \) \(f \) fractal.
- \(\lim, \text{BWT}_n, \text{BWT}_N, \text{BWT}_2^N, \text{RT}_k^n, \text{RT}_N^n \) are finitely tolerant.

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

Let \(f, g : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \) and let \(f \) be finitely tolerant and total. Then \(g \times f \leq_W f \Longrightarrow \widehat{g} \leq_W f \).

Note. \(\text{BWT}_N \) is not total.

Corollary

Under the same assumptions on \(f \) it holds that \(f \) idempotent \(\Longrightarrow \) \(f \) parallelizable.
The Squashing Theorem

Definition

\(f : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \) is called finitely tolerant if there is a computable \(T : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N} \) such that for all \(p, q \in \text{dom}(f) \), \(r \in \mathbb{N}^\mathbb{N} \), \(k \in \mathbb{N} \):

\[
(\forall n \geq k)(p(n) = q(n)) \text{ and } r \in f(q) \implies T\langle r, k \rangle \in f(p).
\]

- \(f \) finitely tolerant \(\implies f \) fractal.
- lim, \(\text{BWT}_n \), \(\text{BWT}_\mathbb{N} \), \(\text{BWT}_{2^\mathbb{N}} \), \(\text{RT}_k^n \), \(\text{RT}_{\mathbb{N}}^n \) are finitely tolerant.

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

Let \(f, g : \subseteq \mathbb{N}^\mathbb{N} \Rightarrow \mathbb{N}^\mathbb{N} \) and let \(f \) be finitely tolerant and total. Then

\(g \times f \leq_W f \implies \widehat{g} \leq_W f. \)

Note. \(\text{BWT}_\mathbb{N} \) is not total.

Corollary

Under the same assumptions on \(f \) it holds that

\(f \) idempotent \(\implies f \) parallelizable.
The Squashing Theorem

Definition

\(f : \subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N}^{\mathbb{N}} \) is called **finitely tolerant** if there is a computable \(T : \subseteq \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}} \) such that for all \(p, q \in \text{dom}(f), r \in \mathbb{N}^{\mathbb{N}}, k \in \mathbb{N}: ((\forall n \geq k)(p(n) = q(n)) \text{ and } r \in f(q)) \implies T\langle r, k \rangle \in f(p). \)

- \(f \) finitely tolerant \(\implies f \) fractal.
- \(\text{lim, BWT}_n, \text{BWT}_N, \text{BWT}_{2N}, \text{RT}_k^n, \text{RT}_{N}^n \) are finitely tolerant.

Theorem (Dorais, Dzhafarov, Hirst, Miletì and Shafer 2016)

Let \(f, g : \subseteq \mathbb{N}^{\mathbb{N}} \Rightarrow \mathbb{N}^{\mathbb{N}} \) and let \(f \) be finitely tolerant and total. Then

\[g \times f \leq_W f \implies \widehat{g} \leq_W f. \]

Note. \(\text{BWT}_N \) is not total.

Corollary

Under the same assumptions on \(f \) it holds that

\(f \) idempotent \(\implies f \) parallelizable.
Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)
\[RT^n_k <_{sW} RT^n_{k+1} \text{ for all } n, k \geq 1. \]

Theorem (B. & Rakotoniaina, Hirschfeldt & Jockusch, Patey 2015)
\[RT^n_k <_W RT^n_{k+1} \text{ for all } n, k \geq 1. \]

Proof.

\[RT^n_2 \times RT^{n+1}_k \leq_W RT^{n+1}_k \text{ by the Product Theorem.} \]

\[RT^n_2 \times RT^{n+1}_k \leq_W RT^{n+1}_k \text{ implies } \widehat{RT}^{n}_2 \leq_W RT^{n+1}_k \text{ by the Squashing Theorem which leads to a contradiction:} \]
\[\lim^{(n-1)} \leq_W WKL^{(n)} \equiv_W \widehat{RT}^{n}_2 \leq_W RT^{n+1}_k \]

\[RT^n_2 \times RT^{n+1}_k \not\leq_W RT^{n+1}_k \text{ for all } n, k \geq 1 \text{ follows.} \]

\[RT^{n+1}_k <_W RT^{n+1}_{k+1} \text{ for all } n, k \geq 1 \text{ follows.} \]
Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)
\[\text{RT}_k^n <_{\text{sW}} \text{RT}_{k+1}^n \quad \text{for all } n, k \geq 1. \]

Theorem (B. & Rakotoniaina, Hirschfeldt & Jockusch, Patey 2015)
\[\text{RT}_k^n <_{\text{W}} \text{RT}_{k+1}^n \quad \text{for all } n, k \geq 1. \]

Proof.

\begin{itemize}
 \item \[\text{RT}_2^n \times \text{RT}_{k}^{n+1} \leq_{\text{W}} \text{RT}_{k+1}^{n+1} \] by the Product Theorem.
 \item \[\text{RT}_2^n \times \text{RT}_{k}^{n+1} \leq_{\text{W}} \text{RT}_{k}^{n+1} \] implies \(\hat{\text{RT}}_2^n \leq_{\text{W}} \text{RT}_{k}^{n+1} \) by the Squashing Theorem which leads to a contradiction:
 \[\lim_{(n-1)}^{(n-1)} \leq_{\text{W}} \text{WKL}^{(n)} \equiv_{\text{W}} \hat{\text{RT}}_2^n \leq_{\text{W}} \text{RT}_{k}^{n+1} \]
 \item \[\text{RT}_2^n \times \text{RT}_{k}^{n+1} \not<_{\text{W}} \text{RT}_{k}^{n+1} \] for all \(n, k \geq 1 \) follows.
 \item \[\text{RT}_{k}^{n+1} <_{\text{W}} \text{RT}_{k+1}^{n+1} \] for all \(n, k \geq 1 \) follows.
\end{itemize}
Ramsey’s Theorem in the Weihrauch Lattice

\[
\begin{align*}
\Sigma^0_6 \quad \lim^{(4)} \quad \downarrow \\
\text{WKL}^{(4)} \equiv_{sW} \hat{C}^{(4)}_2 \quad \rightarrow \quad \text{RT}^4_N \quad \rightarrow \quad \ldots \quad \rightarrow \quad \text{RT}^4_N \quad \rightarrow \quad \text{RT}^4_3 \quad \rightarrow \quad \text{RT}^4_2 \quad \rightarrow \quad \hat{C}^{(4)}_2
\\
\Sigma^0_5 \quad \lim^{(3)} \quad \downarrow \\
\text{WKL}^{(3)} \equiv_{sW} \hat{C}^{(3)}_2 \quad \rightarrow \quad \text{RT}^3_N \quad \rightarrow \quad \ldots \quad \rightarrow \quad \text{RT}^3_4 \quad \rightarrow \quad \text{RT}^3_3 \quad \rightarrow \quad \text{RT}^3_2 \quad \rightarrow \quad \hat{C}^{(3)}_2
\\
\Sigma^0_4 \quad \lim'' \quad \downarrow \\
\text{WKL}'' \equiv_{sW} \hat{C}''_2 \quad \rightarrow \quad \text{RT}^2_N \quad \rightarrow \quad \ldots \quad \rightarrow \quad \text{RT}^2_4 \quad \rightarrow \quad \text{RT}^2_3 \quad \rightarrow \quad \text{RT}^2_2 \quad \rightarrow \quad \hat{C}''_2
\\
\Sigma^0_3 \quad \lim' \quad \downarrow \\
\text{WKL}' \equiv_{sW} \hat{C}'_2 \quad \rightarrow \quad \text{RT}^1_N \quad \rightarrow \quad \ldots \quad \rightarrow \quad \text{RT}^1_4 \quad \rightarrow \quad \text{RT}^1_3 \quad \rightarrow \quad \text{RT}^1_2 \quad \rightarrow \quad \hat{C}'_2
\\
\Sigma^0_2 \quad \lim \equiv_{sW} \hat{C}_N \quad \downarrow \quad \downarrow \\
\text{WKL} \equiv_{sW} \hat{C}_2 \quad \rightarrow \quad K_N \equiv_{sW} \hat{C}^*_2 \quad \rightarrow \quad \ldots \quad \rightarrow \quad \hat{C}_4 \quad \rightarrow \quad \hat{C}_3 \quad \rightarrow \quad \hat{C}_2
\end{align*}
\]
Corollary (Jump of compact choice)

\[K'_N \equiv^W \text{RT}^1_N, \ K'_N \preceq^W \text{SRT}^2_N, \ K'_N \preceq^W \text{SRT}^2_2 \ast \text{SRT}^2_2 \quad \text{and} \quad K^{(n)}_N \preceq^W \text{SRT}^n_N \quad \text{for} \ n \geq 2. \]

