Rounding the Sparsest-Cut SDP on Low Threshold-Rank Graphs

Rakesh Venkat

Tata Institute of Fundamental Research (TIFR), Mumbai
(Joint work with Amit Deshpande, MSR and Prahladh Harsha, TIFR)

SDP and Matrix Methods, NUS 2016
1 Introduction

2 Cheeger or Spectral Approach

3 Rounding a stronger SDP
 - Our Algorithm

4 Goemans’ Theorem

5 Summary
The Sparsest Cut Problem

d-regular graph G

- Sparsity of a cut (S, \bar{S}) is
 \[\Phi(S) = \frac{|E(S, \bar{S})|}{|S||\bar{S}|} \]

- Sparsest Cut in G is
 \[\Phi(G) = \min_{S \subseteq V} \frac{|E(S, \bar{S})|}{|S||\bar{S}|} \]
The Sparsest Cut Problem

A d-regular graph G

- Sparsity of a cut (S, \bar{S}) is
 \[
 \Phi(S) = \frac{|E(S, \bar{S})|}{|S||\bar{S}|}
 \]

- Sparsest Cut in G is
 \[
 \Phi(G) = \min_{S \subseteq V} \frac{|E(S, \bar{S})|}{|S||\bar{S}|}
 \]
The Sparsest Cut Problem

d-regular graph G

- Sparsity of a cut (S, \bar{S}) is
 \[\Phi(S) = \frac{|E(S, \bar{S})|}{|S||\bar{S}|} \]

- Sparsest Cut in G is
 \[\Phi(G) = \min_{S \subseteq V} \frac{|E(S, \bar{S})|}{|S||\bar{S}|} \]
The Sparsest Cut Problem

\(d\)-regular graph \(G\)

- Sparsity of a cut \((S, \bar{S})\) is
 \[
 \Phi(S) = \frac{|E(S, \bar{S})|}{|S| \cdot |\bar{S}|}
 \]

- Sparsest Cut in \(G\) is
 \[
 \Phi(G) = \min_{S \subseteq V} \frac{|E(S, \bar{S})|}{|S| \cdot |\bar{S}|}
 \]
The Sparsest Cut Problem

d-regular graph G

Sparsity of a cut (S, \bar{S}) is

$$\Phi(S) = \frac{|E(S, \bar{S})|}{|S||\bar{S}|}$$

Cut in G is

$$\Phi(G) = \min_{S \subseteq V} \frac{|E(S, \bar{S})|}{|S||\bar{S}|}$$
Complexity of Sparsest Cut: Lower bounds

- NP-hard to compute exactly
- Assuming the *Unique Games Conjecture*, it is NP-hard to *approximate* to any constant factor [CKKRS ’05, Khot-Vishnoi ’05]
Sparsest Cut Objective

\[\Phi_{OPT} = \min_S \frac{|E(S, \bar{S})|}{|S||\bar{S}|} \]

Original Objective

\[\Phi_{OPT} = \min_{x_i \in \{0, 1\}} \frac{\sum_{ij \in E} (x_i - x_j)^2}{\sum_{ij \in V \times V} (x_i - x_j)^2} \]

Where \(x_i = 1 \) if \(i \in S \),
\(x_i = 0 \) if \(i \in \bar{S} \)
Sparsest Cut Objective

\[\Phi_{OPT} = \min_S \frac{|E(S, \bar{S})|}{|S||\bar{S}|} \]

Original Objective

Where \(x_i = 1 \) if \(i \in S \),
\(x_i = 0 \) if \(i \in \bar{S} \)
Sparsest Cut Objective

\[\Phi_{OPT} = \min_S \frac{|E(S, \bar{S})|}{|S||\bar{S}|} \]

\[\Phi_{OPT} = \min_{x_i \in \{0, 1\}} \frac{\sum_{ij \in E} (x_i - x_j)^2}{\sum_{ij \in V \times V} (x_i - x_j)^2} \]

- Original Objective
- Where \(x_i = 1 \) if \(i \in S \), \(x_i = 0 \) if \(i \in \bar{S} \)
Relaxing the Objective

- Assign a vector $x_i \in \mathbb{R}^m$ for each 0/1 variable.

- Ideally, the vectors should be just scalars 0 or 1, i.e. one-dimensional.

- Sparsest Cut objective relaxation (a SDP):

 $$\Phi_1 = \min_{x_i \in \mathbb{R}^m} \frac{\sum_{ij \in E} \|x_i - x_j\|^2_2}{\sum_{ij \in V \times V} \|x_i - x_j\|^2_2}$$

- $\Phi_1 \leq \Phi_{OPT}$

- Can add in more constraints on vectors that 0/1 variables satisfy, e.g.

 $$x_{i}^{old} \in [0, 1] \text{ becomes } \|x_i\|^2 \leq 1$$
Relaxing the Objective

- Assign a vector \(x_i \in \mathbb{R}^m \) for each 0/1 variable.

- Ideally, the vectors should be just scalars 0 or 1, i.e. one-dimensional.

- Sparsest Cut objective relaxation (a SDP):

 \[
 \Phi_1 = \min_{x_i \in \mathbb{R}^m} \frac{\sum_{ij \in E} \|x_i - x_j\|_2^2}{\sum_{ij \in V \times V} \|x_i - x_j\|_2^2}
 \]

- \(\Phi_1 \leq \Phi_{OPT} \)

- Can add in more constraints on vectors that 0/1 variables satisfy, e.g.

