Classical approximation algorithms for quantum constraint satisfaction problems

Sevag Gharibian

Dept of Computer Science
Virginia Commonwealth University
U.S.A.

Yi-Kai Liu

Applied and Computational Math Div.
NIST
U.S.A.

February 18, 2016
1. Intro: Local Hamiltonians
2. Existing Results
3. Approximating the quantum Heisenberg model
4. Conclusions
1 Intro: Local Hamiltonians
2 Existing Results
3 Approximating the quantum Heisenberg model
4 Conclusions
How quickly can we compute properties of physical quantum systems?
Focus

Our focus: Low temperature properties of local Hamiltonian systems
Our focus: **Low temperature** properties of **local Hamiltonian** systems

Local Hamiltonians?
Govern time evolution of quantum systems via local interactions or “constraints”.

- Ice melts: 273K
- Nitrogen liquifies: 77K
- Outer space: 2.7K
- Helium-4 becomes superfluid: 2.17K
- World record (1999): 0.0000000001K, nuclear spins in rhodium metal
Focus

Our focus: Low temperature properties of local Hamiltonian systems

Local Hamiltonians?
Govern time evolution of quantum systems via local interactions or “constraints”.

Low temperature?

- Ice melts:
 - Ice melts:
 - Ice melts:
 - Ice melts:
 - Ice melts:
Focus

Our focus: Low temperature properties of local Hamiltonian systems

Local Hamiltonians?
Govern time evolution of quantum systems via local interactions or “constraints”.

Low temperature?

- Ice melts: 273K
- Nitrogen liquifies:
Our focus: **Low temperature** properties of **local Hamiltonian** systems

Local Hamiltonians?
Govern time evolution of quantum systems via local interactions or “constraints”.

Low temperature?

- Ice melts: 273K
- Nitrogen liquifies: 77K
- Outer space:
Focus

Our focus: Low temperature properties of local Hamiltonian systems

Local Hamiltonians?
Govern time evolution of quantum systems via local interactions or “constraints”.

Low temperature?

- Ice melts: 273K
- Nitrogen liquifies: 77K
- Outer space: 2.7K
- Helium-4 becomes superfluid:
Focus

Our focus: **Low temperature** properties of **local Hamiltonian** systems

Local Hamiltonians?
Govern time evolution of quantum systems via local interactions or “constraints”.

Low temperature?
- Ice melts: 273K
- Nitrogen liquifies: 77K
- Outer space: 2.7K
- Helium-4 becomes superfluid: 2.17K
- World record (1999):
Focus

Our focus: **Low temperature** properties of **local Hamiltonian** systems

Local Hamiltonians?
Govern time evolution of quantum systems via local interactions or “constraints”.

Low temperature?

- Ice melts: 273K
- Nitrogen liquifies: 77K
- Outer space: 2.7K
- Helium-4 becomes superfluid: 2.17K
- World record (1999): 0.0000000001K, nuclear spins in rhodium metal
Boolean constraint satisfaction

and

local Hamiltonians
Constraint satisfaction

Max-k-Constraint Satisfaction Problem (MAX-k-CSP)

Given a set of boolean constraints on k boolean variables each, e.g.

$$x_1 \lor x_2 \quad \overline{x_2} \land x_4 \quad x_2$$

(here, $k = 2$)

what is the maximum number of constraints we can satisfy with an assignment to the $x_i \in \{0, 1\}$?

Generalizes: MAX-3-SAT, MAX-CUT, etc...
Constraint satisfaction

Max-k-Constraint Satisfaction Problem (MAX-k-CSP)

Given a set of boolean constraints on k boolean variables each, e.g.

\[x_1 \lor x_2 \quad \overline{x_2} \land x_4 \quad x_2 \quad (\text{here, } k = 2) \]

what is the maximum number of constraints we can satisfy with an assignment to the $x_i \in \{0, 1\}$?

Generalizes: MAX-3-SAT, MAX-CUT, etc.

Question

What if we talk about quantum constraints on quantum bits?
Quantum bits and constraints?

A classical 2-bit system takes values in \{00, 01, 10, 11\}.

A quantum 2-qubit system takes linear combinations of these values,

e.g. \[\frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle, \]

where \{\langle 00\rangle, \langle 01\rangle, \langle 10\rangle, \langle 11\rangle\} denote the standard basis for \(\mathbb{C}^4\).
Quantum bits and constraints?

A classical 2-bit system takes values in \{00, 01, 10, 11\}.

A quantum 2-qubit system takes linear combinations of these values,

\[\frac{1}{2} |00\rangle + \frac{1}{2} |01\rangle + \frac{1}{2} |10\rangle + \frac{1}{2} |11\rangle, \]

where \{|00\rangle, |01\rangle, |10\rangle, |11\rangle\} denote the standard basis for \(\mathbb{C}^4\).

A quantum constraint thus asks:

“I want qubits 1 and 2 to lie in a certain subspace, e.g. to lie in the span of \(|00\rangle\) and \(|11\rangle\).”
Local Hamiltonians

2-Local Hamiltonian
A Hermitian operator \(H = \sum_{ij} H_{ij} \) acting on \(n \) qubits, such that:

- \(H \) is a \(2^n \times 2^n \) matrix with description of size \(O(\text{poly}(n)) \).
- Each \(H_{ij} \) is a “quantum constraint” acting on qubits \(i \) and \(j \),
- Each \(H_{ij} \) is a \(4 \times 4 \) complex positive semidefinite matrix, e.g.
 \[
 H_{12} = |00\rangle\langle00| + |11\rangle\langle11| = \begin{pmatrix}
 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}.

