L-groups for double covers of Chevalley-Steinberg groups

Martin H. Weissman
March 24, 2016
Outline
Covering groups after Brylinski and Deligne

The dual group

The L-group

Evidences and questions
Covering groups after Brylinski and Deligne
Let F be a field, and let G be a reductive group over F.

Definition (My working definition)

A cover of G over F is a pair $\tilde{G} = (G', n)$, where

- $K_2 \hookrightarrow G' \twoheadrightarrow G$ is a central extension of G by K_2;
- $1 \leq n$ (the degree) is such that $\#\mu_n(F) = n$.

"A central extension of G by K_2" was defined by Brylinski and Deligne (Pub. Math. IHES 94 (2001)). They classified such central extensions by root-theoretic data.
Let F be a field, and let G be a reductive group over F.

Definition (My working definition)

A cover of G over F is a pair $\tilde{G} = (G', n)$, where

- $K_2 \hookrightarrow G' \twoheadrightarrow G$ is a central extension of G by K_2;
- $1 \leq n$ (the degree) is such that $\#\mu_n(F) = n$.

A “central extension of G by K_2” was defined by Brylinski and Deligne (Pub. Math. IHES 94 (2001)). They classified such central extensions by root-theoretic data.
Let \tilde{G} be a degree 2 cover of a reductive group G over \mathbb{R}. Taking \mathbb{R}-points and applying the Hilbert symbol yields a topological central extension,

$$\mu_2 \hookrightarrow \tilde{G} \twoheadrightarrow G,$$

where $G = G(\mathbb{R})$ and $\mu_2 = \{\pm 1\}$.

Two questions:
1. What topological central extensions arise?
2. Why should one work with the Brylinksi-Deligne class of covers anyways?
What does a covering group over \mathbb{R} give us?

Let \tilde{G} be a degree 2 cover of a reductive group G over \mathbb{R}. Taking \mathbb{R}-points and applying the Hilbert symbol yields a topological central extension,

$$\mu_2 \hookrightarrow \tilde{G} \twoheadrightarrow G,$$

where $G = G(\mathbb{R})$ and $\mu_2 = \{\pm 1\}$.

Two questions:

1. What topological central extensions arise?
2. Why should one work with the Brylinksi-Deligne class of covers anyways?
Proposition

Let S be an algebraic torus over \mathbb{R} such that $S = S(\mathbb{R})$ is compact. Then every topological central extension,

$$\mu_2 \hookrightarrow \tilde{S} \twoheadrightarrow S$$

arises from a cover $\tilde{S} = (S', 2)$.
Proposition

Let S be an algebraic torus over \mathbb{R} such that $S = S(\mathbb{R})$ is compact. Then every topological central extension,

$$\mu_2 \hookrightarrow \tilde{S} \twoheadrightarrow S$$

arises from a cover $\tilde{S} = (S', 2)$.

N.B. the cover \tilde{S} is not uniquely determined by the topological cover \tilde{S}.

Compact tori
Definition

A Chevalley group (respectively Chevalley-Steinberg group) over a field F is a split (resp., quasisplit), absolutely almost simple, simply-connected linear algebraic group G over F.
Chevalley-Steinberg groups over \mathbb{R}

<table>
<thead>
<tr>
<th>Type</th>
<th>Group $G = G(\mathbb{R})$</th>
<th>$\pi_1(G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_ℓ, $\ell \geq 2$</td>
<td>$SL_{\ell+1}(\mathbb{R})$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
</tr>
<tr>
<td>B_ℓ, $\ell \geq 3$</td>
<td>$Spin_{\ell,\ell+1}(\mathbb{R})$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
</tr>
<tr>
<td>C_ℓ, $\ell \geq 1$</td>
<td>$Sp_{2\ell}(\mathbb{R})$</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>D_ℓ, $\ell \geq 4$</td>
<td>$Spin_{\ell,\ell}(\mathbb{R})$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
</tr>
<tr>
<td>E_6, E_7, E_8, F_4, G_2</td>
<td>Exceptional groups</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
</tr>
<tr>
<td>$A_{2p}^{(2)}$, $p \geq 1$</td>
<td>$SU_{p,p+1}(\mathbb{R})$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
</tr>
<tr>
<td>$A_{2p-1}^{(2)}$, $p \geq 2$</td>
<td>$SU_{p,p}(\mathbb{R})$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
</tr>
<tr>
<td>$D_\ell^{(2)}$, $\ell \geq 4$</td>
<td>$D_{\ell}^{(2)}(\mathbb{R})$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
</tr>
<tr>
<td>$E_6^{(2)}$</td>
<td>$E_6^{(2)}(\mathbb{R})$</td>
<td>$\mathbb{Z}/2\mathbb{Z}$</td>
</tr>
</tbody>
</table>