 \(x_i^{\text{old}} \in [0, 1] \) becomes \(\|x_i\|^2 \leq 1 \)
Relaxing the Objective

- Assign a vector $x_i \in \mathbb{R}^m$ for each 0/1 variable
- Ideally, the vectors should be just scalars 0 or 1, i.e. one-dimensional
- Sparsest Cut objective relaxation (a SDP):

$$\Phi_1 = \min_{x_i \in \mathbb{R}^m} \frac{\sum_{ij \in E} \|x_i - x_j\|_2^2}{\sum_{ij \in V \times V} \|x_i - x_j\|_2^2}$$

- $\Phi_1 \leq \Phi_{OPT}$

- Can add in more constraints on vectors that 0/1 variables satisfy, e.g.

$$x_i^{\text{old}} \in [0, 1] \text{ becomes } \|x_i\|^2 \leq 1$$
Relaxing the Objective

- Assign a vector \(x_i \in \mathbb{R}^m \) for each 0/1 variable.

- Ideally, the vectors should be just scalars 0 or 1, i.e. one-dimensional.

- Sparsest Cut objective relaxation (a SDP):

\[
\Phi_1 = \min_{x_i \in \mathbb{R}^m} \frac{\sum_{ij \in E} \| x_i - x_j \|^2_2}{\sum_{ij \in V \times V} \| x_i - x_j \|^2_2}
\]

\[\Phi_1 \leq \Phi_{OPT}\]

- Can add in more constraints on vectors that 0/1 variables satisfy, e.g.

\[x_i^{\text{old}} \in [0, 1] \text{ becomes } \| x_i \|^2 \leq 1\]
Rounding the Relaxation

- Extract out a 1-dimensional 0/1 solution \(\{y_i\} \) from the SDP solution \(\{x_i\} \) in \(m \) dimensions

- We will lose in objective value since

\[
\Phi_{\text{ALG}} = \Phi(\{y_1, \ldots, y_n\}) \geq \Phi(\{x_1, \ldots, x_n\}) = \Phi_1
\]

- For Sparsest Cut, suffices to get an embedding into \(\ell_1 \), rather than pure \(\{0, 1\} \) solutions for \(y_i \)'s.
Extract out a 1-dimensional 0/1 solution \(\{y_i\} \) from the SDP solution \(\{x_i\} \) in \(m \) dimensions.

We will lose in objective value since
\[
\Phi_{\text{ALG}} = \Phi(\{y_1, \ldots, y_n\}) \geq \Phi(\{x_1, \ldots, x_n\}) = \Phi_1
\]

For Sparsest Cut, suffices to get an embedding into \(\ell_1 \), rather than pure \(\{0, 1\} \) solutions for \(y_i \)'s.
Extract out a 1-dimensional 0/1 solution \(\{y_i\} \) from the SDP solution \(\{x_i\} \) in \(m \) dimensions.

We will lose in objective value since
\[
\Phi_{\text{ALG}} = \Phi(\{y_1, \ldots, y_n\}) \geq \Phi(\{x_1, \ldots, x_n\}) = \Phi_1
\]

For Sparsest Cut, suffices to get an embedding into \(\ell_1 \), rather than pure \(\{0, 1\} \) solutions for \(y_i \)'s.
Connection to ℓ_1 embeddings [LLR '94, AR '94]

- Given a mapping of the points: $Y: V \rightarrow \mathbb{R}^{m'}$, we can produce a cut T of cost:

$$\Phi(T) \leq \frac{\sum_{ij \in V} \|y_i - y_j\|_1}{\sum_{kl \in V \times V} \|y_k - y_l\|_1}$$

- Sufficient to produce an \textit{embedding} of the SDP solutions into ℓ_1-space
\(\ell_1 \) embeddings of SDP solutions

Will compare \(\|y_i - y_j\|_1 \) to \(\|x_i - x_j\|_2^2 \)

\[
OBJ = \frac{\sum_{e} \|x_i - x_j\|_2^2}{\sum_{i,j \in V} \|x_i - x_j\|_2^2} \quad \cong \quad OBJ(\ell_1) = \frac{\sum_{e} \|y_i - y_j\|_1}{\sum_{i,j \in V} \|y_i - y_j\|_1}
\]
Average distortion and guarantee

If

- (Contraction):
 \[\|y_i - y_j\|_1 \leq \|x_i - x_j\|^2, \text{ for every } i, j \]

- (Average Dilation)
 \[\sum_{ij} \|y_i - y_j\|_1 \geq \frac{1}{D} \cdot \sum_{ij} \|x_i - x_j\|^2 \]

then we have a \(O(D) \) - approximation.
Average distortion and guarantee

If

- (Contraction):

\[\|y_i - y_j\|_1 \leq \|x_i - x_j\|^2, \text{ for every } i, j \]

- (Average Dilation)

\[\sum_{ij} \|y_i - y_j\|_1 \geq \frac{1}{D} \cdot \sum_{ij} \|x_i - x_j\|^2 \]

then we have a \(O(D) \) - approximation.
Average distortion and guarantee

If

- (Contraction):
 \[\| y_i - y_j \|_1 \leq \| x_i - x_j \|^2, \text{ for every } i, j \]