- Implicitly, each local term is really \(H_{ij} \otimes I_{[n]\setminus\{i,j\}} \).
Local Hamiltonians

2-Local Hamiltonian
A Hermitian operator $H = \sum_{ij} H_{ij}$ acting on n qubits, such that:

- H is a $2^n \times 2^n$ matrix with description of size $O(\text{poly}(n))$.
- Each H_{ij} is a “quantum constraint” acting on qubits i and j,
- Each H_{ij} is a 4×4 complex positive semidefinite matrix, e.g.

$$H_{12} = |00\rangle\langle 00| + |11\rangle\langle 11| = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- Implicitly, each local term is really $H_{ij} \otimes I_{[n] \setminus \{i,j\}}$.

2-local Hamiltonian problem (2-LH)
Given a 2-local Hamiltonian $H = \sum_{ij} H_{ij}$, what is $\lambda_{\min}(H)$?
Why should we care?

To a physicist:
2-LH is the task of estimating energy of a physical system at low temperature.

To a computer scientist:
2-LH generalizes MAX-2-CSP. Moreover:

- **2-local** Hamiltonian is QMA-complete
 [Kitaev 1999, Kempe, Kitaev, Regev 2006].

- 2-local Hamiltonian with qubits on a **2D lattice** is QMA-complete
 [Oliveira, Terhal 2008].

- 2-local Hamiltonian with 12-dimensional systems on the line is QMA-complete
 [Aharonov, Gottesman, Irani, Kempe, 2009].

- Quantum 2-SAT is in **P**
Outline

1 Intro: Local Hamiltonians
2 Existing Results
3 Approximating the quantum Heisenberg model
4 Conclusions
The case for approximating k-LH

What the physicists have been up to: Heuristics!

Density Matrix Renormalization Group (DMRG) [W92,W93]
“Local update” heuristic for 1D gapped local Hamiltonian systems.
Approximability in a quantum world

Trivial observations:

- A “random assignment” yields a $\frac{1}{2^k}$-approximation for k-LH.
- UGC-hard to do better than 0.878 for 2-LH [Khot, Kindler, Mossel, O’Donnell, 2005].
- UGC-hard to do better than $(k + 1)/2^{k-1}$ for k-LH for $k \geq 3$ [Samorodnitsky, Trevisan, 2006].
Approximability in a quantum world

Trivial observations:

- A “random assignment” yields a $\frac{1}{2^k}$-approximation for k-LH.
- UGC-hard to do better than 0.878 for 2-LH [Khot, Kindler, Mossel, O’Donnell, 2005].
- UGC-hard to do better than $(k + 1)/2^{k-1}$ for k-LH for $k \geq 3$ [Samorodnitsky, Trevisan, 2006].

Algorithms:

- PTAS for 2-LH on planar graphs of bounded degree [Bansal, Bravyi, Terhal 2009].
- $\frac{1}{2^{k-1}}$-approximation algorithm for dense k-LH [G, Kempe 2011].
- PTAS for k-LH on planar, dense, or low threshold-rank graphs [Brandão, Harrow, 2013].
- FPRAS for partition function of ferromagnetic Transverse Ising Model [Bravyi 2013].
Approximability in a quantum world

Trivial observations:
- A “random assignment” yields a $\frac{1}{2^k}$-approximation for k-LH.
- UGC-hard to do better than 0.878 for 2-LH [Khot, Kindler, Mossel, O’Donnell, 2005].
- UGC-hard to do better than $(k + 1)/2^{k-1}$ for k-LH for $k \geq 3$ [Samorodnitsky, Trevisan, 2006].

Algorithms:
- PTAS for 2-LH on planar graphs of bounded degree [Bansal, Bravyi, Terhal 2009].
- $\frac{1}{2^{k-1}}$-approximation algorithm for dense k-LH [G, Kempe 2011].
- PTAS for k-LH on planar, dense, or low threshold-rank graphs [Brandão, Harrow, 2013].
- FPRAS for partition function of ferromagnetic Transverse Ising Model [Bravyi 2013].

Hardness results:
- Quantum Succinct Set Cover is $c_{q}-\Sigma_2$-hard to approximate within $n^{1-\epsilon}$ for any fixed $\epsilon > 0$ [G, Kempe 2012].
(Very) high-level techniques

PTAS for 2-LH on planar graphs of bounded degree [BBT09]

- Partition graph into $O(1)$-size pieces, solve each piece optimally via brute force

$\frac{1}{2^{k-1}}$-approximation algorithm for dense k-LH [GK11], PTAS for k-LH on planar, dense, or low threshold-rank graphs [BH13]

- “Mean field ansatz”, or optimize over product quantum states

FPRAS for partition function of ferromagnetic Transverse Ising Model [B13]

- Apply “quantum-to-classical” mapping to map a d-dimensional quantum system to a $d + 1$-dimensional classical system
Optimizing over product states

Problem
An assignment $|\psi\rangle$ on n qubits for k-LH generally requires $O(2^n)$ bits to describe classically.

Notes:
• Optimizing over product states is NP-complete! (Could solve MAX-k-CSP.)
• Product states ignore quantum correlations, i.e. entanglement. (Nevertheless, the mean field ansatz is physicist-approved.)
Optimizing over product states

Problem
An assignment $|\psi\rangle$ on n qubits for k-LH generally requires $O(2^n)$ bits to describe classically.