Fix G a Chevalley-Steinberg group over \mathbb{R}. There exists a unique, up to unique isomorphism, nonsplit topological central extension,

$$\mu_2 \hookrightarrow \tilde{G} \twoheadrightarrow G.$$
Fix G a Chevalley-Steinberg group over \mathbb{R}. There exists a unique, up to unique isomorphism, nonsplit topological central extension,

$$\mu_2 \hookrightarrow \tilde{G} \twoheadrightarrow G.$$

Theorem (Brylinski-Deligne)

There is a canonical central extension

$$K_2 \hookrightarrow G' \twoheadrightarrow G.$$
Fix G a Chevalley-Steinberg group over \mathbb{R}. There exists a unique, up to unique isomorphism, nonsplit topological central extension,

$$\mu_2 \hookrightarrow \tilde{G} \twoheadrightarrow G.$$

Theorem (Brylinski-Deligne)

There is a canonical central extension

$$K_2 \hookrightarrow G' \twoheadrightarrow G.$$

Theorem (Prasad-Rapinchuk, Prasad, Brylinski-Deligne)

*The double cover arising from the canonical extension of Brylinski-Deligne is uniquely isomorphic to the nonsplit extension \tilde{G}.***
Nontrivial covers can yield (topologically) linear Lie groups.

Example

There exists a cover $\tilde{G} = (G', 2)$, where $G = \text{PGL}_2$, and the resulting extension

$$
\mu_2 \hookrightarrow \tilde{G} \twoheadrightarrow \text{PGL}_2(\mathbb{R})
$$

is isomorphic (nonuniquely) to the extension

$$
\mu_2 \hookrightarrow \begin{array}{c}
\text{GL}_2(\mathbb{R}) \\
\left\{ \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix} : t > 0 \right\} \\
\end{array} \twoheadrightarrow \text{PGL}_2(\mathbb{R}).
$$

N.B. $\tilde{g} \mapsto g \cdot |\det(g)|^{-1/2}$ is a faithful continuous representation.
If F is a local field, and \tilde{G} is a degree n cover of a reductive group G over F, then one gets a topological central extension,

$$\mu_n \hookrightarrow \tilde{G} \twoheadrightarrow G,$$

where $G = G(F)$. Universal extensions of Chevalley-Steinberg groups arise from such a construction.
If F is a global field and \tilde{G} is a degree n cover of a reductive group G over F, then one gets a topological central extension,

$$\mu_n \hookrightarrow \tilde{G}_\mathbb{A} \xrightarrow{\sim} G_\mathbb{A} = G(\mathbb{A}),$$

as well as a splitting of this extension over $G(F)$.

If F is a global field and \tilde{G} is a degree n cover of a reductive group G over F, then one gets a topological central extension,

$$\mu_n \hookrightarrow \tilde{G}_\mathbb{A} \twoheadrightarrow G_\mathbb{A} = G(\mathbb{A}),$$

as well as a splitting of this extension over $G(F)$.

If O is the ring of integers in a nonarchimedean local field F, and \tilde{G} is a degree n cover of a reductive group G over O, then one gets a topological central extension

$$\mu_n \hookrightarrow \tilde{G}_F \twoheadrightarrow G_F = G(F),$$

as well as a splitting of this extension over $G(O)$.
The class of covers described here has some nice properties:

- They include the most important topological central extensions, at least those that seem connected to arithmetic.
- Splitting properties allow one to study genuine unramified representations and genuine automorphic representations.
- They include some central extensions that can be studied using techniques for linear groups, but would not ordinarily get attention.
- They have a nice classification due to Brylinski and Deligne.
The class of covers described here has some nice properties:

- They include the most important topological central extensions, at least those that seem connected to arithmetic.
- Splitting properties allow one to study genuine unramified representations and genuine automorphic representations.
- They include some central extensions that can be studied using techniques for linear groups, but would not ordinarily get attention.
- They have a nice classification due to Brylinski and Deligne.