- (Average Dilation)
 \[\sum_{ij} \| y_i - y_j \|_1 \geq \frac{1}{D} \cdot \sum_{ij} \| x_i - x_j \|^2 \]

then we have a \(O(D) \) - approximation.
Outline

1. Introduction

2. Cheeger or Spectral Approach

3. Rounding a stronger SDP
 - Our Algorithm

4. Goemans’ Theorem

5. Summary
Cheeger Rounding (Alon-Milman ’85)

\[\Phi_1 = \min_{x_i \in \mathbb{R}^m} \frac{\sum_{ij \in E} \|x_i - x_j\|^2}{\sum_{ij \in V \times V} \|x_i - x_j\|^2} \]

- Given a SDP solution \(\{x_i\} \) with objective value \(\Phi_1 = \frac{\epsilon d}{n} \), can get a rounded solution (a cut) with value \(O\left(\frac{\sqrt{\epsilon}d}{n}\right) \).
- The \(\ell_1 \) mapping is a simple one-dimensional embedding: find a specific co-ordinate \(t \) and set \(y_i = x_i[t] \)
- Works well for expander graphs
Laplacian of a graph: \(L = dI - A \)

Eigenvalues of the Laplacian

\[0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq 2d \]

Eigenvalues predict connectivity properties

- \(\lambda_2 = 0 \iff G \text{ is disconnected} \)
- \(\lambda_n = 2d \iff G \text{ is bipartite} \)
Spectral Graph Theory - Preliminaries

- Laplacian of a graph: $L = d\mathbb{I} - A$

![Diagram of a graph with labels and eigenvalues]

- Eigenvalues of the Laplacian

 \[0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n \leq 2d\]

- Eigenvalues predict connectivity properties
 - $\lambda_2 = 0 \iff G$ is disconnected
 - $\lambda_n = 2d \iff G$ is bipartite
Can show the following:

- $\Phi_1 = \frac{\lambda_2}{n}$
- x_i's are in fact, one-dimensional. Furthermore, $x_i = u_2(i)$, where $Lu_2 = \lambda_2 u_2$

$\Phi_{ALG} \leq O(\sqrt{\frac{d}{\lambda_2}}) \Phi_{OPT}$

This works when $\lambda_2 \geq \epsilon d$ (an expander)
Cheeger Rounding Guarantee

- Can show the following:
 - $\Phi_1 = \frac{\lambda_2}{n}$
 - x_i's are in fact, one-dimensional. Furthermore, $x_i = u_2(i)$, where

 $$Lu_2 = \lambda_2 u_2$$

 - $\Phi_{\text{ALG}} \leq O(\sqrt{\frac{d}{\lambda_2}}) \Phi_{\text{OPT}}$

 - This works when $\lambda_2 \geq \epsilon d$ (an expander)
Can show the following:

- $\Phi_1 = \frac{\lambda_2}{n}$
- x_i's are in fact, one-dimensional. Furthermore, $x_i = u_2(i)$, where

$$Lu_2 = \lambda_2 u_2$$

- $\Phi_{\text{ALG}} \leq O(\sqrt{\frac{d}{\lambda_2}}) \Phi_{\text{OPT}}$

- This works when $\lambda_2 \geq \epsilon d$ (an expander)
An improved analysis by Kwok et al. gives the guarantee:

$$\Phi_{ALG} \leq O(r) \sqrt{\frac{d}{\lambda_r}} \Phi_{OPT}$$

This is a $O(r)$ guarantee on graphs where $\lambda_r \geq \epsilon d$.

Such graphs are said to have threshold rank r.

 Requires significantly more work than the original Cheeger analysis.

Dependence on r is tight.
An improved analysis by Kwok et al. gives the guarantee:

$$\Phi_{ALG} \leq O(r)\sqrt{\frac{d}{\lambda_r}}\Phi_{OPT}$$

This is a $O(r)$ guarantee on graphs where $\lambda_r \geq \epsilon d$.

Such graphs are said to have threshold rank r.

Requires significantly more work than the original Cheeger analysis.

Dependence on r is tight.
An improved analysis by Kwok et al. gives the guarantee:

$$\Phi_{\text{ALG}} \leq O(r) \sqrt{\frac{d}{\lambda_r}} \Phi_{\text{OPT}}$$

This is a $O(r)$ guarantee on graphs where $\lambda_r \geq \epsilon d$.

Such graphs are said to have threshold rank r.

Requires significantly more work than the original Cheeger analysis.

Dependence on r is tight.
An improved analysis by Kwok et al. gives the guarantee:

$$\Phi_{\text{ALG}} \leq O(r) \sqrt{\frac{d}{\lambda_r}} \Phi_{\text{OPT}}$$

This is a $O(r)$ guarantee on graphs where $\lambda_r \geq \epsilon d$.

Such graphs are said to have threshold rank r.

Requires significantly more work than the original Cheeger analysis.