Luckily, some assignments have succinct representations...

A **product** state is of the form $|\psi_{\text{prod}}\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$ for $|\psi_i\rangle \in \mathbb{C}^2$.
Optimizing over product states

Problem
An assignment $|\psi\rangle$ on n qubits for k-LH generally requires $O(2^n)$ bits to describe classically.

Luckily, some assignments have succinct representations…
A product state is of the form $|\psi_{\text{prod}}\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle$ for $|\psi_i\rangle \in \mathbb{C}^2$.

Notes:

- Optimizing over product states is NP-complete!
 (Could solve MAX-k-CSP.)

- Product states ignore quantum correlations, i.e. entanglement.
 (Nevertheless, the mean field ansatz is physicist-approved.)
Why physicist approved?

1. A local Hamiltonian H does not (cannot) in general accurately model all physical parameters of a system.
Why physicist approved?

1. A local Hamiltonian H does not (cannot) in general accurately model all physical parameters of a system.

2. Rather, H is a phenomenological object, which up to minor corrections, models certain local properties of a system (e.g. values of local measurements).
A local Hamiltonian H does not (cannot) in general accurately model all physical parameters of a system.

Rather, H is a phenomenological object, which up to minor corrections, models certain local properties of a system (e.g. values of local measurements).

Local properties are often of interest — in such cases, one need not accurately obtain the entire ground state of H. Rather, an ansatz (such as mean field) may approximate the local property sufficiently well.
Results for product states

Theorem 1 [G, Kempe, 2011]
For any k-local Hamiltonian instance H, there exists a product state assignment achieving a $\left(\frac{1}{2k-1}\right)$-approximation.
Results for product states

Theorem 1 [G, Kempe, 2011]
For any k-local Hamiltonian instance H, there exists a product state assignment achieving a $(\frac{1}{2k-1})$-approximation.

Remarks:

- For 2-local Hamiltonian, we get a $\frac{1}{2}$-approximation. This is tight.
- For k-local Hamiltonian, we can show upper bound on ratio of $\frac{1}{2^{\lceil k/2 \rceil}}$.
- No quantum PCP theorem for $r < \frac{1}{2k-1}$ unless $\text{NP} = \text{QMA}$.
Results for product states

Theorem 1 [G, Kempe, 2011]
For any k-local Hamiltonian instance H, there exists a product state assignment achieving a $\left(\frac{1}{2^{k-1}}\right)$-approximation.

Remarks:

- For 2-local Hamiltonian, we get a $\frac{1}{2}$-approximation. This is tight.
- For k-local Hamiltonian, we can show upper bound on ratio of $\frac{1}{2^{\lfloor k/2 \rfloor}}$.
- No quantum PCP theorem for $r < \frac{1}{2^{k-1}}$ unless NP = QMA.

Open Question:
Is there an efficient $1/2$-approximation algorithm for 2-LH?
(Subtlety: Recall cannot simply optimize over product states, NP-hard.)
Results for product states

Theorem 1 [G, Kempe, 2011]
For any k-local Hamiltonian instance H, there exists a product state assignment achieving a $\left(\frac{1}{2^{k-1}}\right)$-approximation.
Results for product states

Theorem 1 [G, Kempe, 2011]
For any k-local Hamiltonian instance H, there exists a product state assignment achieving a \(\left(\frac{1}{2^{k-1}} \right) \)-approximation.

Theorem 2 [G, Kempe, 2011]
For any $\epsilon > 0$ and k-local Hamiltonian instance H on n qubits, there exists a deterministic poly-time algorithm outputting a product state $|\psi\rangle$ satisfying

\[
\text{Tr}(H|\psi\rangle\langle\psi|) \geq \text{OPT}_{\text{prod}} - \epsilon n^k.
\]

Here, OPT_{prod} is optimal product state assignment value.
Results for product states

Theorem 1 [G, Kempe, 2011]
For any k-local Hamiltonian instance H, there exists a product state assignment achieving a $\left(\frac{1}{2^{k-1}}\right)$-approximation.

Theorem 2 [G, Kempe, 2011]
For any $\epsilon > 0$ and k-local Hamiltonian instance H on n qubits, there exists a deterministic poly-time algorithm outputting a product state $|\psi\rangle$ satisfying

$$\text{Tr}(H|\psi\rangle\langle\psi|) \geq \text{OPT}_{\text{prod}} - \epsilon n^k.$$

Here, OPT_{prod} is optimal product state assignment value.

Implication:
For any $\epsilon > 0$, there exists a $\left(\frac{1}{2^{k-1}} - \epsilon\right)$-algorithm for dense k-LH.
Results for product states

Theorem 1 [G, Kempe, 2011]
For any k-local Hamiltonian instance H, there exists a product state assignment achieving a $\left(\frac{1}{2^{k-1}}\right)$-approximation.

Theorem 2 [G, Kempe, 2011]
For any $\epsilon > 0$ and k-local Hamiltonian instance H on n qubits, there exists a deterministic poly-time algorithm outputting a product state $|\psi\rangle$ satisfying

$$\text{Tr}(H|\psi\rangle\langle\psi|) \geq \text{OPT}_{\text{prod}} - \epsilon n^k.$$

Here, OPT_{prod} is optimal product state assignment value.