I aim to extend the Langlands program to covers. For this purpose, I have defined an L-group associated to all covers of quasisplit groups over local and global fields.
The dual group
Let \tilde{G} be a degree n cover of a quasisplit reductive group G over a field F. Let T be a maximal torus in a Borel subgroup $B \subset G$. Define

$$Y = \text{Hom}(G_m, T), \quad X = \text{Hom}(T, G_m).$$
Let \tilde{G} be a degree n cover of a quasisplit reductive group G over a field F. Let T be a maximal torus in a Borel subgroup $B \subset G$. Define

$$Y = \text{Hom}(G_m, T), \quad X = \text{Hom}(T, G_m).$$

To \tilde{G}, Brylinski and Deligne associate a Weyl- and Galois-invariant quadratic form

$$Q : Y \to \mathbb{Z}.$$
A quadratic form

Let \tilde{G} be a degree n cover of a quasisplit reductive group G over a field F. Let T be a maximal torus in a Borel subgroup $B \subset G$. Define

$$Y = \text{Hom}(G_m, T), \quad X = \text{Hom}(T, G_m).$$

To \tilde{G}, Brylinski and Deligne associate a Weyl- and Galois-invariant quadratic form

$$Q: Y \to \mathbb{Z}.$$

Simplest case: If G a Chevalley-Steinberg group and \tilde{G} is the canonical double cover, $Q: Y \to \mathbb{Z}$ is the unique Weyl-invariant quadratic form such that

$$Q(\alpha^\vee) = 1 \text{ for all short coroots } \alpha^\vee.$$
Modified root data

Let \(\Phi \subset X \) and \(\Phi^\vee \subset Y \) the subsets of roots and coroots. Let \(\Delta \subset \Phi \) and \(\Delta^\vee \subset \Phi^\vee \) be the subsets of simple roots and coroots.
Modified root data

Let $\Phi \subset X$ and $\Phi^\vee \subset Y$ the subsets of roots and coroots. Let $\Delta \subset \Phi$ and $\Delta^\vee \subset \Phi^\vee$ be the subsets of simple roots and coroots.

Define

$$n_\alpha = \frac{n}{\text{GCD}(n, Q(\alpha^\vee))} \text{ for all } \alpha \in \Phi.$$
Let $\Phi \subset X$ and $\Phi^\vee \subset Y$ the subsets of roots and coroots. Let $\Delta \subset \Phi$ and $\Delta^\vee \subset \Phi^\vee$ be the subsets of simple roots and coroots.

Define

$$n_\alpha = \frac{n}{\text{GCD}(n, Q(\alpha^\vee))} \text{ for all } \alpha \in \Phi.$$

Define modified roots and coroots

$$\tilde{\alpha} = n_\alpha^{-1} \alpha, \quad \tilde{\alpha}^\vee = n_\alpha \alpha^\vee \text{ for all } \alpha \in \Phi.$$

$$\tilde{\Phi} = \{\tilde{\alpha} : \alpha \in \Phi\}, \quad \tilde{\Phi}^\vee = \{\tilde{\alpha}^\vee : \alpha \in \Phi\}.$$
Modified root data

Let $\Phi \subset X$ and $\Phi^\vee \subset Y$ the subsets of roots and coroots. Let
$\Delta \subset \Phi$ and $\Delta^\vee \subset \Phi^\vee$ be the subsets of simple roots and coroots.

Define

$$n_\alpha = \frac{n}{\gcd(n, Q(\alpha^\vee))} \text{ for all } \alpha \in \Phi.$$

Define modified roots and coroots

$$\tilde{\alpha} = n_\alpha^{-1} \alpha, \quad \tilde{\alpha}^\vee = n_\alpha \alpha^\vee \text{ for all } \alpha \in \Phi.$$

$$\tilde{\Phi} = \{\tilde{\alpha} : \alpha \in \Phi\}, \quad \tilde{\Phi}^\vee = \{\tilde{\alpha}^\vee : \alpha \in \Phi\}.$$

Define a modified coweight lattice

$$Y_{Q,n} = \{y \in Y : Q(y + y') - Q(y) - Q(y') \in n\mathbb{Z} \text{ for all } y' \in Y\} \subset nY.$$

Define a modified weight lattice

$$X_{Q,n} = \text{Hom}(Y_{Q,n}, \mathbb{Z}) \subset n^{-1}X.$$
Theorem (Lusztig, Finkelberg-Lysenko, McNamara, Reich, W.)