Dependence on r is tight.
1. Introduction
2. Cheeger or Spectral Approach
3. Rounding a stronger SDP
 - Our Algorithm
4. Goemans’ Theorem
5. Summary
A stronger SDP relaxation

\[\Phi_\Delta = \min_{x_i \in \mathbb{R}^m} \frac{\sum_{ij \in E} \|x_i - x_j\|^2}{\sum_{ij \in V \times V} \|x_i - x_j\|^2} \]

s.t. \[\|x_i - x_j\|^2 + \|x_j - x_k\|^2 \geq \|x_i - x_k\|^2 \quad \forall i, j, k \in [n] \]

\((\ell^2_2 \text{ inequality constraints})\)

- Constraints are triangle inequalities on squares of distances
- Satisfied by 0, 1 integral solutions
A stronger SDP relaxation

\[\Phi_\Delta = \min_{x_i \in \mathbb{R}^m} \frac{\sum_{ij \in E} \|x_i - x_j\|^2}{\sum_{ij \in V \times V} \|x_i - x_j\|^2} \]

s.t. \[\|x_i - x_j\|^2 + \|x_j - x_k\|^2 \geq \|x_i - x_k\|^2 \quad \forall i, j, k \in [n] \]

(\(\ell_2^2\) inequality constraints)

- Here: A simple rounding algorithm for the above SDP with an \(O(r)\) approximation when \(\lambda_r \geq \epsilon d\).
\(\ell_2^2 \) constraints

- \[\| x_i - x_j \|^2 + \| x_j - x_k \|^2 \geq \| x_i - x_k \|^2 \]

Equivalently:
\[\langle x_i - x_j, x_k - x_j \rangle \geq 0 \]

One-dimensional solutions can’t have three distinct points!
\(\ell_2^2 \) constraints

- \(\|x_i - x_j\|^2 + \|x_j - x_k\|^2 \geq \|x_i - x_k\|^2 \)

- Equivalently: \(\langle x_i - x_j, x_k - x_j \rangle \geq 0 \)
- One-dimensional solutions can’t have three distinct points!
Do ℓ_2^2 inequalities help?

- Best known unconditional guarantee for Sparsest Cut by Arora-Rao-Vazirani (ARV) rounds the above SDP to give

$$\Phi_{ARV} \leq O(\sqrt{\log n}) \Phi_{\Delta}$$

- Can we leverage them to do better on low threshold-rank graphs?

- Note: Can assume that $\Phi_{\Delta} \leq \frac{\epsilon d}{100n} \leq \frac{\lambda_r}{100n}$

 - Else, use Cheeger rounding to get a cut of sparsity
 $$O(\frac{\sqrt{\epsilon d}}{n}) \leq \frac{1}{\sqrt{\epsilon}} \Phi_{\Delta}$$
Do ℓ_2^2 inequalities help?

- Best known unconditional guarantee for Sparsest Cut by Arora-Rao-Vazirani (ARV) rounds the above SDP to give

\[
\Phi_{\text{ARV}} \leq O(\sqrt{\log n}) \Phi_{\Delta}
\]

- Can we leverage them to do better on low threshold-rank graphs?

- Note: Can assume that $\Phi_{\Delta} \leq \frac{\epsilon d}{100n} \leq \frac{\lambda_r}{100n}$

- Else, use Cheeger rounding to get a cut of sparsity

\[
O\left(\frac{\sqrt{\epsilon d}}{n}\right) \leq \frac{1}{\sqrt{\epsilon}} \Phi_{\Delta}
\]
\[j_1, \ldots, j_{n-r} \in \tilde{S} \]

\[i_1, \ldots, i_r \in S \]

EXPECTATIONS
Can’t beat NP-Hardness:

$\{i_1, \ldots, i_r \in S\}$

$\{j_1, \ldots, j_{n-r} \in \tilde{S}\}$

EXPECTATIONS V/S REALITY
Life 101...
There is structure, though

The *Difference Matrix* M has some structure

Let $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_m$ be the singular values.
There is structure, though

- The *Difference Matrix* M has some structure

- Let $\sigma_1 \geq \sigma_2 \geq \ldots \geq \sigma_m$ be the singular values
Tool 1: Approximately Low-Dimensional solutions [GS’13]

\[\frac{\lambda_r}{n} \geq 100\Phi_\Delta \implies \sum_{i=1}^{r} \sigma_i^2 \geq 0.99 \sum_{i=1}^{n} \sigma_i^2 \]

- Constant fraction of the squared mass of the vectors \(\{x_i - x_j\}_{ij} \) lies in a \(r \)-dimensional subspace
- Shift vectors \(x_i \) to have centroid as origin, above works with \(x_i \)
- **Stable Rank**: \(\text{sr}(M) \triangleq \frac{\|M\|_F^2}{\sigma_1(M)^2} \leq r/0.99 \)
Tool 1: Approximately Low-Dimensional solutions [GS’13]

\[
\frac{\lambda_r}{n} \geq 100\Phi_{\Delta} \implies \sum_{i=1}^{r} \sigma_i^2 \geq 0.99 \sum_{i=1}^{n} \sigma_i^2
\]

- Constant fraction of the squared mass of the vectors \(\{x_i - x_j\}_{ij}\) lies in a \(r\)-dimensional subspace
- Shift vectors \(x_i\) to have centroid as origin, above works with \(x_i\)
- Stable Rank: \(sr(M) \equiv \frac{\|M\|_F^2}{\sigma_1(M)^2} \leq r/0.99\)
Tool 1: Approximately Low-Dimensional solutions [GS’13]

\[
\frac{\lambda_r}{n} \geq 100\Phi_\Delta \implies \sum_{i=1}^{r} \sigma_i^2 \geq 0.99 \sum_{i=1}^{n} \sigma_i^2
\]