- Case \(n = 2 \) can be seen as a uniform version of the fact that \(\text{SRT}^2_{<\infty} \) proves \(\text{B} \Sigma^0_3 \) over \(\text{RCA}_0 \) (Cholak, Jockusch, Slaman).
- \(\text{RT}^1_{<\infty} \) is equivalent to \(\text{B} \Sigma^0_2 \) over \(\text{RCA}_0 \) (Hirst)
- \(\text{SRT}^2_2 \) proves \(\text{RT}^1_{<\infty} \) over \(\text{RCA}_0 \) (Cholak, Jockusch, Slaman)
Corollary (Jump of compact choice)

\[K'_N \equiv_W RT^1_N, \ K'_N \not\leq_W SRT^2_N, \ K'_N \leq_W SRT^2_N \ast SRT^2_N \quad \text{and} \quad K^{(n)}_N \leq_W SRT^n_N \quad \text{for} \ n \geq 2. \]

- Case \(n = 2 \) can be seen as a uniform version of the fact that \(SRT^2_{<\infty} \) proves \(B\Sigma^0_3 \) over \(RCA_0 \) (Cholak, Jockusch, Slaman).
- \(RT^1_{<\infty} \) is equivalent to \(B\Sigma^0_2 \) over \(RCA_0 \) (Hirst)
- \(SRT^2_2 \) proves \(RT^1_{<\infty} \) over \(RCA_0 \) (Cholak, Jockusch, Slaman) in contrast to the statement above!
Corollary (Jump of compact choice)

\[K'_N \equiv W \ RT^1_N, \ K'_N \not\leq W \ SRT^2_N, \ K'_N \leq W \ SRT^2_N \ast SRT^2_N \text{ and } \]
\[K^{(n)}_N \leq W \ SRT^*_N \text{ for } n \geq 2. \]

- Case \(n = 2 \) can be seen as a uniform version of the fact that \(SRT^2_{< \infty} \) proves \(B\Sigma^0_3 \) over \(RCA_0 \) (Cholak, Jockusch, Slaman).
- \(RT^1_{< \infty} \) is equivalent to \(B\Sigma^0_2 \) over \(RCA_0 \) (Hirst)
- \(SRT^2_2 \) proves \(RT^1_{< \infty} \) over \(RCA_0 \) (Cholak, Jockusch, Slaman) in contrast to the statement above!
Lowness

\[L = J^{-1} \circ \text{lim} \]
The Uniform Low Basis Theorem

- $J : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}, p \mapsto p'$ denotes the Turing jump.
- $J \equiv_{sw} \lim$ and $J^{-1} : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ is computable.
- $L := J^{-1} \circ \lim$ is the low map.
- $q \in \mathbb{N}^\mathbb{N}$ is low : $\iff q' \leq_T \emptyset'$ $\iff (\exists p \text{ comp.}) L(p) = q$.

Definition (B., de Brecht and Pauly 2011)

- f is low : $\iff f \leq_{sw} L.$

- L is not a cylinder, hence \leq_{sw} cannot be replaced by \leq_w.
- L is also not idempotent.

Theorem (B., de Brecht and Pauly 2011)

- $C_R \leq_{sw} L$, that is C_R is low.

This is a uniform version of the Low Basis Theorem.

Corollary

- $WKL \equiv_{sw} C_{2^\mathbb{N}}$ and $BCT_1 \equiv_{sw} C_\mathbb{N}$ are low.
The Uniform Low Basis Theorem

- $J : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}, p \mapsto p'$ denotes the Turing jump.
- $J \equiv_{SW} \text{lim}$ and $J^{-1} : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ is computable.
- $L := J^{-1} \circ \text{lim}$ is the low map.
- $q \in \mathbb{N}^\mathbb{N}$ is low $\iff q' \leq_T \emptyset' \iff (\exists p \text{ comp.}) L(p) = q$.

Definition (B., de Brecht and Pauly 2011)

f is low $\iff f \leq_{SW} L$.

- L is not a cylinder, hence \leq_{SW} cannot be replaced by \leq_W.
- L is also not idempotent.

Theorem (B., de Brecht and Pauly 2011)

$C_\mathbb{R} \leq_{SW} L$, that is $C_\mathbb{R}$ is low.

This is a uniform version of the Low Basis Theorem.

Corollary

$WKL \equiv_{SW} C_2^\mathbb{N}$ and $BCT_1 \equiv_{SW} C_\mathbb{N}$ are low.
The Uniform Low Basis Theorem

- $J : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$, $p \mapsto p'$ denotes the Turing jump.
- $J \equiv_{sW} \text{lim}$ and $J^{-1} : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ is computable.
- $L := J^{-1} \circ \text{lim}$ is the low map.
- $q \in \mathbb{N}^\mathbb{N}$ is low : $\iff q' \leq_T \emptyset' \iff (\exists p \text{ comp.}) L(p) = q$.

Definition (B., de Brecht and Pauly 2011)

f is low : $\iff f \leq_{sW} L$.

- L is not a cylinder, hence \leq_{sW} cannot be replaced by \leq_W.
- L is also not idempotent.

Theorem (B., de Brecht and Pauly 2011)

$C_R \leq_{sW} L$, that is C_R is low.

This is a uniform version of the Low Basis Theorem.

Corollary

$WKL \equiv_{sW} C_{2^\mathbb{N}}$ and $BCT_1 \equiv_{sW} C_{\mathbb{N}}$ are low.
The Uniform Low Basis Theorem

- \(J : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}, p \mapsto p' \) denotes the Turing jump.
- \(J \equiv_{sW} \text{lim} \) and \(J^{-1} : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N} \) is computable.
- \(\text{L} := J^{-1} \circ \text{lim} \) is the low map.
- \(q \in \mathbb{N}^\mathbb{N} \) is low : \(\iff q' \leq_T \emptyset' \iff (\exists p \text{comp.}) \text{L}(p) = q. \)

Definition (B., de Brecht and Pauly 2011)

\(f \) is low : \(\iff f \leq_{sW} \text{L}. \)

- \(\text{L} \) is not a cylinder, hence \(\leq_{sW} \) cannot be replaced by \(\leq_{W} \).
- \(\text{L} \) is also not idempotent.

Theorem (B., de Brecht and Pauly 2011)

\(C_R \leq_{sW} \text{L}, \) that is \(C_R \) is low.

This is a uniform version of the Low Basis Theorem.

Corollary

\(\text{WKL} \equiv_{sW} C_{2^\mathbb{N}} \) and \(\text{BCT}_1 \equiv_{sW} C_{\mathbb{N}} \) are low.
The Uniform Low Basis Theorem

- \(J : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}, p \mapsto p' \) denotes the Turing jump.
- \(J \equiv_{sW} \text{lim} \) and \(J^{-1} : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N} \) is computable.
- \(L := J^{-1} \circ \text{lim} \) is the low map.
- \(q \in \mathbb{N}^\mathbb{N} \) is low: \(q' \leq_T \emptyset' \iff (\exists p \text { comp.) } L(p) = q \).

Definition (B., de Brecht and Pauly 2011)

\[f \text{ is low} : \iff f \leq_{sW} L. \]

- \(L \) is not a cylinder, hence \(\leq_{sW} \) cannot be replaced by \(\leq_W \).
- \(L \) is also not idempotent.

Theorem (B., de Brecht and Pauly 2011)

\(C_R \leq_{sW} L \), that is \(C_R \) is low.

This is a uniform version of the Low Basis Theorem.

Corollary

\(\text{WKL} \equiv_{sW} C_{2^\mathbb{N}} \) and \(\text{BCT}_1 \equiv_{sW} C_{\mathbb{N}} \) are low.
The Uniform Low Basis Theorem

- \(J : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}, p \mapsto p' \) denotes the Turing jump.
- \(J \equiv_{\text{sw}} \lim \) and \(J^{-1} : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N} \) is computable.
- \(L := J^{-1} \circ \lim \) is the low map.
- \(q \in \mathbb{N}^\mathbb{N} \) is low : \(\iff q' \leq_T \emptyset' \iff (\exists p \text{ comp.}) L(p) = q. \)

Definition (B., de Brecht and Pauly 2011)

\(f \) is low : \(\iff f \leq_{\text{sw}} L. \)

- \(L \) is not a cylinder, hence \(\leq_{\text{sw}} \) cannot be replaced by \(\leq_{W}. \)
- \(L \) is also not idempotent.