The sextuple \((Y_{Q,n}, \tilde{\Phi}^\vee, \tilde{\Delta}^\vee, X_{Q,n}, \tilde{\Phi}, \tilde{\Delta})\) is a based root datum.

\[\alpha^\vee \quad \beta^\vee \quad \tilde{\alpha}^\vee \quad \tilde{\beta}^\vee \]

Figure 1: Modifying the root datum for the double cover of \(Sp_4\). On the left, \(Y \supset \Phi^\vee \supset \Delta^\vee\). On the right, \(Y_{Q,2} \supset \tilde{\Phi}^\vee \supset \tilde{\Delta}^\vee\). In this case \(Y = Y_{Q,2}\) (I call such covers “sharp”).
Theorem (Lusztig, Finkelberg-Lysenko, McNamara, Reich, W.)

The sextuple \((Y_{Q,n}, \tilde{\Phi}^\vee, \tilde{\Delta}^\vee, X_{Q,n}, \tilde{\Phi}, \tilde{\Delta})\) is a based root datum.

Figure 2: Modifying the root datum for a double cover of \(GL_2\), with \(\alpha^\vee = (1, 1)\) and \(Q(u, v) = u^2 + uv + v^2\) in standard coordinates.
The dual group

Theorem (Lusztig, Finkelberg-Lysenko, McNamara, Reich, W.)

The sextuple \((Y_{Q,n}, \tilde{\Phi}^\vee, \tilde{\Delta}^\vee, X_{Q,n}, \tilde{\Phi}, \tilde{\Delta})\) is a based root datum.

Definition

The dual group of the cover \(\tilde{G}\) is the pinned complex reductive group \(\tilde{G}^\vee\) associated to the based root datum above.

The pinning gives a Borel subgroup and maximal torus:
\(\tilde{G}^\vee \supset \tilde{B}^\vee \supset \tilde{T}^\vee\). Note \(\tilde{T}^\vee = \text{Hom}(Y_{Q,n}, \mathbb{C}^\times)\).
The dual group

Theorem (Lusztig, Finkelberg-Lysenko, McNamara, Reich, W.)

The sextuple \((Y_{Q,n}, \check{\Phi}^\vee, \check{\Delta}^\vee, X_{Q,n}, \check{\Phi}, \check{\Delta})\) is a based root datum.

Definition

The dual group of the cover \(\tilde{G}\) is the pinned complex reductive group \(\tilde{G}^\vee\) associated to the based root datum above.

The pinning gives a Borel subgroup and maximal torus: \(\tilde{G}^\vee \supset \tilde{B}^\vee \supset \tilde{T}^\vee\). Note \(\tilde{T}^\vee = \text{Hom}(Y_{Q,n}, \mathbb{C}^\times)\).

The map (a homomorphism, in fact)

\[
Y_{Q,n} \to \mathbb{C}^\times, \quad y \mapsto e^{2\pi i Q(y)/n}
\]