Implication:
For any $\epsilon > 0$, there exists a $\left(\frac{1}{2^{k-1}} - \epsilon\right)$-algorithm for dense k-LH.

Question:
Can one obtain a PTAS in the dense case?
Results for product states

Theorem [Brandão, Harrow, 2013]
Let $G = (V, E)$ be D-regular graph on n vertices. For any n-qubit quantum state ρ, there exists n-qubit fully separable state σ such that

$$\mathbb{E}_{(i,j) \in E} \| \rho_{ij} - \sigma_{ij} \|_{tr} \leq 12 \left(\frac{4 \ln(2)}{D} \right)^{1/3}.$$
Results for product states

Theorem [Brandão, Harrow, 2013]
Let $G = (V, E)$ be D-regular graph on n vertices. For any n-qubit quantum state ρ, there exists n-qubit fully separable state σ such that

$$\mathbb{E}_{(i,j) \in E} \| \rho_{ij} - \sigma_{ij} \|_{\text{tr}} \leq 12 \left(\frac{4 \ln(2)}{D} \right)^{1/3}.$$

Corollary [Brandão, Harrow, 2013, using G, Kempe, 2011]
The dense k-LH problem admits a PTAS.
The [GK11] algorithm uses technique of “exhaustive sampling” of [Arora, Karger, Karpinski, 1999].

This technique can arguably be seen as a “rigorous formulation” of mean field theory (!).

Moral of the story: Computer scientists and physicists get along.
Outline

1 Intro: Local Hamiltonians

2 Existing Results

3 Approximating the quantum Heisenberg model

4 Conclusions
The quantum Heisenberg model

MAX CUT
Given a simple, undirected graph $G = (V, E)$, find a cut of maximum size, i.e. $S \subseteq V$ maximizing number of edges between S and $[n] \setminus S$.

The 2-local Hamiltonian encoding MAX CUT is $H = \sum_{(i,j) \in E} Z_i \otimes Z_j$ for Pauli

$$Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$
The quantum Heisenberg model

MAX CUT
Given a simple, undirected graph $G = (V, E)$, find a cut of maximum size, i.e. $S \subseteq V$ maximizing number of edges between S and $[n] \setminus S$.

The 2-local Hamiltonian encoding MAX CUT is $H = \sum_{(i,j) \in E} Z_i \otimes Z_j$ for Pauli $Z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

In the quantum setting, there are additional degrees of freedom:

$X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$.
Quantum Heisenberg anti-ferromagnet

\[H = \sum_{(i,j) \in E} H_{ij} \quad \text{for} \quad H_{ij} = X_i \otimes X_j + Y_i \otimes Y_j + Z_i \otimes Z_j. \]

- **Intuition:** A quantum “analogue” of MAX CUT.
Quantum Heisenberg anti-ferromagnet

\[H = \sum_{(i,j) \in E} H_{ij} \quad \text{for} \quad H_{ij} = X_i \otimes X_j + Y_i \otimes Y_j + Z_i \otimes Z_j. \]

- **Intuition**: A quantum “analogue” of MAX CUT.
- **Rank** \(H_{ij} \) = 3.
Quantum Heisenberg anti-ferromagnet

\[H = \sum_{(i,j) \in E} H_{ij} \quad \text{for} \quad H_{ij} = X_i \otimes X_j + Y_i \otimes Y_j + Z_i \otimes Z_j. \]

- **Intuition:** A quantum “analogue” of MAX CUT.
- **Rank:** \(\text{Rank}(H_{ij}) = 3. \)
- **Unique vector in null space:**
 \[|\psi^-\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \] ("singlet" or antisymmetric state)
Quantum Heisenberg anti-ferromagnet

\[H = \sum_{(i,j) \in E} H_{ij} \quad \text{for} \quad H_{ij} = X_i \otimes X_j + Y_i \otimes Y_j + Z_i \otimes Z_j. \]

- **Intuition:** A quantum “analogue” of MAX CUT.
- **Rank(\(H_{ij}\)) = 3.**
- **Unique vector in null space:**
 \[|\psi^-\rangle = \frac{1}{\sqrt{2}} (|01\rangle - |10\rangle) \] ("singlet" or antisymmetric state)

- **Two sources of “frustration”:**
 - Neighboring spins should be “anti-aligned”.
 - Monogamy of entanglement (target state \(|\psi^-\rangle\) is maximally entangled).
Let us convert this to a weighted maximization problem:

\[H = \sum_{(i,j) \in E} w_{ij} H_{ij} \]

for \(H_{ij} = I - X_i \otimes X_j - Y_i \otimes Y_j - Z_i \otimes Z_j = 4\psi^\dagger\psi \) and \(w_{ij} \geq 0 \) \(\forall i, j \).

Goal: Compute \(\lambda_{\text{max}}(H) \). Call this problem AFH.
Our setup

Let us convert this to a weighted maximization problem:

\[H = \sum_{(i,j) \in E} w_{ij} H_{ij} \]

for \(H_{ij} = I - X_i \otimes X_j - Y_i \otimes Y_j - Z_i \otimes Z_j = 4|\psi^\parallel\langle\psi^-| \) and \(w_{ij} \geq 0 \forall i, j \).

Goal: Compute \(\lambda_{\text{max}}(H) \). Call this problem AFH.

What is known about this problem?