- Constant fraction of the squared mass of the vectors \(\{x_i - x_j\}_{ij}\) lies in a \(r\)-dimensional subspace
- Shift vectors \(x_i\) to have centroid as origin, above works with \(x_i\)

Stable Rank: \(sr(M) \triangleq \frac{\|M\|_F^2}{\sigma_1(M)^2} \leq r/0.99\)
Tool 1: Approximately Low-Dimensional solutions [GS’13]

\[\frac{\lambda_r}{n} \geq 100\Phi\Delta \implies \sum_{i=1}^{r} \sigma_i^2 \geq 0.99 \sum_{i=1}^{n} \sigma_i^2 \]

- Constant fraction of the squared mass of the vectors \(\{x_i - x_j\}_{ij} \) lies in a \(r \)-dimensional subspace.
- Shift vectors \(x_i \) to have centroid as origin, above works with \(x_i \).
- **Stable Rank**: \(sr(M) \triangleq \frac{\|M\|_F^2}{\sigma_1(M)^2} \leq r/0.99 \)
Tool 1: Approximately Low-Dimensional solutions [GS’13]
Proposition

If x_i satisfy ℓ^2_2-inequalities, then $\forall i, j, k, l$, we have:

$$|\langle x_i - x_j, x_k - x_l \rangle| \leq \min \left\{ \|x_i - x_j\|^2, \|x_k - x_l\|^2 \right\}$$

Proof.

Left as easy exercise (see board).

Note: Simple Cauchy Schwarz would give:

$$|\langle x_i - x_j, x_k - x_l \rangle| \leq \|x_i - x_j\| \|x_k - x_l\|$$
Tool 2: Stronger Cauchy-Schwarz using ℓ^2_2 inequalities

Proposition

If x_i satisfy ℓ^2_2-inequalities, then $\forall i, j, k, l$, we have:

$$|\langle x_i - x_j, x_k - x_l \rangle| \leq \min \left\{ \| x_i - x_j \|^2, \| x_k - x_l \|^2 \right\}$$

Proof.

Left as easy exercise (see board).

Note: Simple Cauchy Schwarz would give:

$$|\langle x_i - x_j, x_k - x_l \rangle| \leq \| x_i - x_j \| \| x_k - x_l \|$$
Algorithm
Algorithm
Algorithm
Algorithm
1. Compute the top left-singular vector u, with singular value σ_1 of the matrix M

2. v is the top right-singular vector

3. 1-dimensional solutions are $y_i = \frac{\sigma_1}{\|v\|_1} \langle x_i, u \rangle$
1 Compute the top left-singular vector u, with singular value σ_1 of the matrix M

2 v is the top right-singular vector

3 1-dimensional solutions are $y_i = \frac{\sigma_1}{\|v\|_1} \langle x_i, u \rangle$
Analysis

\[y_i = \frac{\sigma_1}{\|v\|_1} \langle x_i, u \rangle \]

Will show:

- **Contraction:**
 \[|y_i - y_j| \leq \|x_i - x_j\|^2 \quad \forall i, j \]

- **(Average) Dilation:**
 \[\mathbb{E}_{ij} [|y_i - y_j|] \geq \frac{0.99}{r} \mathbb{E}_{ij} [\|x_i - x_j\|^2] \]
$y_i = \frac{\sigma_1}{\|v\|_1} \langle x_i, u \rangle$

Will show:

- **Contraction:**

 \[|y_i - y_j| \leq \|x_i - x_j\|^2 \quad \forall i, j \]

- **(Average) Dilation:**

 \[\mathbb{E}_{ij} [y_i - y_j] \geq \frac{0.99}{r} \mathbb{E}_{ij} [\|x_i - x_j\|^2] \]
- $Mv = \sigma_1 u$, or equivalently, $\sigma_1 u = \sum_{kl} v_{kl} (x_k - x_l)$

Pick any (i, j). We have: $|y_i - y_j|_1 = \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u \rangle| = \frac{1}{\|v\|_1} \left| \langle x_i - x_j, \sum_{kl} v_{kl} (x_k - x_l) \rangle \right|

\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left| \langle x_i - x_j, x_k - x_l \rangle \right|

\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \|x_i - x_j\|_2^2 \quad \text{[By Stronger CS for ℓ_2^2]}

= \|x_i - x_j\|_2^2.$
Analysis: Contraction

- \(Mv = \sigma_1 u \), or equivalently, \(\sigma_1 u = \sum_{kl} v_{kl}(x_k - x_l) \)

Pick any \((i, j)\). We have:

\[
|y_i - y_j|_1 = \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u \rangle| = \frac{1}{\|v\|_1} \left| \left\langle x_i - x_j, \sum_{kl} v_{kl}(x_k - x_l) \right\rangle \right|
\]

\[
\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| |\langle x_i - x_j, x_k - x_l \rangle| = \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \|x_i - x_j\|_2^2 \quad [\text{By Stronger CS for } \ell_2^2]
\]

\[
= \|x_i - x_j\|_2^2.
\]
Analysis: Contraction

- \(Mv = \sigma_1 u \), or equivalently, \(\sigma_1 u = \sum_{kl} v_{kl} (x_k - x_l) \)