defines a 2-torsion element

\[
\xi \in \tilde{\mathbb{Z}}^\vee := Z(\tilde{G}^\vee) = \text{Hom}\left(\frac{Y_{Q,n}}{\text{Span}_\mathbb{Z}(\check{\Phi}^\vee)}, \mathbb{C}^\times\right).
\]
<table>
<thead>
<tr>
<th>Double cover</th>
<th>\tilde{G}^\vee</th>
</tr>
</thead>
<tbody>
<tr>
<td>$SL_2(\mathbb{R})$</td>
<td>*$SL_2(\mathbb{C})$</td>
</tr>
<tr>
<td>$SL_3(\mathbb{R})$</td>
<td>$PGL_3(\mathbb{C})$</td>
</tr>
<tr>
<td>$SL_4(\mathbb{R})$</td>
<td>$SL_4(\mathbb{C})/\mu_2$</td>
</tr>
<tr>
<td>$SL_5(\mathbb{R})$</td>
<td>$PGL_5(\mathbb{C})$</td>
</tr>
<tr>
<td>$SL_6(\mathbb{R})$</td>
<td>*$SL_6(\mathbb{C})/\mu_3$</td>
</tr>
<tr>
<td>$Spin_7(\mathbb{R})$</td>
<td>$SO_7(\mathbb{C})$</td>
</tr>
<tr>
<td>$Spin_9(\mathbb{R})$</td>
<td>$Spin_9(\mathbb{C})$</td>
</tr>
<tr>
<td>$Spin_{11}(\mathbb{R})$</td>
<td>$SO_{11}(\mathbb{C})$</td>
</tr>
<tr>
<td>$Spin_{13}(\mathbb{R})$</td>
<td>*$Spin_{13}(\mathbb{C})$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Double cover</th>
<th>\tilde{G}^\vee</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Sp_{2\ell}(\mathbb{R})$</td>
<td>*$Sp_{2\ell}(\mathbb{C})$</td>
</tr>
<tr>
<td>$Spin_8(\mathbb{R})$</td>
<td>$Spin_8(\mathbb{C})$</td>
</tr>
<tr>
<td>$Spin_{10}(\mathbb{R})$</td>
<td>$SO_{10}(\mathbb{C})$</td>
</tr>
<tr>
<td>$Spin_{12}(\mathbb{R})$</td>
<td>*$Spin_{12}(\mathbb{C})$</td>
</tr>
<tr>
<td>$E_6(\mathbb{R})$</td>
<td>$E_6(\mathbb{C})/\mu_3$</td>
</tr>
<tr>
<td>$E_7(\mathbb{R})$</td>
<td>*$E_7(\mathbb{C})$</td>
</tr>
<tr>
<td>$E_8(\mathbb{R})$</td>
<td>$E_8(\mathbb{C})$</td>
</tr>
<tr>
<td>$G_2(\mathbb{R})$</td>
<td>$G_2(\mathbb{C})$</td>
</tr>
<tr>
<td>$F_4(\mathbb{R})$</td>
<td>$F_4(\mathbb{C})$</td>
</tr>
</tbody>
</table>

Table 1: Table of double covers of real Chevalley groups and their dual groups. Asterisks denote the cases where the 2-torsion element ξ is nontrivial. (For quasisplit groups, Gal acts by outer automorphisms preserving ξ)
The L-group
The naïve L-group

Others (e.g., Savin, Adams-Barbasch-Paul-Trapa-Vogan, Crofts, Finkelberg-Lysenko, McNamara, Reich) related the dual \tilde{G}^\vee to the parameterization of genuine representations of \tilde{G}.
The naïve L-group

Others (e.g., Savin, Adams-Barbasch-Paul-Trapa-Vogan, Crofts, Finkelberg-Lysenko, McNamara, Reich) related the dual \tilde{G}^\vee to the parameterization of genuine representations of \tilde{G}.

This suggests a naïve L-group:

$$L \tilde{G}_{naive} = \text{Gal} \rtimes \tilde{G}^\vee.$$
Others (e.g., Savin, Adams-Barbasch-Paul-Trapa-Vogan, Crofts, Finkelberg-Lysenko, McNamara, Reich) related the dual \tilde{G}^\vee to the parameterization of genuine representations of \tilde{G}.

This suggests a naïve L-group:

$$L\tilde{G}_{naive} = \text{Gal} \rtimes \tilde{G}^\vee.$$

I suggest a more elaborate L-group is the natural L-group. It will be an extension,

$$\tilde{G}^\vee \leftrightarrow L\tilde{G} \rightarrow \text{Gal},$$

but **without a distinguished splitting** in general.
The first step in constructing the L-group is the “first twist”.
Let σ denote complex conjugation, so $\text{Gal} = \text{Gal}(\mathbb{C}/\mathbb{R}) = \{1, \sigma\}$. Define a cocycle, $\text{Gal} \times \text{Gal} \to \tilde{\mathbb{Z}}^\vee = Z(\tilde{G}^\vee)$ by

$$(\sigma, \sigma) \mapsto \xi.$$

$(1, 1)$ and $(1, \sigma)$ and $(\sigma, 1) \mapsto 1$.

The first step in constructing the L-group is the “first twist”. Let σ denote complex conjugation, so $\text{Gal} = \text{Gal}(\mathbb{C}/\mathbb{R}) = \{1, \sigma\}$. Define a cocycle, $\text{Gal} \times \text{Gal} \to \tilde{Z}^\vee = Z(\tilde{G}^\vee)$ by

$$(\sigma, \sigma) \mapsto \xi.$$

$(1, 1)$ and $(1, \sigma)$ and $(\sigma, 1) \mapsto 1$. This yields a central extension,

$$\tilde{Z}^\vee \hookrightarrow E_1 \twoheadrightarrow \text{Gal}.$$
But this isn’t enough – a second twist is needed, which requires another invariant of covers due to Brylinski-Deligne.

