Integrability of \(p \)-adic matrix coefficients
joint work with Omer Offen

Maxim Gurevich

Weizmann Institute of Science
Rehovot, Israel.

New developments in representation theory
March 2016, National University of Singapore
1 Problem and motivation
2 Corollaries
3 Convergence of matrix coefficients
4 Results
Setting

\(G \) a reductive group defined over a \(p \)-adic field \(F \). \(G = G(F) \).

\((\pi, V)\) an admissible representation of \(G \).

For \(\nu \in V, \nu^* \in V^* \),

\[
m_{\nu, \nu^*}(g) = \nu^*(\pi(g)\nu), \quad g \in G
\]

is a **generalized matrix coefficient**.

(non-generalized when \(\nu^* \) is smooth.)
Setting

\(G \) a reductive group defined over a \(p \)-adic field \(F \). \(G = G(F) \).

\((\pi, V) \) an admissible representation of \(G \).

For \(v \in V, \nu^* \in V^* \),

\[
m_{v,\nu^*}(g) = \nu^*(\pi(g)v), \quad g \in G
\]

is a **generalized matrix coefficient**.

(non-generalized when \(\nu^* \) is smooth.)
Relative setting

\(H < G \) a closed subgroup. \(H = H(F) \).
Symmetric case: \(H = G^\theta \) for an \(F \)-involution \(\theta \) on \(G \).
Relative harmonic analysis is interested in possible embeddings

\[
\pi \quad \mapsto \quad C^\infty(H \setminus G)
\]

given by

\[
v \in V \mapsto m_{v,v^*}
\]

for \(0 \neq v^* \in (V^*)^H \).
\(\mathbf{H} \subset \mathbf{G} \) a closed subgroup. \(H = \mathbf{H}(F) \).
Symmetric case: \(\mathbf{H} = \mathbf{G}^\theta \) for an \(F \)-involution \(\theta \) on \(\mathbf{G} \).
Relative harmonic analysis is interested in possible embeddings

\[
\pi \leftrightarrow C^\infty(H \setminus G)
\]

given by

\[
v \in \mathcal{V} \mapsto m_{v, v^*}
\]

for \(0 \neq v^* \in (\mathcal{V}^*)^H \).
Relative setting

\(H < G \) a closed subgroup. \(H = H(F) \).

Symmetric case: \(H = G^\theta \) for an \(F \)-involution \(\theta \) on \(G \).

Relative harmonic analysis is interested in possible embeddings

\[
\pi \leftrightarrow C^\infty(H \setminus G)
\]

given by

\[
\nu \in V \mapsto m_{\nu, \nu^*}
\]

for \(0 \neq \nu^* \in (V^*)^H \).
For a smooth mod center function f on G, we can try to define the integral

$$L_H(f) = \int_{(H \cap Z(G)) \setminus H} f(h) \, dh.$$

dh – Haar measure on H.

Can be viewed as a distribution on $G/Z(G)$.
For a smooth mod center function f on G, we can try to define the integral

$$L_H(f) = \int_{(H \cap Z(G)) \setminus H} f(h) \, dh . \quad dh - \text{Haar measure on } H$$

Can be viewed as a distribution on $G/Z(G)$.
Main Question - Are there local periods for π?

Given $0 \neq \nu^* \in (V^*)^H$, is there a \textit{smooth} $\tilde{\nu} \in \tilde{V}$, such that

$$\nu^*(\nu) = L_H(m_{\nu, \tilde{\nu}})$$

for all $\nu \in V$?

That is, which H-invariant functionals can be expressed as an integral over (smooth) matrix coefficients? In this case, we will say that $\nu^* = P(\tilde{\nu})$ is a \textit{local period}.

Maxim Gurevich

Integrability of p-adic matrix coefficients
Main Question - Are there local periods for π?

Given $0 \neq \nu^* \in (V^*)^H$, is there a smooth $\tilde{\nu} \in \tilde{V}$, such that

$$\nu^*(\nu) = L_H(m_\nu, \tilde{\nu})$$

for all $\nu \in V$?