Pick any \((i, j)\). We have:

\[
\frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u \rangle| = \frac{1}{\|v\|_1} \left| \left\langle x_i - x_j, \sum_{kl} v_{kl} (x_k - x_l) \right\rangle \right| \\
\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left| \langle x_i - x_j, x_k - x_l \rangle \right| \\
\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \|x_i - x_j\|_2^2 \quad \text{[By Stronger CS for } \ell_2^2\text{]} \\
= \|x_i - x_j\|_2^2.
\]
Analysis: Contraction

- $Mv = \sigma_1 u$, or equivalently, $\sigma_1 u = \sum_{kl} v_{kl}(x_k - x_l)$

Pick any (i, j). We have: $|y_i - y_j|_1 = \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u \rangle| = \frac{1}{\|v\|_1} \left| \left| \langle x_i - x_j, \sum_{kl} v_{kl}(x_k - x_l) \rangle \right| \right|$

$$\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left| \langle x_i - x_j, x_k - x_l \rangle \right|$$

$$\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \|x_i - x_j\|_2^2 \quad \text{[By Stronger CS for ℓ_2^2]}$$

$$= \|x_i - x_j\|_2^2.$$
Analysis: Contraction

- \(Mv = \sigma_1 u \), or equivalently, \(\sigma_1 u = \sum_{kl} v_{kl}(x_k - x_l) \)

Pick any \((i, j)\). We have: \(|y_i - y_j|_1 = \)

\[
\frac{\sigma_1}{\|v\|_1} \left| \langle x_i - x_j, u \rangle \right| = \frac{1}{\|v\|_1} \left| \left\langle x_i - x_j, \sum_{kl} v_{kl}(x_k - x_l) \right\rangle \right| \\
\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \left| \langle x_i - x_j, x_k - x_l \rangle \right| \\
\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \|x_i - x_j\|_2^2 \quad \text{[By Stronger CS for } \ell_2^2\text{]} \\
= \|x_i - x_j\|_2^2.
\]
Analysis: Contraction

- $Mv = \sigma_1 u$, or equivalently, $\sigma_1 u = \sum_{kl} v_{kl}(x_k - x_l)$

Pick any (i, j). We have: $|y_i - y_j|_1 =$

$$\frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u \rangle| = \frac{1}{\|v\|_1} \left| \left\langle x_i - x_j, \sum_{kl} v_{kl}(x_k - x_l) \right\rangle \right|$$

$$\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| |\langle x_i - x_j, x_k - x_l \rangle|$$

$$\leq \frac{1}{\|v\|_1} \sum_{kl} |v_{kl}| \|x_i - x_j\|_2^2 \quad [\text{By Stronger CS for } \ell_2^2]$$

$$= \|x_i - x_j\|_2^2.$$
Analysis: Dilation

\[
\sum_{ij} |y_i - y_j|_1 = \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u \rangle| \\
= \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\sigma_1 v_{ij}| \quad \text{[Since } u^T M = \sigma_1 v^T]\]

\[
= \sigma_1^2 \\
= \|M\|_F^2 \\
= \frac{1}{sr(M)} \sum_{ij} \|x_i - x_j\|_2^2 \\
\geq \frac{0.99}{r} \sum_{ij} \|x_i - x_j\|_2^2.
\]
Analysis: Dilation

\[\sum_{ij} |y_i - y_j|_1 = \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u \rangle| \]

\[= \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\sigma_1 v_{ij}| \quad \text{[Since } u^T M = \sigma_1 v^T \text{]} \]

\[= \sigma_1^2 \]

\[= \frac{\|M\|_F^2}{sr(M)} \]

\[= \frac{1}{sr(M)} \sum_{ij} \|x_i - x_j\|_2^2 \]

\[\geq \frac{0.99}{r} \sum_{ij} \|x_i - x_j\|_2^2. \]
\[
\sum_{ij} |y_i - y_j|_1 = \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u \rangle| \\
= \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\sigma_1 v_{ij}| \quad \text{[Since } u^T M = \sigma_1 v^T \text{]} \\
= \sigma_1^2 \\
= \frac{\|M\|^2_F}{\text{sr}(M)} \\
= \frac{1}{\text{sr}(M)} \sum_{ij} \|x_i - x_j\|_2^2 \\
\geq \frac{0.99}{r} \sum_{ij} \|x_i - x_j\|_2^2 .
\]
Analysis: Dilation

\[\sum_{ij} |y_i - y_j|_1 = \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u \rangle| \]
\[= \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\sigma_1 v_{ij}| \quad \text{[Since } u^T M = \sigma_1 v^T \]}
\[= \sigma_1^2 \]
\[= \frac{\|M\|_F^2}{\text{sr}(M)} \]
\[= \frac{1}{\text{sr}(M)} \sum_{ij} \|x_i - x_j\|_2^2 \]
\[\geq \frac{0.99}{r} \sum_{ij} \|x_i - x_j\|_2^2 . \]
Analysis: Dilation

\[\sum_{ij} |y_i - y_j|_1 = \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\langle x_i - x_j, u \rangle| \]

\[= \sum_{ij} \frac{\sigma_1}{\|v\|_1} |\sigma_1 v_{ij}| \quad [\text{Since } u^T M = \sigma_1 v^T] \]

\[= \sigma_1^2 \]

\[= \frac{\|M\|_F^2}{sr(M)} \]

\[= \frac{1}{sr(M)} \sum_{ij} \|x_i - x_j\|_2^2 \]

\[\geq \frac{0.99}{r} \sum_{ij} \|x_i - x_j\|_2^2. \]
Algorithm by Guruswami and Sinop based on SoS hierarchy at level $O(r)$ gives a better result: $O(1)$ approximation.