To a cover $\tilde{\mathcal{G}}$ of a reductive group \mathcal{G} over a field F, Brylinski and Deligne associate a $\text{Gal}(\bar{F}/F)$-equivariant extension of groups,

$$\bar{F}^\times \to D \to Y,$$

where Y is the coweight lattice and \bar{F} is a separable closure of F.

Consider \tilde{G} the canonical double cover of a Chevalley-Steinberg group G over \mathbb{R}. We can describe D by generators and relations.

Generators: all elements of \mathbb{C}^\times, and elements d_α for each simple root $\alpha \in \Delta$.

Relations: \mathbb{C}^\times is contained in the center of D, and for any $\alpha, \beta \in \Delta$, $[d_\alpha, d_\beta] = (-1)^Q(\alpha+\beta)-Q(\alpha)-Q(\beta)$.

Inclusion of $\mathbb{C}^\times \hookrightarrow D$ and projection $d_\alpha \mapsto \alpha^\vee$ yields a central extension,

$$\mathbb{C}^\times \hookrightarrow D \twoheadrightarrow Y.$$

Galois-invariance of Q gives a $\text{Gal}(\mathbb{C}/\mathbb{R})$-action on D.
Chevalley-Steinberg groups

From a double cover \(\tilde{G} \), we have a central extension,

\[
\mathbb{C}^\times \twoheadrightarrow D \twoheadrightarrow Y,
\]

endowed with a \(\text{Gal}(\mathbb{C}/\mathbb{R}) \)-action.
Chevalley-Steinberg groups

From a double cover \tilde{G}, we have a central extension,

$$\mathbb{C}^\times \hookrightarrow D \twoheadrightarrow Y,$$

endowed with a $\text{Gal}(\mathbb{C}/\mathbb{R})$-action.

Pull back to the sublattice $Y_{Q,2} \subset Y$.

$$\mathbb{C}^\times \hookrightarrow D_{Q,2} \twoheadrightarrow Y_{Q,2}.$$

This is an abelian extension.
Chevalley-Steinberg groups

From a double cover \tilde{G}, we have a central extension,

$$\mathbb{C}^\times \hookrightarrow D \twoheadrightarrow Y,$$

endowed with a $\text{Gal}(\mathbb{C}/\mathbb{R})$-action.

Pull back to the sublattice $Y_{Q,2} \subset Y$.

$$\mathbb{C}^\times \hookrightarrow D_{Q,2} \twoheadrightarrow Y_{Q,2}.$$

This is an abelian extension.

Take $\text{Gal}(\mathbb{C}/\mathbb{R}) = \{1, \sigma\}$ invariants.

$$\mathbb{R}^\times \hookrightarrow D_{Q,2}^\sigma \twoheadrightarrow Y_{Q,2}^\sigma.$$
In the split case, we have an abelian extension,

\[\mathbb{R}^\times \hookrightarrow D_{Q,2} \twoheadrightarrow Y_{Q,2}. \]
In the split case, we have an abelian extension,

\[\mathbb{R}^\times \hookrightarrow D_{Q,2}^\sigma \twoheadrightarrow Y_{Q,2}. \]

Definition

The flipped extension E_2 is the set of homomorphisms $f : D_{Q,2}^\sigma \rightarrow \mathbb{C}^\times$ such that

- $f(t) = 1$ for all $t \in \mathbb{R}_{>0}^\times$.
- $f(d_{\alpha}^{n_\alpha} \cdot r_{\alpha}) = 1$ for all $\alpha \in \Delta$. Here $r_{\alpha} = (-1)^{Q(\alpha \vee \cdot (n_\alpha^2)}$.