- Easy cases:
 - In 1D, can be handled via Bethe ansatz [Bethe, 1931].
 - On complete graphs and complete bipartite graphs (Lieb-Mattis model) can be solved via theory of spin.
Our setup

Let us convert this to a weighted maximization problem:

\[H = \sum_{(i,j) \in E} w_{ij} H_{ij} \]

for \(H_{ij} = I - X_i \otimes X_j - Y_i \otimes Y_j - Z_i \otimes Z_j = 4|\psi^-\rangle\langle\psi^-| \) and \(w_{ij} \geq 0 \ \forall \ i, j \).

Goal: Compute \(\lambda_{\max}(H) \). Call this problem AFH.

What is known about this problem?

- Easy cases:
 - In 1D, can be handled via Bethe ansatz [Bethe, 1931].
 - On complete graphs and complete bipartite graphs (Lieb-Mattis model) can be solved via theory of spin.
- On bipartite graphs, is in Stoquastic MA [Bravyi, Bessen, Terhal, 2006].

\[MA \subseteq \text{StoqMA} \subseteq \text{AM} \subseteq \text{PH} \quad [\text{BDOT06}] \]
Let us convert this to a weighted maximization problem:

$$H = \sum_{(i,j) \in E} w_{ij} H_{ij}$$

for $H_{ij} = I - X_i \otimes X_j - Y_i \otimes Y_j - Z_i \otimes Z_j = 4|\psi^-(\psi^-} and w_{ij} \geq 0 \ \forall \ i, j$.

Goal: Compute $\lambda_{\text{max}}(H)$. Call this problem AFH.

What is known about this problem?

- Easy cases:
 - In 1D, can be handled via Bethe ansatz [Bethe, 1931].
 - On complete graphs and complete bipartite graphs (Lieb-Mattis model) can be solved via theory of spin.
- On bipartite graphs, is in Stoquastic MA [Bravyi, Bessen, Terhal, 2006).
 $$\text{MA} \subseteq \text{StoqMA} \subseteq \text{AM} \subseteq \text{PH} \quad \text{[BDOT06]}$$
- QMA-complete in general [Piddock, Montanaro, 2015].
Strategy

\[
\text{OPT} := \max_{|\psi\rangle \in (\mathbb{C}^2)^\otimes n} \text{Tr}(H|\psi\rangle\langle\psi|)
\]

\[
\text{OPT}_{\text{prod}} := \max_{|\psi_{\text{prod}}\rangle = |\psi_1\rangle \otimes \cdots \otimes |\psi_n\rangle} \text{Tr}(H|\psi_{\text{prod}}\rangle\langle\psi_{\text{prod}}|).
\]

\[
\text{MAXCUT} := \max_{x \in \{1,-1\}^n} \frac{1}{2} \sum_{(i,j) \in E} w_{ij}(1 - x_i x_j).
\]

1. Use “mean field” ansatz, i.e. optimize over product states.
2. Use Goemans-Williamson framework to compute “good” product state solutions.
3. Show tight bounds between OPT and MAXCUT to relate OPT to OPT_{\text{prod}}.
Lemma
For any AFH instance,

\[2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}} \leq \text{OPT} \leq 4 \cdot \text{MAXCUT}. \]
Tight bounds

Lemma
For any AFH instance,

\[2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}} \leq \text{OPT} \leq 4 \cdot \text{MAXCUT}. \]

Proof.
(\(2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}}\)) Consider optimal MAX CUT assignment.
Tight bounds

Lemma
For any AFH instance,

\[2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}} \leq \text{OPT} \leq 4 \cdot \text{MAXCUT}. \]

Proof.
(\(2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}}\)) Consider optimal MAX CUT assignment.

(\(\text{OPT} \leq 4 \cdot \text{MAXCUT}\)) Define \(\Pi_{ij} := (|01\rangle\langle 01| + |10\rangle\langle 10|)\), i.e. MAX CUT constraints. Then,

\[H_{ij} = 4|\psi^-\rangle\langle \psi^-| \leq 4\Pi_{ij} = 4(|01\rangle\langle 01| + |10\rangle\langle 10|). \]
Tight bounds

Lemma
For any AFH instance,

\[2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}} \leq \text{OPT} \leq 4 \cdot \text{MAXCUT}. \]

Proof.
(\(2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}}\)) Consider optimal MAX CUT assignment.

(\(\text{OPT} \leq 4 \cdot \text{MAXCUT}\)) Define \(\Pi_{ij} := (|01\rangle\langle01| + |10\rangle\langle10|)\), i.e. MAX CUT constraints. Then,

\[H_{ij} = 4|\psi^-\rangle\langle\psi^-| \leq 4\Pi_{ij} = 4(|01\rangle\langle01| + |10\rangle\langle10|). \]

Implication: For any AFH instance, \(\text{OPT}_{\text{prod}} \geq \frac{1}{2} \text{OPT}\).
Lemma
For any AFH instance,

\[2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}} \leq \text{OPT} \leq 4 \cdot \text{MAXCUT}. \]

Proof.
(2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}}) Consider optimal MAX CUT assignment.

(OPT \leq 4 \cdot \text{MAXCUT}) Define \(\Pi_{ij} := (|01\rangle\langle 01| + |10\rangle\langle 10|) \), i.e. MAX CUT constraints. Then,

\[H_{ij} = 4|\psi^-\rangle\langle \psi^-| \leq 4\Pi_{ij} = 4(|01\rangle\langle 01| + |10\rangle\langle 10|). \]

Implication: For any AFH instance, \(\text{OPT}_{\text{prod}} \geq \frac{1}{2} \text{OPT} \).