GS algorithm runs in time $2^{O(r)}\text{poly}(n)$, but needs a specific solver.

- Our algorithm does not need to know r a-priori.
- Runs in time $\text{poly}(n)$, conceptually simpler.
- Compared to improved Cheeger analysis, there is scope for improvement in dependence on r.
- Gives a projective embedding, as against other known embeddings of ℓ_2^2 into ℓ_1 that are Frechet embeddings.
Algorithm by Guruswami and Sinop based on SoS hierarchy at level $O(r)$ gives a better result: $O(1)$ approximation

GS algorithm runs in time $2^{O(r)\text{poly}(n)}$, but needs a specific solver

- Our algorithm does not need to know r a-priori
- Runs in time $\text{poly}(n)$, conceptually simpler
- Compared to improved Cheeger analysis, there is scope for improvement in dependence on r
- Gives a projective embedding, as against other known embeddings of ℓ_2^2 into ℓ_1 that are Frechet embeddings
Algorithm by Guruswami and Sinop based on SoS hierarchy at level $O(r)$ gives a better result: $O(1)$ approximation.

GS algorithm runs in time $2^{O(r)} \text{poly}(n)$, but needs a specific solver.

Our algorithm does not need to know r a-priori.

Runs in time $\text{poly}(n)$, conceptually simpler.

Compared to improved Cheeger analysis, there is scope for improvement in dependence on r.

Gives a projective embedding, as against other known embeddings of ℓ_2^2 into ℓ_1 that are Frechet embeddings.
Algorithm by Guruswami and Sinop based on SoS hierarchy at level $O(r)$ gives a better result: $O(1)$ approximation.

GS algorithm runs in time $2^{O(r) \text{poly}(n)}$, but needs a specific solver.

- Our algorithm does not need to know r a-priori.
- Runs in time $\text{poly}(n)$, conceptually simpler.
- Compared to improved Cheeger analysis, there is scope for improvement in dependence on r.
- Gives a *projective* embedding, as against other known embeddings of ℓ_2^2 into ℓ_1 that are Frechet embeddings.
Outline

1. Introduction

2. Cheeger or Spectral Approach

3. Rounding a stronger SDP
 - Our Algorithm

4. Goemans’ Theorem

5. Summary
Recap: Embedding

SDP solutions: ℓ^2_2 - space

\mathbb{R}^m

$\theta \leq \pi/2$

$OBJ = \frac{\sum_{e} \|x_i - x_j\|_2^2}{\sum_{i,j \in V} \|x_i - x_j\|_2^2}$

\approx

$OBJ(\ell_1) = \frac{\sum_{e} \|y_i - y_j\|_1}{\sum_{i,j \in V} \|y_i - y_j\|_1}$

ℓ_1 - space
Goemans’ (unpublished) result:

Theorem (Goemans ’00)

_A set of points in \(\mathbb{R}^m \) satisfying \(\ell_2^2 \) triangle inequalities can be embedded into \(\ell_1 \) with distortion \(O(\sqrt{m}) \).

- Implies a \(\sqrt{m} \) approximation to \textsc{Sparsest Cut} on instances where solution has dimension \(m \).
- Does dimension reduction work in \(\ell_2^2 \)?
 - No. Very strong lower bounds [Magen-Moharammi ’00]. 😞
 - Caveat: Only in worst-case distortion.
Goemans’ Result

- Goemans’ (unpublished) result:

Theorem (Goemans ’00)

A set of points in \mathbb{R}^m satisfying ℓ_2^2 triangle inequalities can be embedded into ℓ_1 with distortion $O(\sqrt{m})$

- Implies a \sqrt{m} approximation to Sparsest Cut on instances where solution has dimension m

- Does dimension reduction work in ℓ_2^2?
 - No. Very strong lower bounds [Magen-Moharammi ’00]. 😞
 - Caveat: Only in worst-case distortion
Goemans’ (unpublished) result:

Theorem (Goemans ’00)

A set of points in \mathbb{R}^m satisfying ℓ_2^2 triangle inequalities can be embedded into ℓ_1 with distortion $O(\sqrt{m})$

- Implies a \sqrt{m} approximation to \textsc{Sparsest Cut} on instances where solution has dimension m
- Does dimension reduction work in ℓ_2^2?
 - No. Very strong lower bounds [Magen-Moharammi ’00]. 😞
 - Caveat: Only in worst-case distortion
Goemans’ Result

- Goemans’ (unpublished) result:

Theorem (Goemans ’00)

A set of points in \mathbb{R}^m satisfying ℓ_2^2 triangle inequalities can be embedded into ℓ_1 with distortion $O(\sqrt{m})$

- Implies a \sqrt{m} approximation to \textsc{Sparsest Cut} on instances where solution has dimension m

- Does dimension reduction work in ℓ_2^2?
 - No. Very strong lower bounds [Magen-Moharammi ’00]. 😞
 - Caveat: Only in worst-case distortion
Comparison to our result

- Our rounding technique gives an embedding for ℓ_2^2 points with low stable rank: $\|M\|_F^2 / \|M\|^2$

- Stable rank is a well-known robust proxy for the rank
 - ML, column subset selection.