This gives an extension (not so obviously)

\[\tilde{Z}^\vee \hookrightarrow E_2 \twoheadrightarrow \text{Gal}(\mathbb{C}/\mathbb{R}). \]
Flipping the extension (quasisplit case)

We have an abelian extension with $\text{Gal}(\mathbb{C}/\mathbb{R})$-action.

$$\mathbb{C}^\times \hookrightarrow D_{Q,2} \twoheadrightarrow Y_{Q,2}.$$
We have an abelian extension with $\text{Gal}(\mathbb{C}/\mathbb{R})$-action.

$$\mathbb{C}^\times \hookrightarrow D_{Q,2} \twoheadrightarrow Y_{Q,2}.$$

Choose a splitting $s : Y_{Q,2} \to D_{Q,2}$ which satisfies

$$s(\tilde{\alpha}^\vee) = d_{\alpha}^{n_{\alpha}} \cdot r_{\alpha} \text{ for all } \alpha \in \Delta.$$

Then $\sigma s/s \in \text{Hom}(Y_{Q,2}, \mathbb{C}^\times)$, and has a square root $\sqrt{\sigma s/s}$.
Flipping the extension (quasisplit case)

We have an abelian extension with $\text{Gal}(\mathbb{C}/\mathbb{R})$-action.

\[\mathbb{C}^\times \hookrightarrow D_{Q,2} \twoheadrightarrow Y_{Q,2}. \]

Choose a splitting $s: Y_{Q,2} \rightarrow D_{Q,2}$ which satisfies

\[s(\tilde{\alpha}^\vee) = d_{\alpha}^{n_{\alpha}} \cdot r_{\alpha} \text{ for all } \alpha \in \Delta. \]

Then $\sigma s/s \in \text{Hom}(Y_{Q,2}, \mathbb{C}^\times)$, and has a square root $\sqrt{\sigma s/s}$.

There are two \tilde{Z}^\vee-torsors:

\[E_{2,1} = \tilde{Z}^\vee = \{ f \in \text{Hom}(Y_{Q,2}, \mathbb{C}^\times) : f(\tilde{\alpha}^\vee) = 1 \text{ for all } \alpha \in \Delta \}. \]

\[E_{2,\sigma} = \{ f \in \text{Hom}(Y_{Q,2}, \mathbb{C}^\times) : \left[f \cdot \sqrt{\frac{\sigma s}{s}} \right](\tilde{\alpha}^\vee) = 1 \text{ for all } \alpha \in \Delta \}. \]
Define $E_2 = E_{2,1} \sqcup E_{2,\sigma}$. Then we find a short exact sequence,

$$\tilde{Z}^\vee \hookrightarrow E_2 \rightarrow \text{Gal}(\mathbb{C}/\mathbb{R}).$$

The cocycle $(\sigma, \sigma) \mapsto \xi$ gave another short exact sequence,

$$\tilde{Z}^\vee \hookrightarrow E_1 \rightarrow \text{Gal}(\mathbb{C}/\mathbb{R}).$$

Take the Baer sum,

$$\tilde{Z}^\vee \hookrightarrow E_1 \dot{+} E_2 \rightarrow \text{Gal}(\mathbb{C}/\mathbb{R}).$$

Push out via the $\text{Gal}(\mathbb{C}/\mathbb{R})$-equivariant inclusion $\tilde{Z}^\vee \hookrightarrow \tilde{G}^\vee$ to get a short exact sequence.

$$\tilde{G}^\vee \hookrightarrow ^L \tilde{G} \rightarrow \text{Gal}(\mathbb{C}/\mathbb{R}).$$
Evidences and questions
Theorem (W. (also see Gan-Gao))

Let T be a split torus over a local or global field. Then there is a natural one-to-one parameterization:

\[
\{ \text{Irreducible genuine admissible/automorphic reps of } \tilde{T} \}
\leftrightarrow \{ \text{Weil parameters valued in } L\tilde{T} \}
\]
Theorem (W. (also see Gan-Gao))

Let \mathbf{T} be a split torus over a local or global field. Then there is a natural one-to-one parameterization:

$\left\{ \text{Irreducible genuine admissible/automorphic reps of } \tilde{T} \right\} \leftrightarrow \left\{ \text{Weil parameters valued in } L\tilde{T} \right\}$

Theorem (W.)

Let \mathbf{T} be a torus over \mathbb{R} with $T = \mathbf{T}(\mathbb{R})$ compact. Then there is a natural one-to-one parameterization:

$\left\{ \text{Irreducible genuine characters of } \tilde{T} \right\} \leftrightarrow \left\{ \text{Weil parameters valued in } L\tilde{T} \right\}$
Let \tilde{G} be a cover of a reductive group G, defined over the ring of integers in a nonarchimedean local field.