That is, which H-invariant functionals can be expressed as an integral over (smooth) matrix coefficients? In this case, we will say that $\nu^* = P(\tilde{\nu})$ is a local period.
Main Question - Are there local periods for π?

Given $0 \neq \nu^* \in (V^*)^H$, is there a smooth $\tilde{\nu} \in \tilde{V}$, such that

$$\nu^*(\nu) = L_H(m_{\nu,\tilde{\nu}})$$

for all $\nu \in V$?

That is, which H-invariant functionals can be expressed as an integral over (smooth) matrix coefficients?

In this case, we will say that $\nu^* = P(\tilde{\nu})$ is a local period.
Main Question - Are there local periods for π?

Given $0 \neq v^* \in (V^*)^H$, is there a smooth $\tilde{v} \in \tilde{V}$, such that

$$v^*(v) = L_H(m_v, \tilde{v})$$

for all $v \in V$?

That is, which H-invariant functionals can be expressed as an integral over (smooth) matrix coefficients?

In this case, we will say that $v^* = P(\tilde{v})$ is a local period.
Sub-questions

1. Is the H-integral over $m_{v,\tilde{v}}$ absolutely convergent? If so, we say π is H-integrable.

2. If convergent, are there non-zero local periods?

For some representations a positive answer for the first question would imply the second one.
Sub-questions

1. Is the H-integral over $m_{v,\tilde{v}}$ absolutely convergent? If so, we say π is H-integrable.
2. If convergent, are there non-zero local periods?

For some representations a positive answer for the first question would imply the second one.
Questions

Sub-questions

1. Is the H-integral over $m_{v, \tilde{v}}$ absolutely convergent?
 If so, we say π is H-integrable.

2. If convergent, are there non-zero local periods?

For some representations a positive answer for the first question would imply the second one.
Global motivation

A cuspidal automorphic representation $\Pi = \otimes'_v \pi_v$ of $G(\mathbb{A}_k)$ (k a number field) has a canonical $H(\mathbb{A}_k)$-invariant functional - the period integral: $P(\phi) = \int_{H(k) \backslash H(\mathbb{A}_k)} \phi(h) \, dh$.

In certain cases (not symmetric), it is expected that when $\{\pi_v\}$ are tempered, the period integral will factorize as

$$|P(\phi)|^2 = P(\phi)P(\overline{\phi}) = \prod'_v L_H(m_{\phi_v}, \overline{\phi_v})$$

under *suitable normalizations* of measures, where $\phi = \otimes'_v \phi_v \in \Pi$.

- Ichino-Ikeda conjectures for the Gross-Prasad case.
- Lapid-Mao conjectures for the Whittaker case.
- Sakellaridis-Venkatesh - general framework.
Global motivation

A cuspidal automorphic representation $\Pi = \otimes'_v \pi_v$ of $G(\mathbb{A}_k)$ (k a number field) has a canonical $H(\mathbb{A}_k)$-invariant functional - the period integral: $P(\phi) = \int_{H(k) \backslash H(\mathbb{A}_k)} \phi(h) \, dh$.

In certain cases (not symmetric), it is expected that when $\{\pi_v\}$ are tempered, the period integral will factorize as

$$|P(\phi)|^2 = P(\phi)P(\overline{\phi}) = \prod'_v L_H(m_{\phi_v}, \overline{\phi_v})$$

under *suitable normalizations* of measures, where $\phi = \otimes' \phi_v \in \Pi$.

- Ichino-Ikeda conjectures for the Gross-Prasad case.
- Lapid-Mao conjectures for the Whittaker case.
- Sakellaridis-Venkatesh - general framework.
A cuspidal automorphic representation $\Pi = \bigotimes'_v \pi_v$ of $G(\mathbb{A}_k)$ (k a number field) has a canonical $H(\mathbb{A}_k)$-invariant functional - the period integral: $P(\phi) = \int_{H(k) \backslash H(\mathbb{A}_k)} \phi(h) \, dh$.

In certain cases (not symmetric), it is expected that when $\{\pi_v\}$ are tempered, the period integral will factorize as

$$|P(\phi)|^2 = P(\phi)P(\overline{\phi}) = \prod'_v L_H(m_{\phi_v}, \overline{\phi_v})$$

under *suitable normalizations* of measures, where $\phi = \bigotimes'_v \phi_v \in \Pi$.

- Ichino-Ikeda conjectures for the Gross-Prasad case.
- Lapid-Mao conjectures for the Whittaker case.
- Sakellaridis-Venkatesh - general framework.
1. Problem and motivation

2. Corollaries

3. Convergence of matrix coefficients

4. Results
A representation \(\pi \) is called square-integrable if
\[
|m_{v, \tilde{v}}| \in L^2(G/Z(G))
\]
for all \(v \in V, \tilde{v} \in \tilde{V} \).

A representation \(\pi \) is called tempered if
\[
|m_{v, \tilde{v}}| \in L^{2+\epsilon}(G/Z(G))
\]
for all \(v \in V, \tilde{v} \in \tilde{V} \) and all \(\epsilon > 0 \).
Definitions

- A representation π is called \textit{square-integrable} if
 \[|m_{v,\tilde{v}}| \in L^2(G/Z(G)) \]
 for all $v \in V$, $\tilde{v} \in \tilde{V}$.

- A representation π is called \textit{tempered} if
 \[|m_{v,\tilde{v}}| \in L^{2+\epsilon}(G/Z(G)) \]
 for all $v \in V$, $\tilde{v} \in \tilde{V}$ and all $\epsilon > 0$.
Strongly tempered pair

A pair \((G, H)\) is called \textit{strongly tempered} if any tempered irreducible representation of \(G\) is \(H\)-integrable.

Tempered distributions

The distribution \(L_H\) on \(G/Z(G)\) is \textit{tempered} if it extends as a functional to the Harish-Chandra-Schwartz space of \(G/Z(G)\).

In particular, when \(L_H\) is tempered any square-integrable irreducible representation of \(G\) is \(H\)-integrable.
Strongly tempered pair

A pair \((G, H)\) is called **strongly tempered** if any tempered irreducible representation of \(G\) is \(H\)-integrable.

Tempered distributions

The distribution \(L_H\) on \(G/Z(G)\) is **tempered** if it extends as a functional to the Harish-Chandra-Schwartz space of \(G/Z(G)\).

In particular, when \(L_H\) is tempered any square-integrable irreducible representation of \(G\) is \(H\)-integrable.
The following families of pairs are strongly tempered:

\[(GL_n, O_J), (U_{n, E/F}, O(J)), (Sp_{2n}, U_{n, E/F})\]

for any orthogonal group \(O_J\) and any unitary group \(U_{n, E/F}\) relative to a quadratic extension \(E\) of \(F\).

For the following families of pairs \((G, H)\), the distribution \(L_H\) is tempered\(^a\):

\[(G(E), G(F)), (GL_n, GL_{[n/2]} \times GL_{[n/2]})(GL_{2n}, GL_n(E))\]

for any quadratic extension \(E\) of \(F\).

\(^a\)as interpreted by Chong Zhang
Corollaries

Theorems (G.-Offen)

1. The following families of pairs are strongly tempered:

\[(GL_n, O_J), (U_n, E/F, O(J)), (Sp_{2n}, U_n, E/F)\]

for any orthogonal group \(O_J\) and any unitary group \(U_n, E/F\) relative to a quadratic extension \(E\) of \(F\).

2. For the following families of pairs \((G, H)\), the distribution \(L_H\) is tempered\(^a\):

\[(G(E), G(F)), (GL_n, GL_{\lfloor n/2 \rfloor} \times GL_{\lceil n/2 \rceil}) (GL_{2n}, GL_n(E))\]

for any quadratic extension \(E\) of \(F\).

\(^a\)as interpreted by Chong Zhang
Sakellaridis-Venkatesh: For a strongly tempered \((G, H)\), every (tempered) \(H\)-distinguished irreducible representation of \(G\) which is parabolically induced from a square-integrable representation has non-zero local periods.

C. Zhang: When \(L_H\) is a tempered distribution, every \(H\)-distinguished square-integrable representation of \(G\) has non-zero local periods.
1. Problem and motivation

2. Corollaries

3. Convergence of matrix coefficients

4. Results
Casselman’s criterion

A representation is square-integrable (tempered), if and only if, its exponents are (weakly) positive.
Some structure

- Fix a maximal F-split torus $A < G$, which is θ-stable and such that $A_0 := (A^\theta)^\circ$ is a maximal F-split torus of H.
- Fix a minimal θ-stable parabolic $A < P_0 < G$ and a minimal parabolic $B < P_0$.

\[\Delta_G \subset \Sigma^G = \Sigma(A, \text{Lie}(G)) \subset X^*(A) \]
\[\Delta_H \subset \Sigma^H \subset \Sigma^G_H = \Sigma(A_0, \text{Lie}(G)) = \Sigma^G|_{A_0} \subset X^*(A_0) \]

- Σ^G_H is a root system with basis $\Delta^G_H = \Delta_G|_{A_0}$. $W_H < W^G_H$
- Cartan decomposition: $H^\circ = \bigcup_{c \in C, a \in A_0^{+,\Delta_H}} KcaK$, where $K < G$ is a maximal compact subgroup, C is finite and

\[A_0^{+,\Delta_H} = \{ x \in A_0 : |\alpha(x)|_F \leq 1, \forall \alpha \in \Delta_H \} \]
Some structure

- Fix a maximal F-split torus $A < G$, which is θ-stable and such that $A_0 := (A^\theta)\circ$ is a maximal F-split torus of H.
- Fix a minimal θ-stable parabolic $A < P_0 < G$ and a minimal parabolic $B < P_0$.

$$\Delta_G \subset \Sigma^G = \Sigma(A, \text{Lie}(G)) \subset X^*(A)$$

$$\Delta_H \subset \Sigma^H \subset \Sigma^G_H = \Sigma(A_0, \text{Lie}(G)) = \Sigma^G|_{A_0} \subset X^*(A_0)$$

- Σ^G_H is a root system with basis $\Delta^G_H = \Delta_G|_{A_0}$. $W_H < W_H^G$
- Cartan decomposition: $H^\circ = \bigcup_{c \in C, a \in A_0^+, \Delta_H} KcaK$, where $K < G$ is a maximal compact subgroup, C is finite and

$$A_0^+, \Delta_H = \{x \in A_0 : |\alpha(x)|_F \leq 1, \forall \alpha \in \Delta_H\}$$
Fix a maximal F-split torus $A < G$, which is θ-stable and such that $A_0 := (A^\theta)^\circ$ is a maximal F-split torus of H.

Fix a minimal θ-stable parabolic $A < P_0 < G$ and a minimal parabolic $B < P_0$.

\[
\begin{align*}
\Delta_G & \subset \Sigma^G = \Sigma(A, \text{Lie}(G)) \subset X^*(A) \\
\Delta_H & \subset \Sigma^H \subset \Sigma^G_H = \Sigma(A_0, \text{Lie}(G)) = \Sigma^G|_{A_0} \subset X^*(A_0)
\end{align*}
\]

Σ^G_H is a root system with basis $\Delta^G_H = \Delta_G|_{A_0}$. $W_H \subset W^G_H$.

Cartan decomposition: $H^\circ = \bigcup_{c \in C, a \in A_0^{+,\Delta_H}} KcaK$, where $K < G$ is a maximal compact subgroup, C is finite and

\[
A_0^{+,\Delta_H} = \{ x \in A_0 : |\alpha(x)|_F \leq 1, \forall \alpha \in \Delta_H \}.
\]
Some structure

- Fix a maximal F-split torus $A < G$, which is θ-stable and such that $A_0 := (A^\theta)^\circ$ is a maximal F-split torus of H.
- Fix a minimal θ-stable parabolic $A < P_0 < G$ and a minimal parabolic $B < P_0$.

\[\Delta_G \subset \Sigma^G = \Sigma(A, \text{Lie}(G)) \subset X^*(A) \]
\[\Delta_H \subset \Sigma^H \subset \Sigma^G_H = \Sigma(A_0, \text{Lie}(G)) = \Sigma^G|_{A_0} \subset X^*(A_0) \]

- Σ^G_H is a root system with basis $\Delta^G_H = \Delta_G|_{A_0}$. $\mathcal{W}_H < \mathcal{W}^G_H$
- Cartan decomposition: $H^\circ = \bigcup_{c \in C, a \in A_0^{+,\Delta_H}} KcaK$, where $K < G$ is a maximal compact subgroup, C is finite and

\[A_0^{+,\Delta_H} = \{ x \in A_0 : |\alpha(x)|_F \leq 1, \forall \alpha \in \Delta_H \} \]
Some structure

- Fix a maximal F-split torus $A < G$, which is θ-stable and such that $A_0 := (A^\theta)^\circ$ is a maximal F-split torus of H.
- Fix a minimal θ-stable parabolic $A < P_0 < G$ and a minimal parabolic $B < P_0$.

\[\Delta_G \subset \Sigma^G = \Sigma(A, \text{Lie}(G)) \subset X^*(A) \]
\[\Delta_H \subset \Sigma^H \subset \Sigma^G_H = \Sigma(A_0, \text{Lie}(G)) = \Sigma^G|_{A_0} \subset X^*(A_0) \]

- Σ^G_H is a root system with basis $\Delta^G_H = \Delta_G|_{A_0}$. $W_H < W_H^G$
- Cartan decomposition: $H^\circ = \bigcup_{c \in C, a \in A_0^{+,\Delta_H}} KcaK$, where $K < G$ is a maximal compact subgroup, C is finite and

\[A_0^{+,\Delta_H} = \{ x \in A_0 : |\alpha(x)|_F \leq 1, \forall \alpha \in \Delta_H \} \]
Convergence of matrix coefficients

- Convergence of $L_H(m,\tilde{v})$ reduces to summability on A^{+,Δ_H}.
- Yet, the asymptotics of $m(v,\tilde{v})$ (matrix coefficient of $G!$) can be effectively measured only on the subcone
 \[A_0 \cap A^{+,\Delta_G} = \{ x \in A_0 : |\alpha(x)|_F \leq 1, \forall \alpha \in \Delta^G_H \} \]
- This can be solved by choosing coset representatives
 \[D = [W^G_H/W_H] \subset W^G_H \text{ for which} \]
 \[A^{+,\Delta_H} = \bigcup_{w \in D} w(A_0 \cap A^{+,\Delta_G}) \]
Convergence of matrix coefficients

- Convergence of \(L_H(m_{v,\tilde{v}}) \) reduces to summability on \(A^{+,\Delta_H} \).
- Yet, the asymptotics of \(m_{v,\tilde{v}} \) (matrix coefficient of \(G ! \)) can be effectively measured only on the subcone

\[
A_0 \cap A^{+,\Delta_G} = \{ x \in A_0 : |\alpha(x)|_F \leq 1, \forall \alpha \in \Delta^G_H \}
\]

- This can be solved by choosing coset representatives

\[
D = \left[W^G_H / W_H \right] \subset W^G_H \text{ for which}
\]

\[
A^{+,\Delta_H}_0 = \bigcup_{w \in D} w(A_0 \cap A^{+,\Delta_G})
\]
Convergence of matrix coefficients

- Convergence of $L_H(m_v, \bar{v})$ reduces to summability on A^{+, Δ_H}.
- Yet, the asymptotics of m_v, \bar{v} (matrix coefficient of $G!$) can be effectively measured only on the subcone

$$A_0 \cap A^{+, \Delta_G} = \{ x \in A_0 : |\alpha(x)|_F \leq 1, \forall \alpha \in \Delta^G_H \}$$

- This can be solved by choosing coset representatives $D = \left[W^G_H / W_H \right] \subset W^G_H$ for which

$$A^{+, \Delta_H} = \bigcup_{w \in D} w(A_0 \cap A^{+, \Delta_G})$$
1 Problem and motivation

2 Corollaries

3 Convergence of matrix coefficients

4 Results
Exponents

- For a parabolic $B < P = MN$ with $A < M$, let $A_M < Z(M)$ be the maximal F-split torus.
- For irreducible π, $\text{Exp}(\pi, P) \subset \text{Hom}(A_M, \mathbb{C}^\times)$ is the collection of central characters appearing in subquotients of the Jacquet module $J_P(\pi)$.
- For $\chi \in \text{Exp}(\pi, P)$,
 \[
 |\chi| \in \text{Hom}(A_M, \mathbb{R}_+^\times) \cong a_{A_M}^* := X^*(A_M) \otimes \mathbb{R}
 \]
- For θ-stable P we say that $\lambda \in a_{A_M}^*$ is relatively positive if $\lambda|_{(A_M^\theta)^\circ}$ is in the cone spanned by $\Delta_G|_{(A_M^\theta)^\circ}$.

Maxim Gurevich
Integrability of p-adic matrix coefficients
Exponents

- For a parabolic $B < P = MN$ with $A < M$, let $A_M < Z(M)$ be the maximal F-split torus.
- For irreducible π, $\text{Exp}(\pi, P) \subset \text{Hom}(A_M, \mathbb{C}^\times)$ is the collection of central characters appearing in subquotients of the Jacquet module $J_P(\pi)$.
- For $\chi \in \text{Exp}(\pi, P)$,
 \[|\chi| \in \text{Hom}(A_M, \mathbb{R}_+^\times) \cong \mathfrak{a}^*_A M := X^*(A_M) \otimes \mathbb{R} \]

- For θ-stable P we say that $\lambda \in \mathfrak{a}^*_A M$ is relatively positive if $\lambda|_{A_M^\theta}^\circ$ is in the cone spanned by $\Delta_G|_{A_M^\theta}^\circ$.
Exponents

- For a parabolic $B < P = MN$ with $A < M$, let $A_M < Z(M)$ be the maximal F-split torus.
- For irreducible π, $\text{Exp}(\pi, P) \subset \text{Hom}(A_M, \mathbb{C}^\times)$ is the collection of central characters appearing in subquotients of the Jacquet module $J_P(\pi)$.
- For $\chi \in \text{Exp}(\pi, P)$,
 \[
 |\chi| \in \text{Hom}(A_M, \mathbb{R}_+^\times) \cong a_{A_M}^* := X^*(A_M) \otimes \mathbb{R}
 \]

- For θ-stable P we say that $\lambda \in a_{A_M}^*$ is \textit{relatively positive} if $\lambda|_{(A_M^\theta)^\circ}$ is in the cone spanned by $\Delta_G|_{(A_M^\theta)^\circ}$.
Main theorem

Convergence criterion (G.-Offen)

An admissible representation π of G is H-integrable, iff, for every θ-stable standard parabolic P, every $\chi \in \text{Exp}(\pi, P)$ and every $w \in D$,

$$|\chi| + \rho_{w}^{G/H}$$

is relatively positive. Here,

$$\rho_{w}^{G/H} := \delta_{P_{0}}^{1/2}|a_{0}^{*}| - w(\delta_{P_{0}}^{1/2}|a_{0}^{*}|),$$

with $\delta_{P_{0}}, \delta_{P_{0}}^{\theta}$ being the modular characters of the groups.
Main theorem

Convergence criterion (G.-Offen)

An admissible representation π of G is H-integrable, iff, for every θ-stable standard parabolic P, every $\chi \in \text{Exp}(\pi, P)$ and every $w \in D$,

$$|\chi| + \rho_{w}^{G/H}$$

is relatively positive. Here,

$$\rho_{w}^{G/H} := \delta_{P_{0}}^{1/2}|a_{0}^{*} - w(\delta_{P_{0}^{\theta}}^{1/2}|a_{0}^{*})$$,

with $\delta_{P_{0}}$, $\delta_{P_{0}^{\theta}}$ being the modular characters of the groups.

In particular, combining with Casselman’s criterion, (G, H) is strongly tempered when all $\rho_{w}^{G/H}$ are relatively positive, and L_{H} is tempered when all $\rho_{w}^{G/H}$ are weakly relatively positive.
Thank you!