- Should be able to improve our bound to $O(\sqrt{\text{Stable Rank}})$.

- Is dimension reduction possible in terms of stable rank?
 - Only average distortion required

- Btw, our result also recovers Goemans’ theorem using a (arguably) cleaner proof
Comparison to our result

- Our rounding technique gives an embedding for ℓ_2^2 points with low stable rank: $\|M\|_F^2 / \|M\|^2$

- Stable rank is a well-known robust proxy for the rank
 - ML, column subset selection.

- Should be able to improve our bound to $O(\sqrt{\text{Stable Rank}})$.

- Is dimension reduction possible in terms of stable rank?
 - Only average distortion required

- Btw, our result also recovers Goemans’ theorem using a (arguably) cleaner proof
Our rounding technique gives an embedding for ℓ_2^2 points with low stable rank: $\| M \|_F^2 / \| M \|_2^2$

Stable rank is a well-known robust proxy for the rank
- ML, column subset selection.

Should be able to improve our bound to $O(\sqrt{\text{Stable Rank}})$.

Is dimension reduction possible in terms of stable rank?
- Only average distortion required

Btw, our result also recovers Goemans’ theorem using a (arguably) cleaner proof
Comparison to our result

Our rounding technique gives an embedding for ℓ_2^2 points with low stable rank: $\frac{\|M\|_F^2}{\|M\|^2}$

Stable rank is a well-known robust proxy for the rank
- ML, column subset selection.

Should be able to improve our bound to $O(\sqrt{\text{Stable Rank}})$.

Is dimension reduction possible in terms of stable rank?
- Only average distortion required

Btw, our result also recovers Goemans’ theorem using a (arguably) cleaner proof
Comparison to our result

- Our rounding technique gives an embedding for ℓ_2^2 points with low stable rank: $\|M\|_F^2 / \|M\|^2$

- Stable rank is a well-known robust proxy for the rank
 - ML, column subset selection.

- Should be able to improve our bound to $O(\sqrt{\text{Stable Rank}})$.

- Is dimension reduction possible in terms of stable rank?
 - Only average distortion required

- Btw, our result also recovers Goemans’ theorem using a (arguably) cleaner proof
Standard Johnson-Lindenstrauss dimension reduction preserves ℓ_2^2 triangle inequalities \textit{approximately} (in $O(\log n/\epsilon^2)$ dimensions)

$$\|z_i - z_j\|^2 + \|z_k - z_j\|^2 \geq (1 - O(\epsilon)) \|z_i - z_k\|^2$$

Goemans’ theorem is true with approximate ℓ_2^2 inequalities, but requires ARV analysis [Trevisan]

Can we modify our algorithm to work with approximate triangle inequalities?

Or ‘fix’ ℓ_2^2 inequalities without blowing up approximate dimension
Dimension Reduction

- Standard Johnson-Lindenstrauss dimension reduction preserves ℓ_2^2 triangle inequalities \textit{approximately} (in $O(\log n/\epsilon^2)$ dimensions)

\[\|z_i - z_j\|^2 + \|z_k - z_j\|^2 \geq (1 - O(\epsilon)) \|z_i - z_k\|^2 \]

- Goemans’ theorem is true with approximate ℓ_2^2 inequalities, but requires ARV analysis [Trevisan]

- Can we modify our algorithm to work with approximate triangle inequalities?
 - Or ‘fix’ ℓ_2^2 inequalities without blowing up approximate dimension
Standard Johnson-Lindenstrauss dimension reduction preserves ℓ_2^2 triangle inequalities \textit{approximately} (in $O(\log n/\epsilon^2)$ dimensions)

$$\|z_i - z_j\|^2 + \|z_k - z_j\|^2 \geq (1 - O(\epsilon)) \|z_i - z_k\|^2$$

Goemans’ theorem is true with approximate ℓ_2^2 inequalities, but requires ARV analysis [Trevisan]

Can we modify our algorithm to work with approximate triangle inequalities?

Or ‘fix’ ℓ_2^2 inequalities without blowing up approximate dimension
Summary and Future directions

- A simple SDP algorithm that gives non-trivial guarantees, using ℓ_2^2 inequalities
- Unconditional guarantees?
- Dimension reduction techniques to get ARV-like guarantees?
Summary and Future directions

- A simple SDP algorithm that gives non-trivial guarantees, using ℓ_2^2 inequalities
- Unconditional guarantees?
- Dimension reduction techniques to get ARV-like guarantees?
Summary and Future directions

- A simple SDP algorithm that gives non-trivial guarantees, using ℓ^2_2 inequalities
- Unconditional guarantees?
- Dimension reduction techniques to get ARV-like guarantees?
Thank you.