Theorem (B., de Brecht and Pauly 2011)

\(C_R \leq_{\text{sw}} L, \) that is \(C_R \) is low.

This is a uniform version of the Low Basis Theorem.

Corollary

\(\text{WKL} \equiv_{\text{sw}} C_2^\mathbb{N} \) and \(\text{BCT}_1 \equiv_{\text{sw}} C_\mathbb{N} \) are low.
The Uniform Low Basis Theorem

- $J : \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}$, $p \mapsto p'$ denotes the Turing jump.
- $J \equiv_{sW} \lim$ and $J^{-1} : \subseteq \mathbb{N}^\mathbb{N} \rightarrow \mathbb{N}^\mathbb{N}$ is computable.
- $L := J^{-1} \circ \lim$ is the low map.
- $q \in \mathbb{N}^\mathbb{N}$ is low: $\iff q' \leq_T \emptyset' \iff (\exists p \text{ comp.}) L(p) = q$.

Definition (B., de Brecht and Pauly 2011)

f is low: $\iff f \leq_{sW} L$.

- L is not a cylinder, hence \leq_{sW} cannot be replaced by \leq_{W}.
- L is also not idempotent.

Theorem (B., de Brecht and Pauly 2011)

$C_R \leq_{sW} L$, that is C_R is low.

This is a uniform version of the Low Basis Theorem.

Corollary

$\text{WKL} \equiv_{sW} C_{2^\mathbb{N}}$ and $\text{BCT}_1 \equiv_{sW} C_{\mathbb{N}}$ are low.
The Uniform Low Basis Theorem

- $J : \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$, $p \mapsto p'$ denotes the Turing jump.
- $J \equiv_{sW} \text{lim}$ and $J^{-1} : \subseteq \mathbb{N}^\mathbb{N} \to \mathbb{N}^\mathbb{N}$ is computable.
- $L := J^{-1} \circ \text{lim}$ is the low map.
- $q \in \mathbb{N}^\mathbb{N}$ is low $\iff q' \leq_T \emptyset' \iff (\exists p \text{ comp.}) L(p) = q$.

Definition (B., de Brecht and Pauly 2011)

f is low $\iff f \leq_{sW} L$.

- L is not a cylinder, hence \leq_{sW} cannot be replaced by \leq_W.
- L is also not idempotent.

Theorem (B., de Brecht and Pauly 2011)

$C_R \leq_{sW} L$, that is C_R is low.

This is a uniform version of the Low Basis Theorem.

Corollary

$WKL \equiv_{sW} C_{2^\mathbb{N}}$ and $BCT_1 \equiv_{sW} C_\mathbb{N}$ are low.
The Low Basis Theorem

- $\text{LBT} : \subseteq \text{Tr} \Rightarrow 2^\mathbb{N}$, $T \mapsto \{ p \in [T] : p' \leq_T T' \}$ denotes the Low Basis Theorem with $\text{dom}(\text{LBT})$ as the set of all infinite binary trees.

Theorem (B., Hendtlass and Kreuzer 2015)

$\text{WKL} \prec_w \text{LBT} \prec_w \text{L}$ and $\text{LBT} \nmid_w \text{CR}$.

Proof. (Idea) It is clear that $\text{WKL} \leq_w \text{LBT} \leq_w \text{L}$ and $\text{LBT} \not\leq_w \text{CR}$ follows from the Hyperimmune Free Basis Theorem. $\text{CR} \not\leq_w \text{LBT}$ follows from the following proposition. □

Proposition

$\text{LPO} \not\leq_w \text{LBT}$.

The proof exploits the fact that LBT restricted to computable inputs is parallelizable.
The Low Basis Theorem

- $\text{LBT} : \subseteq \text{Tr} \Rightarrow 2^\mathbb{N}, T \mapsto \{ p \in [T] : p' \leq_T T' \}$ denotes the Low Basis Theorem with $\text{dom}(\text{LBT})$ as the set of all infinite binary trees.

Theorem (B., Hendtlass and Kreuzer 2015)

$\text{WKL} <_W \text{LBT} <_W \text{L}$ and $\text{LBT} \not<_W \text{CR}$.

Proof. (Idea) It is clear that $\text{WKL} \leq_W \text{LBT} \leq_W \text{L}$ and $\text{LBT} \not<_W \text{CR}$ follows from the Hyperimmune Free Basis Theorem. $\text{CR} \not<_W \text{LBT}$ follows from the following proposition.

Proposition

$LPO \not<_W \text{LBT}$.

The proof exploits the fact that LBT restricted to computable inputs is parallelizable.
The Low Basis Theorem

- $\text{LBT} \subseteq T \rightarrow 2^\mathbb{N}$, $T \mapsto \{ p \in [T] : p' \leq_T T' \}$ denotes the Low Basis Theorem with $\text{dom}(\text{LBT})$ as the set of all infinite binary trees.

Theorem (B., Hendtlass and Kreuzer 2015)

$\text{WKL} \lesssim_W \text{LBT} \lesssim_W \text{L}$ and $\text{LBT} \not\lesssim_W \text{C}_R$.

Proof. (Idea) It is clear that $\text{WKL} \leq_W \text{LBT} \leq_W \text{L}$ and $\text{LBT} \not\leq_W \text{C}_R$ follows from the Hyperimmune Free Basis Theorem. $\text{C}_R \not\leq_W \text{LBT}$ follows from the following proposition. □

Proposition

$LPO \not\leq_W \text{LBT}$.

The proof exploits the fact that LBT restricted to computable inputs is parallelizable.
The Low Basis Theorem

- \(\text{LBT} : \subseteq \text{Tr} \Rightarrow 2^\mathbb{N}, T \mapsto \{ p \in [T] : p' \leq_T T' \} \) denotes the Low Basis Theorem with \(\text{dom(LBT)} \) as the set of all infinite binary trees.

Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{WKL} \preceq \text{LBT} \preceq \text{L} \text{ and } \text{LBT} \npreceq \text{W} \text{C}_\text{R}. \]

Proof. (Idea) It is clear that \(\text{WKL} \preceq \text{LBT} \preceq \text{L} \) and \(\text{LBT} \npreceq \text{W} \text{C}_\text{R} \) follows from the Hyperimmune Free Basis Theorem. \(\text{C}_\text{R} \npreceq \text{W} \text{LBT} \) follows from the following proposition. □

Proposition

\[\text{LPO} \npreceq \text{W} \text{LBT}. \]

The proof exploits the fact that \(\text{LBT} \) restricted to computable inputs is parallelizable.
Lowness in the Weihrauch Lattice

\[C_{NN} \]

\[J \equiv_{sW} \lim \equiv_{sW} \hat{C}_N \]

\[L : = J^{-1} \circ \lim \]

\[COH \]

\[LBT \]

\[C_R \equiv_{sW} C_N \times C_{2^N} \]

\[WKL \equiv_{sW} C_{2^N} \]

\[BCT_1 \equiv_{sW} C_N \]

\[K_N \equiv_{sW} C_{2^*} \]

\[LPO \]

\[LLPO \equiv_{sW} C_2 \]

\[ACC_N \]
A Characterization and Application of Lowness

- \(f \ast_s g := \sup \{ f_0 \circ g_0 : f_0 \leq_{sW} f \text{ and } g_0 \leq_{sW} g \} \).
- \(\lim \ast_s g \) always exists as a maximum (and is realized by \(J \circ g^r \)).
- \(L_2 := J^{-1} \circ J^{-1} \circ \lim \circ \lim \) characterizes low\(_2\) similarly as \(L \) characterizes lowness.
- \(f \text{ low}_2 : \iff f \leq_{sW} L_2 \).

Theorem (B., Gherardi, Marcone 2012)

- \(f \text{ low} \iff f \leq_{sW} L \iff \lim \ast_s f \leq_{W} \lim \).
- \(f \text{ low}_2 \iff f \leq_{sW} L_2 \iff \lim' \ast_s f \leq_{W} \lim' \).

Theorem (B., Hendtlass and Kreuzer 2015)

COH and WBWT\(_\mathbb{R}\) are low\(_2\) but not low.