Both inequalities are tight:
- (OPT \leq 4 \cdot \text{MAXCUT}) Consider since unit weight constraint.
Lemma
For any AFH instance,

\[2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}} \leq \text{OPT} \leq 4 \cdot \text{MAXCUT}. \]

Proof.
(2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}}) Consider optimal MAX CUT assignment.

(OPT \leq 4 \cdot \text{MAXCUT}) Define \(\Pi_{ij} := (|01\rangle\langle 01| + |10\rangle\langle 10|) \), i.e. MAX CUT constraints. Then,

\[H_{ij} = 4|\psi^-\rangle\langle \psi^-| \leq 4\Pi_{ij} = 4(|01\rangle\langle 01| + |10\rangle\langle 10|). \]

Implication: For any AFH instance, \(\text{OPT}_{\text{prod}} \geq \frac{1}{2} \text{OPT} \).

Both inequalities are tight:
- (OPT \leq 4 \cdot \text{MAXCUT}) Consider since unit weight constraint.
- (2 \cdot \text{MAXCUT} \leq \text{OPT}_{\text{prod}}) Consider any “superdense” graph. Proof uses quantum de Finetti theorem and \(U \otimes U \) invariance of \(|\psi^-\rangle \).
The algorithm

Theorem
There exists a polynomial-time classical algorithm A for AFH on interaction graph G such that:

- For arbitrary G, A is 0.478-algorithm.
- For D-regular G, let $\Delta := m / (\sum_{ij} w_{ij})$ and $w_{\text{max}} := \max_{ij} w_{ij}$. Then, A has approximation ratio

$$\max \left(0.478, 0.9563 \left(1 - 36\Delta w_{\text{max}} \left(\frac{4 \ln(2)}{D} \right)^{1/3} \right) \right).$$
The algorithm

Theorem
There exists a polynomial-time classical algorithm A for AFH on interaction graph G such that:

- For arbitrary G, A is 0.478-algorithm.
- For D-regular G, let $\Delta := m / (\sum_{ij} w_{ij})$ and $w_{\text{max}} := \max_{ij} w_{ij}$. Then, A has approximation ratio

$$\max \left(0.478, 0.9563 \left(1 - 36\Delta w_{\text{max}} \left(\frac{4 \ln(2)}{D}\right)^{1/3}\right) \right).$$

Remarks:
- Recall for general 2-LH, don’t have even 1/2-approximation.
The algorithm

Theorem
There exists a polynomial-time classical algorithm A for AFH on interaction graph G such that:

- For arbitrary G, A is 0.478-algorithm.
- For D-regular G, let $\Delta := m/(\sum_{ij} w_{ij})$ and $w_{\text{max}} := \max_{ij} w_{ij}$. Then, A has approximation ratio

$$\max \left(0.478, 0.9563 \left(1 - 36\Delta w_{\text{max}} \left(\frac{4 \ln(2)}{D} \right)^{1/3} \right) \right).$$

Remarks:

- Recall for general 2-LH, don’t have even $1/2$-approximation.
- First algorithm approximating a QMA-complete variant of k-LH on arbitrary graphs.
The algorithm

Theorem
There exists a polynomial-time classical algorithm A for AFH on interaction graph G such that:

- For arbitrary G, A is 0.478-algorithm.
- For D-regular G, let $\Delta := m/(\sum_{ij} w_{ij})$ and $w_{\text{max}} := \max_{ij} w_{ij}$. Then, A has approximation ratio

$$\max\left(0.478, 0.9563 \left(1 - 36\Delta w_{\text{max}} \left(\frac{4\ln(2)}{D}\right)^{1/3}\right)\right).$$

Remarks:

- Recall for general 2-LH, don’t have even 1/2-approximation.
- First algorithm approximating a QMA-complete variant of k-LH on arbitrary graphs.
- For any fixed $\epsilon > 0$, for large enough $D \in O(1)$ (regularity) obtain $(0.9563 - \epsilon)$-approximation.
The algorithm

Theorem
There exists a polynomial-time classical algorithm A for AFH on interaction graph G such that:

- For arbitrary G, A is 0.478-algorithm.
- For D-regular G, let $\Delta := m/(\sum_{ij} w_{ij})$ and $w_{\max} := \max_{ij} w_{ij}$. Then, A has approximation ratio

$$\max \left(0.478, 0.9563 \left(1 - 36\Delta w_{\max} \left(\frac{4\ln(2)}{D} \right)^{1/3} \right) \right).$$

Remarks:

- Recall for general 2-LH, don’t have even $1/2$-approximation.
- First algorithm approximating a QMA-complete variant of k-LH on arbitrary graphs.
- For any fixed $\epsilon > 0$, for large enough $D \in O(1)$ (regularity) obtain $(0.9563 - \epsilon)$-approximation.

- **Surprise:** Cannot approximate MAX CUT better than $0.878 + O(\frac{1}{\sqrt{D}})$ (UGC) or $0.941 + O(\frac{1}{\sqrt{D}})$ ($P \neq NP$).
Key observation: Work in Bloch vector picture.

Any single qubit state ρ is characterized by *Bloch vector* $r \in \mathbb{R}^3$ such that

$$
\rho = \frac{1}{2} \left(I + r_1 X + r_2 Y + r_3 Z \right) \text{ for } \|r\|_2 \leq 1.
$$
The algorithm

Key observation: Work in Bloch vector picture.