Theorem (W. (also see Gan-Gao))

There is a natural bijective parameterization:

\[
\{ \text{Irreducible genuine spherical reps of } \tilde{G} \} \pmod{\text{equiv}} \rightarrow \{ \text{Unramified Weil parameters valued in } \mathbb{L}^1\tilde{G} \} \pmod{\text{Ad}(\tilde{G}^\vee)}.
\]

Proof: Satake isomorphism (McNamara, WenWei Li, Gan-Gao, W.) + Parameterization for split tori + carefully tracing through Weyl-group action.
Let \tilde{G} be a cover of a quasisplit semisimple group G over \mathbb{R}, such that G contains a compact maximal torus T over \mathbb{R}.

Theorem (W.)

There is a natural one-to-one parameterization:

\[
\{ \text{Discrete series reps of } \tilde{G} \} \pmod{\text{equivalence}} \hookrightarrow \{ \text{Discrete series Weil parameters valued in } \left. \right|^L \tilde{G} \} \pmod{\text{Ad}(\tilde{G}^\vee)}.
\]
Let \tilde{G} be a degree n cover of a simple Chevalley group over \mathbb{Z}_p, type A,D,E, with $p = 3 \mod 4$. Let G_{lin} be the split reductive group whose Langlands dual group is \tilde{G}^\vee.

Theorem (Savin, 2004)

For each Satake painting S of the Dynkin diagram, choose a square root of $(-1)^{\# S}$ in \mathbb{C}. This set of choices determines an isomorphism from the Iwahori Hecke algebra of \tilde{G} to the Iwahori Hecke algebra of G_{lin}.

Theorem (Gao? W.?)

For each Satake painting S of the Dynkin diagram, choose a square root of $(-1)^{\# S}$ in \mathbb{C}. This set of choices determines an isomorphism of L-groups from the L-group $L_{\tilde{G}}$ of the cover to the L-group $L_{G_{\text{lin}}} = \text{Gal} \ltimes \tilde{G}^\vee$.

Let \tilde{G} be a degree n cover of a simple Chevalley group over \mathbb{Z}_p, type A,D,E, with $p = 3 \mod 4$. Let G_{lin} be the split reductive group whose Langlands dual group is \tilde{G}^\vee.

Theorem (Savin, 2004)

For each Satake painting S of the Dynkin diagram, choose a square root of $(-1)^{#S}$ in \mathbb{C}. This set of choices determines an isomorphism from the Iwahori Hecke algebra of \tilde{G} to the Iwahori Hecke algebra of G_{lin}.

Theorem (Gao? W.?)

For each Satake painting S of the Dynkin diagram, choose a square root of $(-1)^{#S}$ in \mathbb{C}. This set of choices determines an isomorphism of L-groups from the L-group $L\tilde{G}$ of the cover to the L-group $L^{\text{Gal}}G_{\text{lin}} = \text{Gal} \ltimes \tilde{G}^\vee$.
Consider a “linearish cover” \tilde{G}. Then genuine irreps of \tilde{G} correspond to irreps of a linear group H with a specific central character.

Example

$(G = PGL_2$ and $H = GL_2)$

There’s a cover \tilde{G} for which $\mu_2 \hookrightarrow \tilde{G} \twoheadrightarrow PGL_2(\mathbb{R})$ in which

$$\tilde{G} \cong GL_2(\mathbb{R})/\left\{ \begin{pmatrix} t & 0 \\ 0 & t \end{pmatrix} : t > 0 \right\}.$$

Exercise: Pullback from \tilde{G} to H should be functorial, reflected in a homomorphism of L-groups $L\tilde{G} \rightarrow LH$. This has been considered for $H = GL_2$ by Gan and Gao.
Parameterization has been accomplished for covers of split tori and covers of compact tori over \(\mathbb{R} \).

Exercise: Complete the parameterization for all covers of tori over \(\mathbb{R} \).

Problem: Complete the parameterization for all covers of tori over local fields.
The parameterizations are often one-to-one. Some Weil parameters do not correspond to irreducible genuine irreps.

Question: Which Weil parameters are “relevant”? I.e., what is the image of the parameterization map? This seems related to endoscopy for covering groups.
If \tilde{G} is a cover, there is an “opposite cover” \tilde{G}^{op}. (For double covers, they can be taken to be the same).

If π is a genuine irreducible representation of \tilde{G} (work over a local field), its contragredient is a genuine irreducible representation of \tilde{G}^{op}.

Question: (Adams-Vogan?) What is the corresponding map on L-groups?
Some references:

(2012) McNamara, “Principal series representations of metaplectic groups over local fields”, in Prog. Math. 300