The proof uses WKL' \(\equiv_{W} \lim \ast \text{COH} \) and the fact that WKL is low.
A Characterization and Application of Lowness

- $f \ast_s g := \sup\{f_0 \circ g_0 : f_0 \leq_{sW} f \text{ and } g_0 \leq_{sW} g\}$.
- $\lim \ast_s g$ always exists as a maximum (and is realized by $J \circ g^r$).
- $L_2 := J^{-1} \circ J^{-1} \circ \lim \circ \lim$ characterizes low$_2$ similarly as L characterizes lowness.
- $f\text{ low}_2 : \iff f \leq_{sW} L_2$.

Theorem (B., Gherardi, Marcone 2012)

- $f\text{ low} : \iff f \leq_{sW} L \iff \lim \ast_s f \leq_W \lim$.
- $f\text{ low}_2 : \iff f \leq_{sW} L_2 \iff \lim' \ast_s f \leq_W \lim'$.

Theorem (B., Hendtlass and Kreuzer 2015)

COH and WBWT$_{\mathbb{R}}$ are low$_2$ but not low.

The proof uses WKL$'$ $\equiv_W \lim \ast \text{COH}$ and the fact that WKL is low.
A Characterization and Application of Lowness

- $f \ast_s g := \sup\{f_0 \circ g_0 : f_0 \leq_{SW} f \text{ and } g_0 \leq_{SW} g\}$.
- $\lim \ast_s g$ always exists as a maximum (and is realized by $J \circ g^r$).
- $L_2 := J^{-1} \circ J^{-1} \circ \lim \circ \lim$ characterizes low$_2$ similarly as L characterizes lowness.
- $f \text{ low}_2 : \iff f \leq_{SW} L_2$.

Theorem (B., Gherardi, Marcone 2012)

- $f \text{ low} \iff f \leq_{SW} L \iff \lim \ast_s f \leq_{W} \lim$.
- $f \text{ low}_2 \iff f \leq_{SW} L_2 \iff \lim' \ast_s f \leq_{W} \lim'$.

Theorem (B., Hendtlass and Kreuzer 2015)

COH and WBWT$_\mathbb{R}$ are low$_2$ but not low.

The proof uses WKL' $\equiv_{W} \lim \ast \text{COH}$ and the fact that WKL is low.
A Characterization and Application of Lowness

- $f \ast_s g := \sup\{f_0 \circ g_0 : f_0 \leq_{SW} f \text{ and } g_0 \leq_{SW} g\}$.
- $\lim^* s g$ always exists as a maximum (and is realized by $J\circ g^r$).
- $L_2 := J^{-1} \circ J^{-1} \circ \lim \circ \lim$ characterizes low$_2$ similarly as L characterizes lowness.
- f low$_2$: \iff $f \leq_{SW} L_2$.

Theorem (B., Gherardi, Marcone 2012)

- f low \iff $f \leq_{SW} L$ \iff $\lim^* s f \leq_{W} \lim$.
- f low$_2$ \iff $f \leq_{SW} L_2$ \iff $\lim^* s f \leq_{W} \lim^*$.

Theorem (B., Hendtlass and Kreuzer 2015)

COH and WBWT$_R$ are low$_2$ but not low.

The proof uses $WKL' \equiv_W \lim^* \text{COH}$ and the fact that WKL is low.
A Characterization and Application of Lowness

- \(f *_{s} g := \sup \{ f_0 \circ g_0 : f_0 \leq_{sW} f \text{ and } g_0 \leq_{sW} g \} \).
- \(\lim *_{s} g \) always exists as a maximum (and is realized by \(J \circ g^r \)).
- \(L_2 := J^{-1} \circ J^{-1} \circ \lim \circ \lim \) characterizes low\(_2\) similarly as \(L \) characterizes lowness.
- \(f \text{ low}_2 : \iff f \leq_{sW} L_2 \).

Theorem (B., Gherardi, Marcone 2012)

- \(f \text{ low} \iff f \leq_{sW} L \iff \lim *_{s} f \leq_{W} \lim \).
- \(f \text{ low}_2 \iff f \leq_{sW} L_2 \iff \lim' *_{s} f \leq_{W} \lim' \).

Theorem (B., Hendtlass and Kreuzer 2015)

COH and WBWT\(_R\) are low\(_2\) but not low.

The proof uses WKL' \(\equiv_{W} \lim * \text{COH} \) and the fact that WKL is low.
A Characterization and Application of Lowness

- $f \ast_s g := \sup \{ f_0 \circ g_0 : f_0 \leq_{SW} f \text{ and } g_0 \leq_{SW} g \}$.
- $\lim \ast_s g$ always exists as a maximum (and is realized by $J \circ g^r$).
- $L_2 := J^{-1} \circ J^{-1} \circ \lim \circ \lim$ characterizes low$_2$ similarly as L characterizes lowness.
- $f \text{ low}_2 : \iff f \leq_{SW} L_2$.

Theorem (B., Gherardi, Marcone 2012)

- $f \text{ low} \iff f \leq_{SW} L \iff \lim \ast_s f \leq_{W} \lim$.
- $f \text{ low}_2 \iff f \leq_{SW} L_2 \iff \lim' \ast_s f \leq_{W} \lim'$.

Theorem (B., Hendtlass and Kreuzer 2015)

COH and WBWT$_R$ are low$_2$ but not low.

The proof uses WKL' $\equiv_W \lim \ast \text{COH}$ and the fact that WKL is low.
Genericity
Genericity

- $p \in \mathbb{N}^\mathbb{N}$ is 1–generic : \iff p is a point of continuity of J.
- $\lim_J := J^{-1} \circ \lim \circ J^\mathbb{N} = L \circ J^\mathbb{N}$ is the limit operator with respect to the jump topology (also called Π–topology).
- $p \in \mathbb{N}^\mathbb{N}$ is called limit computable in the jump : \iff there is a computable sequence $(p_n)_n$ such that $\lim_{n \to \infty} J(p_n) = J(p)$.

Proposition (B., de Brecht and Pauly 2011)

- $p \in \mathbb{N}^\mathbb{N}$ 1–generic and limit computable $\implies p$ limit computable in the jump.
- $f \in \mathbb{N}^\mathbb{N}$ diagonally non-computable and $p \in \mathbb{N}^\mathbb{N}$ limit computable in the jump $\implies f \not\leq_T p$.

Theorem (B., de Brecht and Pauly 2011)

$\text{DNC}_\mathbb{N} \not\leq_W \lim_J$ and $\text{C}_\mathbb{N} \equiv_s W \lim_N <_W \lim_J <_W L$.

Surprisingly, $\lim_J \equiv_s W L$ with respect to some oracle.
Genericity

- \(p \in \mathbb{N}^\mathbb{N} \) is \(1 \)-generic : \(\Longleftrightarrow \) \(p \) is a point of continuity of \(J \).
- \(\lim_J := J^{-1} \circ \lim \circ J^\mathbb{N} = L \circ J^\mathbb{N} \) is the limit operator with respect to the jump topology (also called \(\Pi \)-topology).
- \(p \in \mathbb{N}^\mathbb{N} \) is called limit computable in the jump : \(\Longleftrightarrow \) there is a computable sequence \((p_n)_n\) such that \(\lim_{n \to \infty} J(p_n) = J(p) \).

Proposition (B., de Brecht and Pauly 2011)

- \(p \in \mathbb{N}^\mathbb{N} \) \(1 \)-generic and limit computable \(\implies p \) limit computable in the jump.
- \(f \in \mathbb{N}^\mathbb{N} \) diagonally non-computable and \(p \in \mathbb{N}^\mathbb{N} \) limit computable in the jump \(\implies f \nleq_T p \).

Theorem (B., de Brecht and Pauly 2011)

\(\text{DNC}_\mathbb{N} \nleq_W \lim_J \text{ and } C_\mathbb{N} \equiv_{sW} \lim_{\mathbb{N}} <_W \lim_J <_W L. \)

Surprisingly, \(\lim_J \equiv_{sW} L \) with respect to some oracle.
Genericity

- \(p \in \mathbb{N}^\mathbb{N} \) is 1–generic : \(\iff \) \(p \) is a point of continuity of \(J \).
- \(\lim_J := J^{-1} \circ \lim \circ J^\mathbb{N} = L \circ J^\mathbb{N} \) is the limit operator with respect to the jump topology (also called \(\Pi \)–topology).
- \(p \in \mathbb{N}^\mathbb{N} \) is called limit computable in the jump : \(\iff \) there is a computable sequence \((p_n)\) such that \(\lim_{n \to \infty} J(p_n) = J(p) \).