Any single qubit state ρ is characterized by Bloch vector $r \in \mathbb{R}^3$ such that

$$\rho = \frac{1}{2}(I + r_1 X + r_2 Y + r_3 Z) \quad \text{for } \|r\|_2 \leq 1.$$

Then,

$$\text{Tr}((I - XX - YY - ZZ)_{ij} \rho_i \otimes \rho_j) = 1 - \langle r_1, r_2 \rangle.$$
The algorithm

Key observation: Work in Bloch vector picture.

Any single qubit state ρ is characterized by *Bloch vector* $r \in \mathbb{R}^3$ such that

$$\rho = \frac{1}{2}(I + r_1 X + r_2 Y + r_3 Z) \quad \text{for} \quad \|r\|_2 \leq 1.$$

Then,

$$\text{Tr}(((I - XX - YY - ZZ)_{ij}\rho_i \otimes \rho_j) = 1 - \langle r_1, r_2 \rangle.$$

Thus,

$$\text{OPT}_{\text{prod}} = \max \quad \frac{1}{2} \sum_{(i,j) \in E} w_{ij} (1 - \langle v_i, v_j \rangle)$$

s.t.

$$\langle v_i, v_i \rangle \leq 1$$

$$v_i \in \mathbb{R}^3 \quad \text{for} \quad 1 \leq i \leq n.$$
The algorithm

Key observation: Work in Bloch vector picture.

Any single qubit state ρ is characterized by Bloch vector $r \in \mathbb{R}^3$ such that

$$\rho = \frac{1}{2}(I + r_1 X + r_2 Y + r_3 Z) \quad \text{for } \|r\|_2 \leq 1.$$

Then,

$$\text{Tr}((I - XX - YY - ZZ)_{ij}\rho_i \otimes \rho_j) = 1 - \langle r_1, r_2 \rangle.$$

Thus,

$$\text{OPT}_{\text{prod}} = \max \frac{1}{2} \sum_{(i,j) \in E} w_{ij}(1 - \langle v_i, v_j \rangle)$$

s.t. $\langle v_i, v_i \rangle \leq 1$

$v_i \in \mathbb{R}^3$ for $1 \leq i \leq n$.

SDP relaxation:

$$S = \max \frac{1}{2} \sum_{(i,j) \in E} w_{ij}(1 - X_{ij})$$

s.t. $X_{ii} \leq 1$ for $1 \leq i \leq n$

$X \succeq 0$.
The algorithm

• Input: Graph $G = (V, E)$ and weights $\{w_{ij} \geq 0\}$ on n vertices.
• Output: Product state $\rho_{\text{prod}} = \rho_1 \otimes \cdots \otimes \rho_n$.

1. Solve semidefinite program S, obtaining solution X.
2. Take the Cholesky decomposition of X in order to extract a set of vectors $\{x_i\} \subseteq \mathbb{R}^n$.
3. Select random $P = (P_{ij}) \in \mathbb{R}^{3 \times n}$ with each entry $P_{ij} \sim \mathcal{N}(0, 1)$.
4. Return $\rho_{\text{prod}} = \rho_1 \otimes \cdots \otimes \rho_n$ for ρ_i with Bloch vector $P x_i / \|P x_i\|_2$.
The algorithm

- **Input:** Graph $G = (V, E)$ and weights $\{w_{ij} \geq 0\}$ on n vertices.
- **Output:** Product state $\rho_{\text{prod}} = \rho_1 \otimes \cdots \otimes \rho_n$.

1. Solve semidefinite program S, obtaining solution X.
2. Take the Cholesky decomposition of X in order to extract a set of vectors $\{x_i\} \subseteq \mathbb{R}^n$.
3. Select random $P = (P_{ij}) \in \mathbb{R}^{3 \times n}$ with each entry $P_{ij} \sim N(0, 1)$.
4. Return $\rho_{\text{prod}} = \rho_1 \otimes \cdots \otimes \rho_n$ for ρ_i with Bloch vector $P_{x_i}/\|P_{x_i}\|_2$.

Remarks:

- Steps 3 and 4 are higher dimensional analogue of Goemans-Williamson rounding [Briët, de Oliveira Filho, Vallentin, 2010].
- Rounding obtains 0.9563-approximation to OPT_{prod} [BoFV,2010].
- Combining this with our $\text{OPT}_{\text{prod}} \geq \frac{1}{2} \text{OPT}$ bound yields 0.478-algorithm.
The algorithm

Theorem
There exists a polynomial-time classical algorithm A for AFH on interaction graph G such that:

- For arbitrary G, A is 0.478-algorithm.
- For D-regular G, let $\Delta := m/(\sum_{ij} w_{ij})$ and $w_{\text{max}} := \max_{ij} w_{ij}$. Then, A has approximation ratio

$$\max \left(0.478, 0.9563 \left(1 - 36\Delta w_{\text{max}} \left(\frac{4 \ln(2)}{D}\right)^{1/3}\right)\right).$$

What about the second claim?
The algorithm

Theorem
There exists a polynomial-time classical algorithm A for AFH on interaction graph G such that:

- For arbitrary G, A is 0.478-algorithm.
- For D-regular G, let $\Delta := m/(\sum_{ij} w_{ij})$ and $w_{\text{max}} := \max_{ij} w_{ij}$. Then, A has approximation ratio

$$\max \left(0.478, 0.9563 \left(1 - 36\Delta w_{\text{max}} \left(\frac{4 \ln(2)}{D} \right)^{1/3} \right) \right).$$