Proposition (B., de Brecht and Pauly 2011)

- \(p \in \mathbb{N}^\mathbb{N} \) 1–generic and limit computable \(\implies \) \(p \) limit computable in the jump.
- \(f \in \mathbb{N}^\mathbb{N} \) diagonally non-computable and \(p \in \mathbb{N}^\mathbb{N} \) limit computable in the jump \(\implies f \nleq_T p \).

Theorem (B., de Brecht and Pauly 2011)

\(\text{DNC}_\mathbb{N} \nleq_W \lim_J \) and \(C_\mathbb{N} \equiv_{sW} \lim_N \lesssim_W \lim_J \lesssim_W L \).

Surprisingly, \(\lim_J \equiv_{sW} L \) with respect to some oracle.
Genericity

- $p \in \mathbb{N}^\mathbb{N}$ is 1–generic : $\iff p$ is a point of continuity of J.
- $\lim J := J^{-1} \circ \lim \circ J^\mathbb{N} = L \circ J^\mathbb{N}$ is the limit operator with respect to the jump topology (also called Π–topology).
- $p \in \mathbb{N}^\mathbb{N}$ is called limit computable in the jump : \iff there is a computable sequence $(p_n)_n$ such that $\lim_{n \to \infty} J(p_n) = J(p)$.

Proposition (B., de Brecht and Pauly 2011)

- $p \in \mathbb{N}^\mathbb{N}$ 1–generic and limit computable $\implies p$ limit computable in the jump.
- $f \in \mathbb{N}^\mathbb{N}$ diagonally non-computable and $p \in \mathbb{N}^\mathbb{N}$ limit computable in the jump $\implies f \not\leq_T p$.

Theorem (B., de Brecht and Pauly 2011)

$\text{DNC}_\mathbb{N} \not\leq_W \lim J$ and $\mathcal{C}_\mathbb{N} \equiv_s W \lim \mathbb{N} <_W \lim J <_W L$.

Surprisingly, $\lim J \equiv_s W L$ with respect to some oracle.
Genericity

- $p \in \mathbb{N}^\mathbb{N}$ is 1–generic : \iff p is a point of continuity of J.
- $\lim J := J^{-1} \circ \lim \circ J^\mathbb{N} = L \circ J^\mathbb{N}$ is the limit operator with respect to the jump topology (also called Π–topology).
- $p \in \mathbb{N}^\mathbb{N}$ is called limit computable in the jump : \iff there is a computable sequence $(p_n)_n$ such that $\lim_{n \to \infty} J(p_n) = J(p)$.

Proposition (B., de Brecht and Pauly 2011)

- $p \in \mathbb{N}^\mathbb{N}$ 1–generic and limit computable \implies p limit computable in the jump.
- $f \in \mathbb{N}^\mathbb{N}$ diagonally non-computable and $p \in \mathbb{N}^\mathbb{N}$ limit computable in the jump \implies $f \not\leq_T p$.

Theorem (B., de Brecht and Pauly 2011)

$\text{DNC}_\mathbb{N} \not\leq_W \lim J$ and $C_\mathbb{N} \equiv_{sW} \lim \mathbb{N} <_W \lim J <_W L$.

Surprisingly, $\lim J \equiv_{sW} L$ with respect to some oracle.
Genericity

- $p \in \mathbb{N}^\mathbb{N}$ is 1-generic: $\iff p$ is a point of continuity of J.
- $\lim_J := J^{-1} \circ \lim \circ J^\mathbb{N} = L \circ J^\mathbb{N}$ is the limit operator with respect to the jump topology (also called Π–topology).
- $p \in \mathbb{N}^\mathbb{N}$ is called limit computable in the jump: \iff there is a computable sequence $(p_n)_n$ such that $\lim_{n \to \infty} J(p_n) = J(p)$.

Proposition (B., de Brecht and Pauly 2011)

- $p \in \mathbb{N}^\mathbb{N}$ 1–generic and limit computable $\implies p$ limit computable in the jump.
- $f \in \mathbb{N}^\mathbb{N}$ diagonally non-computable and $p \in \mathbb{N}^\mathbb{N}$ limit computable in the jump $\implies f \not\leq_T p$.

Theorem (B., de Brecht and Pauly 2011)

$\text{DNC}_\mathbb{N} \not\leq_W \text{lim}_J$ and $C_\mathbb{N} \equiv_{sW} \text{lim}_\mathbb{N} <_W \text{lim}_J <_W L$.

Surprisingly, $\text{lim}_J \equiv_{sW} L$ with respect to some oracle.
Genericity

- **1-GEN**: $2^\mathbb{N} \Rightarrow 2^\mathbb{N}$, $p \mapsto \{q : q \text{ is } 1\text{–generic in } p\}$.

Proposition (B., Hendtlass and Kreuzer 2015)

$f \leq_w \text{lim}_J$ if f has a limit computable realizer with only 1–generic points in its range.

Theorem (B., Hendtlass and Kreuzer 2015)

$\text{BCT}_0 <_w 1\text{-WGEN} <_w 1\text{-GEN} <_w \text{BCT}_0' \equiv_{sw} \Pi^0_1 G <_w \text{lim}_J$.

- **1-WGEN** denotes the problem of weakly 1–generics (defined similarly as above).
- **$\Pi^0_1 G$** denotes the so called Π^0_1–genericity problem studied in reverse mathematics (interpreted in the straightforward sense).
- **BCT_0'** is densely realized and parallelizable.

Corollary

$\text{ACC}_N \not\leq_w \text{BCT}_0'$.
1-GEN : \(2^\mathbb{N} \Rightarrow 2^\mathbb{N}, \ p \mapsto \{q : q \text{ is } 1\text{-generic in } p\}\).

Proposition (B., Hendtlass and Kreuzer 2015)

\(f \leq_W \text{lim}_J\) if \(f\) has a limit computable realizer with only 1–generic points in its range.

Theorem (B., Hendtlass and Kreuzer 2015)

\(\text{BCT}_0 <_W 1\text{-WGEN} <_W 1\text{-GEN} <_W \text{BCT}'_0 \equiv_s W \Pi^0_1 G <_W \text{lim}_J\).

- 1-WGEN denotes the problem of weakly 1–generics (defined similarly as above).
- \(\Pi^0_1 G\) denotes the so called \(\Pi^0_1\)–genericity problem studied in reverse mathematics (interpreted in the straightforward sense).
- \(\text{BCT}'_0\) is densely realized and parallelizable.

Corollary

\(\text{ACC}_N \not<_W \text{BCT}'_0\).
Genericity

- 1-GEN : $2^\mathbb{N} \Rightarrow 2^\mathbb{N}$, $p \mapsto \{ q : q \text{ is } 1\text{-generic in } p \}$.

Proposition (B., Hendtlass and Kreuzer 2015)

$f \leq_W \text{lim}_J$ if f has a limit computable realizer with only 1–generic points in its range.

Theorem (B., Hendtlass and Kreuzer 2015)

$\text{BCT}_0 <_W 1\text{-WGEN} <_W 1\text{-GEN} <_W \text{BCT}'_0 \equiv_S W \Pi^0_1 G <_W \text{lim}_J$.

- 1-WGEN denotes the problem of weakly 1–generics (defined similarly as above).
- $\Pi^0_1 G$ denotes the so called Π^0_1–genericity problem studied in reverse mathematics (interpreted in the straightforward sense).
- BCT'_0 is densely realized and parallelizable.

Corollary

$\text{ACC}_N \nleq_W \text{BCT}'_0$.
Genericity

- **1-GEN**: \(2^\mathbb{N} \Rightarrow 2^\mathbb{N}, \ p \mapsto \{q : q \text{ is } 1\text{-generic in } p\}\).

Proposition (B., Hendtlass and Kreuzer 2015)

\[f \leq_W \text{lim}_J \text{ if } f \text{ has a limit computable realizer with only } 1\text{-generic points in its range.} \]

Theorem (B., Hendtlass and Kreuzer 2015)

\[\text{BCT}_0 <_W 1\text{-WGEN} <_W 1\text{-GEN} <_W \text{BCT}'_0 \equiv_s W \Pi^0_1 G <_W \text{lim}_J. \]

- **1-WGEN** denotes the problem of weakly 1–generics (defined similarly as above).
- **\(\Pi^0_1 G\)** denotes the so called \(\Pi^0_1\)–genericity problem studied in reverse mathematics (interpreted in the straightforward sense).
- **\(\text{BCT}'_0\)** is densely realized and parallelizable.

Corollary

\[\text{ACC}_N \not\leq_W \text{BCT}'_0. \]
Genericity in the Weihrauch Lattice

\[C_{\text{NN}} \]

\[J \equiv_{sW} \lim \equiv_{sW} \hat{C}_N \]

\[L \equiv_{sW} (J^{-1})' \]

\[C_{\mathbb{R}} \equiv_{\mathbb{W}} C_N \times C_{2_N} \]

\[\text{DNC}_N \]

\[\text{LLPO} \equiv_{sW} C_2 \]

\[\text{ACC}_N \]

\[\text{NON} \]

\[\text{WKL} \equiv_{sW} C_{2_N} \]

\[\text{BCT}_1 \equiv_{sW} C_N \]

\[\text{K}_N \equiv_{sW} C_2^* \]

\[\text{LPO} \]

\[\text{HYP} \]

\[\text{BCT}_0 \equiv_{sW} \Pi_{1}^0 G \]

\[\text{1-GEN} \]

\[\text{1-WGEN} \]

\[\text{BCT}_0 \]

\[J^{-1} \]
Randomness
▶ **MLR** : \(2^\mathbb{N} \Rightarrow 2^\mathbb{N}\), the problem of **Martin-Löf randomness** is defined by
\[
\text{MLR}(p) := \{ q \in 2^\mathbb{N} : q \text{ is Martin-Löf random relative to } p \}.
\]

▶ **q** is called **Martin-Löf random relative to** **p**, if for every sequence \((U_i)_i\) of open sets \(U_i \subseteq 2^\mathbb{N}\) that is computable relative to **p** with \(\mu(U_i) < 2^{-i}\), we obtain \(p \notin \bigcap_{i=0}^{\infty} U_i\).

▶ **MLR** is densely realized, hence \(C_2 \not\lesssim_W \text{MLR}\).

▶ **MLR** is parallelizable and hence idempotent.

Proposition (B., Gherardi and Hölzl 2015)

\[
\text{MLR} \ast \text{MLR} \leq_W \text{MLR}.
\]

Follows from van Lambalgen's Theorem.
MLR : $2^\mathbb{N} \xrightarrow{\equiv} 2^\mathbb{N}$, the problem of Martin-Löf randomness is defined by
\[\text{MLR}(p) := \{ q \in 2^\mathbb{N} : q \text{ is Martin-Löf random relative to } p \}. \]

q is called Martin-Löf random relative to p, if for every sequence $(U_i)_i$ of open sets $U_i \subseteq 2^\mathbb{N}$ that is computable relative to p with $\mu(U_i) < 2^{-i}$, we obtain $p \notin \bigcap_{i=0}^{\infty} U_i$.

MLR is densely realized, hence $C_2 \not\leq W \text{MLR}$.

MLR is parallelizable and hence idempotent.

Proposition (B., Gherardi and Hölzl 2015)

\[\text{MLR} * \text{MLR} \leq W \text{ MLR}. \]

Follows from van Lambalgen's Theorem.
Martin-Löf Randomness

- $\text{MLR} : 2^\mathbb{N} \rightarrow 2^\mathbb{N}$, the problem of Martin-Löf randomness is defined by
 $$\text{MLR}(p) := \{ q \in 2^\mathbb{N} : q \text{ is Martin-Löf random relative to } p \}.$$
- q is called Martin-Löf random relative to p, if for every sequence $(U_i)_i$ of open sets $U_i \subseteq 2^\mathbb{N}$ that is computable relative to p with $\mu(U_i) < 2^{-i}$, we obtain $p \not\in \bigcap_{i=0}^{\infty} U_i$.
- MLR is densely realized, hence $C_2 \not\leq_W \text{MLR}$.
- MLR is parallelizable and hence idempotent.

Proposition (B., Gherardi and Hölzl 2015)

$$\text{MLR} \ast \text{MLR} \leq_W \text{MLR}.$$

Follows from van Lambalgen’s Theorem.
MLR : \(2^\mathbb{N} \Rightarrow 2^\mathbb{N}\), the problem of Martin-Löf randomness is defined by
\[
\text{MLR}(p) := \{ q \in 2^\mathbb{N} : q \text{ is Martin-Löf random relative to } p \}.
\]

- \(q\) is called Martin-Löf random relative to \(p\), if for every sequence \((U_i)_i\) of open sets \(U_i \subseteq 2^\mathbb{N}\) that is computable relative to \(p\) with \(\mu(U_i) < 2^{-i}\), we obtain \(p \not\in \bigcap_{i=0}^{\infty} U_i\).

- MLR is densely realized, hence \(C_2 \not\leq W \text{ MLR}\).
- MLR is parallelizable and hence idempotent.

Proposition (B., Gherardi and Hölzl 2015)

\[
\text{MLR} \ast \text{MLR} \leq W \text{ MLR}.
\]

Follows from van Lambalgen’s Theorem.
MLR : $2^\mathbb{N} \nrightarrow 2^\mathbb{N}$, the problem of Martin-Löf randomness is defined by
\[\text{MLR}(p) := \{ q \in 2^\mathbb{N} : q \text{ is Martin-Löf random relative to } p \}. \]

q is called Martin-Löf random relative to p, if for every sequence $(U_i)_i$ of open sets $U_i \subseteq 2^\mathbb{N}$ that is computable relative to p with $\mu(U_i) < 2^{-i}$, we obtain $p \notin \bigcap_{i=0}^{\infty} U_i$.

MLR is densely realized, hence $C_2 \not\leq_W \text{MLR}$.

MLR is parallelizable and hence idempotent.

Proposition (B., Gherardi and Hölzl 2015)

\[\text{MLR} \ast \text{MLR} \leq_W \text{MLR}. \]

Follows from van Lambalgen’s Theorem.
The problem of Martin-Löf randomness is defined by

$$\text{MLR}(p) := \{ q \in 2^\mathbb{N} : q \text{ is Martin-Löf random relative to } p \}.$$

q is called Martin-Löf random relative to p, if for every sequence $(U_i)_i$ of open sets $U_i \subseteq 2^\mathbb{N}$ that is computable relative to p with $\mu(U_i) < 2^{-i}$, we obtain $p \notin \bigcap_{i=0}^{\infty} U_i$.

MLR is densely realized, hence $C_2 \not\leq W \text{MLR}$.

MLR is parallelizable and hence idempotent.

Proposition (B., Gherardi and Hölzl 2015)

$$\text{MLR} \ast \text{MLR} \leq W \text{MLR}.$$

Follows from van Lambalgen’s Theorem.
Characterization of Martin-Löf Randomness

Theorem (B. and Pauly 2013)

\[\text{MLR} \equiv_W (C_N \rightarrow \text{WWKL}). \]

Proof. (Sketch.) \((C_N \rightarrow \text{WWKL}) \leq_W \text{MLR}\): It suffices to prove \(\text{WWKL} \leq_W C_N \ast \text{MLR}\). By Kučera’s Lemma, every Martin-Löf random real \(p\) is a path in every infinite binary tree \(T\) of positive measure up to some finite prefix. Using \(C_N\) we can cut away longer and longer prefixes of \(p\) until we find a path in \(T\).

\(\text{MLR} \leq_W (C_N \rightarrow \text{WWKL})\): Given some \(h\) with \(\text{WWKL} \leq_W C_N \ast h\) we need to prove that \(\text{MLR} \leq_W h\). Given some universal Martin-Löf test \((U_i)_i\), the complement \(A_0 := 2^{\mathbb{N}} \setminus U_0\) is a closed set of positive measure and given the corresponding tree \(T\) with \(A = [T]\) the function \(h\) will deliver some sequence \(q\) that can be converted into a Martin-Löf random real by a finite mind change computation. This computation can be converted into a regular computation that yields a Martin-Löf random real. □
Theorem (B. and Pauly 2013)

\[\text{MLR} \equiv_{W} (C_N \rightarrow \text{WWKL}). \]

Proof. (Sketch.) \((C_N \rightarrow \text{WWKL}) \leq_{W} \text{MLR}:\) It suffices to prove \(\text{WWKL} \leq_{W} C_N \ast \text{MLR}.\) By Kučera’s Lemma, every Martin-Löf random real \(p\) is a path in every infinite binary tree \(T\) of positive measure up to some finite prefix. Using \(C_N\) we can cut away longer and longer prefixes of \(p\) until we find a path in \(T\).

\(\text{MLR} \leq_{W} (C_N \rightarrow \text{WWKL}):\) Given some \(h\) with \(\text{WWKL} \leq_{W} C_N \ast h\) we need to prove that \(\text{MLR} \leq_{W} h.\) Given some universal Martin-Löf test \((U_i)_i\), the complement \(A_0 := 2^\mathbb{N} \setminus U_0\) is a closed set of positive measure and given the corresponding tree \(T\) with \(A = [T]\) the function \(h\) will deliver some sequence \(q\) that can be converted into a Martin-Löf random real by a finite mind change computation. This computation can be converted into a regular computation that yields a Martin-Löf random real. \(\square\)
Characterization of Martin-Löf Randomness

Theorem (B. and Pauly 2013)

\[\text{MLR} \equiv_{W} (C_{N} \rightarrow \text{WWKL}). \]

Proof. (Sketch.) \((C_{N} \rightarrow \text{WWKL}) \leq_{W} \text{MLR} \): It suffices to prove \(\text{WWKL} \leq_{W} C_{N} * \text{MLR} \). By Kučera’s Lemma, every Martin-Löf random real \(p \) is a path in every infinite binary tree \(T \) of positive measure up to some finite prefix. Using \(C_{N} \) we can cut away longer and longer prefixes of \(p \) until we find a path in \(T \).

\(\text{MLR} \leq_{W} (C_{N} \rightarrow \text{WWKL}) \): Given some \(h \) with \(\text{WWKL} \leq_{W} C_{N} * h \) we need to prove that \(\text{MLR} \leq_{W} h \). Given some universal Martin-Löf test \((U_{i})_{i} \), the complement \(A_{0} := 2^{N} \setminus U_{0} \) is a closed set of positive measure and given the corresponding tree \(T \) with \(A = [T] \) the function \(h \) will deliver some sequence \(q \) that can be converted into a Martin-Löf random real by a finite mind change computation. This computation can be converted into a regular computation that yields a Martin-Löf random real. \(\Box \)
Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By \(\varepsilon\text{-WWKL} \subseteq \text{Tr} \Rightarrow 2^\mathbb{N} \) we denote the restriction of WKL to \(\text{dom}(\varepsilon\text{-WWKL}) := \{ T : \mu([T]) > \varepsilon \} \) for \(\varepsilon \in \mathbb{R} \).

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016 and B., Gherardi and Hölzl 2015)

\(\varepsilon\text{-WWKL} \leq_w \delta\text{-WWKL} \iff \varepsilon \geq \delta \) for all \(\varepsilon, \delta \in [0, 1] \).

Proof. (Idea) “\(\Rightarrow \)” Assume \(\varepsilon < \delta \). Then there are positive integers \(a, b \) with \(\varepsilon < \frac{a}{b} \leq \delta \). We consider

- \(C_{a,b} \) which is \(C_b \) restricted to sets \(A \subseteq \{0, ..., b - 1\} \) with \(|A| \geq a \).

Then \(C_{a,b} \leq_w \varepsilon\text{-WWKL} \) and \(C_{a,b} \nleq_w \delta\text{-WWKL} \). Hence \(\varepsilon\text{-WWKL} \nleq_w \delta\text{-WWKL} \) \(\square \)

Proposition (B., Hendtlass and Kreuzer 2015)

\(\varepsilon\text{-WWKL} \) is not parallelizable for \(\varepsilon \in [0, 1) \).
Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By ε-WWKL : $\subseteq \text{Tr} \Rightarrow 2^\mathbb{N}$ we denote the restriction of WKL to
$\text{dom}(\varepsilon\text{-WWKL}) := \{T : \mu([T]) > \varepsilon\}$ for $\varepsilon \in \mathbb{R}$.

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016 and B., Gherardi and Hölzl 2015)

ε-WWKL $\leq_w \delta$-WWKL $\iff \varepsilon \geq \delta$ for all $\varepsilon, \delta \in [0, 1]$.

Proof. (Idea) “\implies” Assume $\varepsilon < \delta$. Then there are positive integers a, b with $\varepsilon < \frac{a}{b} \leq \delta$. We consider
- $C_{a,b}$ which is C_b restricted to sets $A \subseteq \{0, ..., b - 1\}$ with $|A| \geq a$.

Then $C_{a,b} \leq_w \varepsilon$-WWKL and $C_{a,b} \not\leq_w \delta$-WWKL. Hence ε-WWKL $\not\leq_w \delta$-WWKL \square

Proposition (B., Hendtlass and Kreuzer 2015)

ε-WWKL is not parallelizable for $\varepsilon \in [0, 1)$.
Quantitative Versions of WWKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By ε-WWKL $:\subseteq \text{Tr} \Rightarrow 2^\mathbb{N}$ we denote the restriction of WKL to
$\text{dom}(\varepsilon$-WWKL) $:= \{ T : \mu([T]) > \varepsilon \}$ for $\varepsilon \in \mathbb{R}$.

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016 and B., Gherardi and Hörlzl 2015)

ε-WWKL $\leq_W \delta$-WWKL $\iff \varepsilon \geq \delta$ for all $\varepsilon, \delta \in [0, 1]$.

Proof. (Idea) “\implies” Assume $\varepsilon < \delta$. Then there are positive integers a, b with $\varepsilon < \frac{a}{b} \leq \delta$. We consider

- $C_{a,b}$ which is C_b restricted to sets $A \subseteq \{0, \ldots, b-1\}$ with $|A| \geq a$.

Then $C_{a,b} \leq_W \varepsilon$-WWKL and $C_{a,b} \not\leq_W \delta$-WWKL. Hence ε-WWKL $\not\leq_W \delta$-WWKL.

Proposition (B., Hendtlass and Kreuzer 2015)

ε-WWKL is not parallelizable for $\varepsilon \in [0, 1)$.
Quantitative Versions of WKKL

Definition (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016)

By \(\varepsilon\text{-WWKL} \subseteq \text{Tr} \Rightarrow 2^\mathbb{N} \) we denote the restriction of \(\text{WKL} \) to
\[
\text{dom}(\varepsilon\text{-WWKL}) := \{ T : \mu([T]) > \varepsilon \} \text{ for } \varepsilon \in \mathbb{R}.
\]

Theorem (Dorais, Dzhafarov, Hirst, Mileti and Shafer 2016 and B., Gherardi and Hölzl 2015)

\(\varepsilon\text{-WWKL} \leq_W \delta\text{-WWKL} \iff \varepsilon \geq \delta \) for all \(\varepsilon, \delta \in [0, 1] \).

\textbf{Proof.} (Idea) "\(\Rightarrow \)" Assume \(\varepsilon < \delta \). Then there are positive integers \(a, b \) with \(\varepsilon < \frac{a}{b} \leq \delta \). We consider

- \(C_{a,b} \) which is \(C_b \) restricted to sets \(A \subseteq \{0, \ldots, b - 1\} \) with \(|A| \geq a \).

Then \(C_{a,b} \leq_W \varepsilon\text{-WWKL} \) and \(C_{a,b} \not\leq_W \delta\text{-WWKL} \). Hence \(\varepsilon\text{-WWKL} \not\leq_W \delta\text{-WWKL} \). \(\square \)

Proposition (B., Hendtlass and Kreuzer 2015)

\(\varepsilon\text{-WWKL} \text{ is not parallelizable for } \varepsilon \in [0, 1] \).
Quantitative Versions of WWKL

\[(1−\ast)-\text{WWKL} \subseteq \text{Tr}^\mathbb{N} \Rightarrow 2^\mathbb{N}, (T_i); \mapsto \bigcup_{i=0}^{\infty} (1−2^{-i})-\text{WWKL}(T_i)\]

Theorem (B., Hendtlass and Kreuzer 2015)

\[(1−\ast)-\text{WWKL} \text{ is parallelizable.}\]

Proposition (B., Hendtlass and Kreuzer 2015)

\[\text{ACC}_\mathbb{N} \leq_W (1−\ast)-\text{WWKL}.\]

Corollary

\[\text{DNC}_\mathbb{N} \leq_W (1−\ast)-\text{WWKL}.\]

Proposition (B., Hendtlass and Kreuzer 2015)

\[\text{DNC}_\mathbb{N} \mid_W \text{MLR}.\]
Quantitative Versions of WWKL

\((1-\ast)\text{-WWKL} : \subseteq \text{Tr}^\mathbb{N} \Rightarrow 2^\mathbb{N}, (T_i) \mapsto \bigcup_{i=0}^{\infty} (1-2^{-i})\text{-WWKL}(T_i) \)

Theorem (B., Hendtlass and Kreuzer 2015)

\((1-\ast)\text{-WWKL} \) is parallelizable.

Proposition (B., Hendtlass and Kreuzer 2015)

\(\text{ACC}_\mathbb{N} \leq_W (1-\ast)\text{-WWKL} \).

Corollary

\(\text{DNC}_\mathbb{N} \leq_W (1-\ast)\text{-WWKL} \).

Proposition (B., Hendtlass and Kreuzer 2015)

\(\text{DNC}_\mathbb{N} |_W \text{MLR} \).
Quantitative Versions of WWKL

\[(1-*\)-WWKL \subseteq \text{Tr}^\mathbb{N} \Rightarrow 2^\mathbb{N}, (T_i); \mapsto \bigcup_{i=0}^{\infty} (1-2^{-i})\text{-WWKL}(T_i)\]

Theorem (B., Hendtlass and Kreuzer 2015)

\[(1-*\)-WWKL is parallelizable.\]

Proposition (B., Hendtlass and Kreuzer 2015)

\[\text{ACC}_\mathbb{N} \leq_W (1-*)\text{-WWKL}.\]

Corollary

\[\text{DNC}_\mathbb{N} \leq_W (1-*)\text{-WWKL}.\]

Proposition (B., Hendtlass and Kreuzer 2015)

\[\text{DNC}_\mathbb{N} \mid_W \text{MLR}.\]
Quantitative Versions of WWKL

\[
(1−\ast)\text{-WWKL} : \subseteq Tr^\mathbb{N} \implies 2^\mathbb{N}, (T_i)_i \mapsto \bigcup_{i=0}^{\infty} (1−2^{-i})\text{-WWKL}(T_i)
\]

Theorem (B., Hendtlass and Kreuzer 2015)

\((1−\ast)\text{-WWKL} \) is parallelizable.

Proposition (B., Hendtlass and Kreuzer 2015)

\[ACC_\mathbb{N} \leq_W (1−\ast)\text{-WWKL}. \]

Corollary

\[DNC_\mathbb{N} \leq_W (1−\ast)\text{-WWKL}. \]

Proposition (B., Hendtlass and Kreuzer 2015)

\[DNC_\mathbb{N} \mid_W MLR. \]
Quantitative Versions of WWKL

\[(1 - *)\text{-WWKL} : \subseteq \text{Tr}^\mathbb{N} \Rightarrow 2^\mathbb{N}, (T_i)_i \mapsto \bigsqcup_{i=0}^{\infty} (1 - 2^{-i})\text{-WWKL}(T_i)\]

Theorem (B., Hendtlass and Kreuzer 2015)

\((1 - *)\text{-WWKL} is parallelizable.\)

Proposition (B., Hendtlass and Kreuzer 2015)

\(\text{ACC}_\mathbb{N} \leq_W (1 - *)\text{-WWKL}.\)

Corollary

\(\text{DNC}_\mathbb{N} \leq_W (1 - *)\text{-WWKL}.\)

Proposition (B., Hendtlass and Kreuzer 2015)

\(\text{DNC}_\mathbb{N} \mid_W \text{MLR}.\)
Theorem (B., Gherardi and Hölzl 2015)

\[\text{MLR} \leq_W (1 - *)\text{-WWKL}. \]

Proof. (Sketch) We use a universal Martin-Löf test, which is a computable sequence \((U_i)_i\) of c.e. open sets \(U_i \subseteq 2^\mathbb{N}\) such that
\[\mu(U_i) < 2^{-n} \] and
\[\bigcap_{i=0}^{\infty} U_i \] is exactly the set of all sequences which are not Martin-Löf random. Hence, \(A_i := 2^\mathbb{N} \setminus U_i\) is a co-c.e. closed set with
\[\mu(A_i) > 1 - 2^{-n} \] and each \(A_i\) only contains Martin-Löf random sequences. Hence, we can compute a corresponding sequence \((T_i)_i\) of infinite binary trees with
\[[T_i] = A_i. \] Upon input of this sequence \((1 - *)\text{-WWKL}\) yields a Martin-Löf random sequence. The entire argument can be relativized, i.e., it also works in presence of some oracle \(p \in 2^\mathbb{N}\). This yields the reduction \(\text{MLR} \leq_W (1 - *)\text{-WWKL}\). In order to see that the reduction is strict, one has to take into account that \(\text{MLR}\) is densely realized. \(\square\)
Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreutzer 2015)

$$1\text{-GEN} \prec_W (1 - *)\text{-WWKL}'$$.

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev and Shen to get a uniform reduction. □

Theorem (B., Hendtlass and Kreutzer 2015)

$$\text{BCT}'_0 \not\leq_W \text{WWKL}^{(n)}$$ for all $$n \in \mathbb{N}$$.

Proof. (Idea) There exists a co-c.e. comeager set $$A \subseteq 2^\mathbb{N}$$ such that no point of $$A$$ is low for $$\Omega$$. $$\text{WWKL}^{(n)}$$ has a realizer that maps computable inputs to outputs that are low for $$\Omega$$ for $$n \geq 1$$. □

Corollary

$$\text{BCT}'_0 \not\leq_W 1\text{-GEN}$$.
Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreutzer 2015)

1-GEN $\leq^w W(1 - \ast)$-WWKL$'$.

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev and Shen to get a uniform reduction. □

Theorem (B., Hendtlass and Kreutzer 2015)

$BCT'_0 \not\leq_W WWKL^{(n)}$ for all $n \in \mathbb{N}$.

Proof. (Idea) There exists a co-c.e. comeager set $A \subseteq 2^\mathbb{N}$ such that no point of A is low for Ω. $WWKL^{(n)}$ has a realizer that maps computable inputs to outputs that are low for Ω for $n \geq 1$. □

Corollary

$BCT'_0 \not\leq_W 1$-GEN.
Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreutzer 2015)

\[1\text{-GEN} \prec_W (1 - *)\text{-WWKL}' \]

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreutzer 2015)

\[\text{BCT}_0' \nleq_W \text{WWKL}^{(n)} \text{ for all } n \in \mathbb{N}. \]

Proof. (Idea) There exists a co-c.e. comeager set \(A \subseteq 2^\mathbb{N} \) such that no point of \(A \) is low for \(\Omega \). \(\text{WWKL}^{(n)} \) has a realizer that maps computable inputs to outputs that are low for \(\Omega \) for \(n \geq 1 \).

Corollary

\[\text{BCT}_0' \nleq_W 1\text{-GEN}. \]
Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreutzer 2015)

\[1 \text{-GEN} <_W (1 - *) \text{-WWKL}' \]

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreutzer 2015)

\[\text{BCT}'_0 \not<_W \text{WWKL}^{(n)} \text{ for all } n \in \mathbb{N} \]

Proof. (Idea) There exists a co-c.e. comeager set \(A \subseteq 2^{\mathbb{N}} \) such that no point of \(A \) is low for \(\Omega \). \(\text{WWKL}^{(n)} \) has a realizer that maps computable inputs to outputs that are low for \(\Omega \) for \(n \geq 1 \).

Corollary

\[\text{BCT}'_0 \not<_W 1 \text{-GEN} \]
Theorem of Kurtz. Every 2–random computes a 1–generic.

Theorem (B., Hendtlass and Kreutzer 2015)

\[1\text{-GEN} \prec_W (1 - \ast)\text{-WWKL}' . \]

Proof. (Idea) We apply the “fireworks technique” of Rumyantsev and Shen to get a uniform reduction.

Theorem (B., Hendtlass and Kreutzer 2015)

\[\text{BCT}'_0 \nless_W \text{WWKL}^{(n)} \text{ for all } n \in \mathbb{N} . \]

Proof. (Idea) There exists a co-c.e. comeager set \(A \subseteq 2^\mathbb{N} \) such that no point of \(A \) is low for \(\Omega \). \(\text{WWKL}^{(n)} \) has a realizer that maps computable inputs to outputs that are low for \(\Omega \) for \(n \geq 1 \).

Corollary

\[\text{BCT}'_0 \nless_W 1\text{-GEN} . \]
Summary on Weihrauch Complexity

- Weihrauch complexity is a **uniform and resource sensitive** computable version of reverse mathematics.
- It measures the amount of resources needed to compute certain realizers of theorems.
- Positive and negative results are directly constructed without any need for further models.
- Results have immediate interpretations in computable analysis.
- Many results from reverse mathematics are fully uniform with only one usage of the resource.
- Sometimes proofs can be transferred, sometimes completely new methods have to be developed.
- The Weihrauch lattice can be seen as a refinement of the Borel hierarchy for functions and hence methods of descriptive set theory and topology can be applied directly.
- Many complexity classes have direct computational interpretations.