What about the second claim? Show using:

Theorem [Brandão, Harrow, 2013]
Let $G = (V, E)$ be D-regular graph on n vertices. For any n-qubit quantum state ρ, there exists n-qubit fully separable state σ such that

$$\mathbb{E}_{(i,j) \in E} \| \rho_{ij} - \sigma_{ij} \|_{\text{tr}} \leq 12 \left(\frac{4 \ln(2)}{D} \right)^{1/3}.$$
Recall for D-regular G, A has approximation ratio

$$\max\left(0.478, 0.9563 \left(1 - 36\Delta w_{\max} \left(\frac{4 \ln(2)}{D}\right)^{1/3}\right)\right).$$

Need $D \geq 1033890$ before improving on 0.478 (assume unit weights).
Recall for D-regular G, A has approximation ratio

$$\max \left(0.478, 0.9563 \left(1 - 36\Delta w_{\text{max}} \left(\frac{4 \ln(2)}{D} \right)^{1/3} \right) \right).$$

Need $D \geq 1033890$ before improving on 0.478 (assume unit weights).

Conjecture

Let $G = (V, E)$ be an interaction graph with average degree $d_{\text{avg}} > 0$. Define $w_{\text{max}} := \max_{ij} w_{ij}$. Then,

$$2 \cdot \text{MAXCUT} \leq \text{OPT} \leq 2w_{\text{max}} \left(1 + \frac{1}{\sqrt{d_{\text{avg}}}} \right) \cdot \text{MAXCUT}.$$
Recall for D-regular G, A has approximation ratio

$$\max\left(0.478, 0.9563 \left(1 - 36\Delta \text{max} \left(4 \ln(2)/D \right)^{1/3}\right)\right).$$

Need $D \geq 1033890$ before improving on 0.478 (assume unit weights).

Conjecture

Let $G = (V, E)$ be an interaction graph with average degree $d_{avg} > 0$. Define $W_{\text{max}} := \max_{ij} w_{ij}$. Then,

$$2 \cdot \text{MAXCUT} \leq \text{OPT} \leq 2W_{\text{max}} \left(1 + \frac{1}{\sqrt{d_{\text{avg}}}}\right) \cdot \text{MAXCUT}.$$

Corollary: For an instance of AFH on graph G, algorithm A achieves ratio

$$\frac{0.9563}{W_{\text{max}} \left(1 + \frac{1}{\sqrt{d_{\text{avg}}}}\right)}.$$
Recall for D-regular G, A has approximation ratio

$$\max \left(0.478, 0.9563 \left(1 - 36\Delta w_{\text{max}} \left(\frac{4 \ln(2)}{D} \right)^{1/3} \right) \right).$$

Need $D \geq 1033890$ before improving on 0.478 (assume unit weights).

Conjecture

Let $G = (V, E)$ be an interaction graph with average degree $d_{\text{avg}} > 0$. Define $w_{\text{max}} := \max_{ij} w_{ij}$. Then,

$$2 \cdot \text{MAXCUT} \leq \text{OPT} \leq 2w_{\text{max}} \left(1 + \frac{1}{\sqrt{d_{\text{avg}}}} \right) \cdot \text{MAXCUT}.$$

Corollary: For an instance of AFH on graph G, algorithm A achieves ratio

$$\frac{0.9563}{w_{\text{max}} \left(1 + \frac{1}{\sqrt{d_{\text{avg}}}} \right)}.$$

Can prove conjecture for bipartite graphs using Coffman-Kundu-Wootters inequality.
More work in progress

Similar algorithmic techniques apply to Heisenberg XY model:

\[H = \sum_{(i,j) \in E} H_{ij} \quad \text{for} \quad H_{ij} = X_i \otimes X_j + Y_i \otimes Y_j. \]

Theorem
Let \(R := m/\text{MAXCUT} \). There exists poly-time algorithm \(A \) for the XY model such that:

1. For arbitrary \(G \), \(A \) yields an approximation ratio of \(\left(\frac{2}{2+R} \right) \cdot 0.9563 \).
2. For \(D \)-regular \(G \), let \(\Delta := m/(\sum_{ij} w_{ij}) \) and \(w_{\text{max}} := \max_{ij} w_{ij} \). Then, \(A \) has ratio
 \[0.9563 \cdot \max \left(\frac{2}{2+R}, 1 - 36\Delta w_{\text{max}} \left(\frac{4 \ln(2)}{D} \right)^{1/3} \right). \]

Remarks:
- For any \(G \), one has \(1 \leq R \leq 2 \).
- Conjecture: Can replace \(R \) with 1 above.
1. Intro: Local Hamiltonians
2. Existing Results
3. Approximating the quantum Heisenberg model
4. Conclusions
Conclusions

Recap

- Local Hamiltonians (“quantum CSPs”) are physically well-motivated.
- Physics community has traditionally relied on heuristics.
- Study of approximation algorithms for LH in infancy.
- Goemans-Williamson relaxation can be used to approximate Heisenberg model.

Open Questions

- 1/2-approximation algorithm for 2-LH on general graphs?
- Similar techniques to approximate other QMA-complete problems?
- Approximation algorithms for optimizations over tensor networks?
Thank you for your attention!

Thanks to NSERC Banting Fellowship program.

For more on Quantum Hamiltonian Complexity, see: