Solid-State Dewetting: Equilibrium & Dynamics

Wei Jiang (蒋维)

Collaborated with Weizhu Bao, Yan Wang, Quan Zhao and David J. Srolovitz.

School of Mathematics and Statistics, Wuhan University.

June 1st, 2016
1 Introduction

2 Theoretical Studies
 - Equilibrium Problems
 - Dynamical Problems

3 Dynamical Models with Anisotropic Surface Energies
 - Weakly Anisotropic Cases
 - Strongly Anisotropic Cases

4 Stable Equilibrium Shapes

5 Summary and Future Works
Outline

1 Introduction

2 Theoretical Studies
 - Equilibrium Problems
 - Dynamical Problems

3 Dynamical Models with Anisotropic Surface Energies
 - Weakly Anisotropic Cases
 - Strongly Anisotropic Cases

4 Stable Equilibrium Shapes

5 Summary and Future Works

The dewetting can occur well *below* the melting temperature of the material, i.e., which is still in the *solid-state*.
Physical Experiments

Dewetting Patterned Films: Ni(110) Square Patches

Physical Experiments

Dewetting on SOI system:

![Diagram of dewetting process on SOI system]

Figure: Abbarchi et al., ACS Nano, 2014.
Solid-State Dewetting of Thin Films

♠ Intrinsic Physics:
- Is driven by capillarity effects.
- Occurs through surface self-diffusion controlled mass transport.
- There exist moving contact lines in the thin film - substrate - vapor interface.
- Surface diffusion + Moving Contact Line.

♠ Applications:
- Play an important role in microelectronics processing.
- A common method to produce nano-particles.
- Catalyst for the growth of carbon nanotubes & semiconductor nanowires.

♠ Phenomena Observed from Experiments\(^2\):
- Pinch-off, Mass-shedding Instability, Geometric Complexity, Corner-induced Instability, Rayleigh Instability...
- Crystalline Anisotropy, Edge Faceting...

Outline

1. Introduction

2. Theoretical Studies
 - Equilibrium Problems
 - Dynamical Problems

3. Dynamical Models with Anisotropic Surface Energies
 - Weakly Anisotropic Cases
 - Strongly Anisotropic Cases

4. Stable Equilibrium Shapes

5. Summary and Future Works
Solid-State Dewetting: Theoretical Models

- **Continuum Models based on PDEs.** (Srolovitz *et al.*, JAP, 1986; Jiang *et al.* Acta Mater., 2012; PRB, 2015; Scripta Mater., 2016.)

- **Others...**
1 Introduction

2 Theoretical Studies
 - Equilibrium Problems
 - Dynamical Problems

3 Dynamical Models with Anisotropic Surface Energies
 - Weakly Anisotropic Cases
 - Strongly Anisotropic Cases

4 Stable Equilibrium Shapes

5 Summary and Future Works
Total Interfacial Free Energy:

\[W(\Gamma) = \int_{\Gamma} \gamma(N) \, d\Gamma + (\gamma_{FS} - \gamma_{VS})\Sigma_{FS}. \]

\(\gamma(N) \) – The energy (density) of the film-vapor interface.
\(\Sigma_{FS} \) – interface length (2D) or surface area (3D) of the film-substrate interface.

Equilibrium configuration:

Minimize \(W(\Gamma) \)
Subject to \(\int_{\omega} d\omega = \text{Const.} \)
Equilibrium Problems

- **Wulff Construction**: not considering the wall energy. (C. Herring, W. Mullins, J. Taylor, I. Fonseca...)

Problem: The classical Winterbottom does not address the problem about multiple equilibrium shapes, which have been observed in the experiments (e.g., Malyi et. al., Acta Mater., 2011; Kovalenko, Scripta Mater., 2015).
Equilibrium Problems

- **Wulff Construction**: not considering the wall energy. (C. Herring, W. Mullins, J. Taylor, I. Fonseca...)

![Equilibrium Shape Diagram](image)
Equilibrium Problems

- **Wulff Construction**: not considering the wall energy. (C. Herring, W. Mullins, J. Taylor, I. Fonseca…)

- **Problem**: The classical Winterbottom **does not** address the problem about *multiple equilibrium shapes*, which have been *observed in the experiments* (e.g., Malyi *et. al.*, Acta Mater., 2011; Kovalenko, Scripta Mater., 2015).
Outline

1 Introduction

2 Theoretical Studies
 - Equilibrium Problems
 - Dynamical Problems

3 Dynamical Models with Anisotropic Surface Energies
 - Weakly Anisotropic Cases
 - Strongly Anisotropic Cases

4 Stable Equilibrium Shapes

5 Summary and Future Works
Assumption: The surface energy is isotropic.

♦ Sharp Interface Model:

\[
\frac{d\mathbf{X}(t)}{dt} = V_n \mathbf{N} \quad \text{with} \quad V_n = B \Delta_s \kappa
\]

- \(\mathbf{X}(t) = (x(t), y(t), z(t))\): moving front surface in 3D (curve in 2D).
- \(\mathbf{N}\): unit outward normal direction.
- \(V_n\): normal velocity of the moving interface.
- \(B\): material constant.
- \(\Delta_s\): surface Laplacian or Laplace-Beltrami operator.
- \(\kappa\): mean curvature of the surface.

\[V_n = B \frac{\partial^2 \kappa}{\partial s^2} \quad \text{(in 2D)}\]

\[\kappa = -\frac{\partial^2 y}{\partial s^2} \frac{\partial x}{\partial s} + \frac{\partial^2 x}{\partial s^2} \frac{\partial y}{\partial s}\]

\(^3\)D.J. Srolovitz & S.A. Safran, JAP, 1986.
In 2D, $\mathbf{X}(t) = (x(s, t), y(s, t))$

$s - $ Arc length

Boundary Conditions: (2D)

- **Contact Point** Condition (BC1)

 $$ y(x_c, t) = 0 $$

- **Contact Angle** Condition (BC2)

 $$ \frac{\partial y}{\partial s}(x_c, t) = \tan \theta_i, \quad \sigma := \cos(\theta_i) = \frac{\gamma_{VS} - \gamma_{FS}}{\gamma_{FV}} $$

- **Zero-Mass Flux** Condition (BC3)

 $$ \frac{\partial \kappa}{\partial s}(x_c, t) = 0. $$
Questions arising from Equilibrium and Dynamical Problems

We try to address the following questions by our research:

▶ \((Q1)\): How to derive sharp-interface dynamical models, which include the surface energy anisotropy, to describe the dewetting evolution of solid thin films?

▶ \((Q2)\): How to derive a mathematical theory to connect with the equilibrium and dynamical problems?

▶ \((Q3)\): What conditions should the stable equilibrium shapes satisfy?

▶ \((Q4)\): How to construct stable equilibrium shapes of the solid-state dewetting problem?
We try to address the following questions by our research:

▶ **(Q1)**: How to derive *sharp-interface dynamical models*, which include the *surface energy anisotropy*, to describe the dewetting evolution of solid thin films?

▶ **(Q2)**: How to derive a mathematical theory to connect with the equilibrium and dynamical problems?

▶ **(Q3)**: What conditions should the stable equilibrium shapes satisfy?

▶ **(Q4)**: How to construct stable equilibrium shapes of the solid-state dewetting problem?
Questions arising from Equilibrium and Dynamical Problems

We try to address the following questions by our research:

- **(Q1)**: How to derive **sharp-interface dynamical models**, which include the **surface energy anisotropy**, to describe the dewetting evolution of solid thin films?

- **(Q2)**: How to derive a mathematical theory to **connect with** the equilibrium and dynamical problems?

- **(Q3)**: What conditions should the **stable equilibrium shapes** satisfy?
Questions arising from Equilibrium and Dynamical Problems

We try to address the following questions by our research:

▶ (Q1): How to derive sharp-interface dynamical models, which include the surface energy anisotropy, to describe the dewetting evolution of solid thin films?

▶ (Q2): How to derive a mathematical theory to connect with the equilibrium and dynamical problems?

▶ (Q3): What conditions should the stable equilibrium shapes satisfy?

▶ (Q4): How to construct stable equilibrium shapes of the solid-state dewetting problem?
1 Introduction

2 Theoretical Studies
 • Equilibrium Problems
 • Dynamical Problems

3 Dynamical Models with Anisotropic Surface Energies
 • Weakly Anisotropic Cases
 • Strongly Anisotropic Cases

4 Stable Equilibrium Shapes

5 Summary and Future Works
Consider a two-dimensional thin solid film rested on a smooth and flat rigid substrate. The total interfacial free energy of the system can be written as:

\[W = \int_{\Gamma} \gamma(\theta) \, d\Gamma + (\gamma_{FS} - \gamma_{VS})(x'_c - x'^l_c), \]

- Perturb the interface \(\Gamma \) in both the normal and tangent directions;
- \(\psi(s) \) is an arbitrary function, and \(\varphi(s) \) satisfies: \(\int_0^L \varphi(s)ds = 0 \).
The two components of the new curve $\Gamma^\epsilon(t)$ can be expressed as follows:

$$
\Gamma^\epsilon(t) = (x^\epsilon(s, t), y^\epsilon(s, t))
= (x(s, t) + \epsilon u(s, t), y(s, t) + \epsilon v(s, t)),
$$

(1)

where the two component increments along the x–axis and y–axis are defined as

$$
\begin{align*}
 u(s, t) &= x_s(s, t)\psi(s) - y_s(s, t)\varphi(s), \\
 v(s, t) &= x_s(s, t)\varphi(s) + y_s(s, t)\psi(s),
\end{align*}
$$

(2)

and the increments along the y–axis at the two contact points must be zero, i.e.,

$$
v(0, t) = v(L, t) = 0.
$$

(3)
Thermodynamic Variation: The First Variation

The total interfacial energy W of the curve $\Gamma(t)$ before perturbation is:

$$ W = \int_{\Gamma} \gamma(\theta) \, d\Gamma + (\gamma_{FS} - \gamma_{VS})(x^r_c - x^l_c) $$

$$ = \int_0^L \gamma(\theta) \, ds + (\gamma_{FS} - \gamma_{VS})(x^r_c - x^l_c). $$

The total interfacial energy W^ϵ of the new curve $\Gamma^\epsilon(t)$ after perturbation is:

$$ W^\epsilon = \int_{\Gamma^\epsilon} \gamma(\theta^\epsilon) \, d\Gamma^\epsilon + (\gamma_{FS} - \gamma_{VS}) \left[(x^r_c + \epsilon u(L, t)) - (x^l_c + \epsilon u(0, t)) \right] $$

$$ = \int_0^L \gamma\left(\arctan\left(\frac{y_s + \epsilon v_s}{x_s + \epsilon u_s} \right) \right) \sqrt{(x_s + \epsilon u_s)^2 + (y_s + \epsilon v_s)^2} \, ds $$

$$ + (\gamma_{FS} - \gamma_{VS}) \left[(x^r_c + \epsilon u(L, t)) - (x^l_c + \epsilon u(0, t)) \right]. \quad (4) $$
\[
\frac{dW^\varepsilon}{d\varepsilon} \bigg|_{\varepsilon=0} = \lim_{\varepsilon \to 0} \frac{W^\varepsilon - W}{\varepsilon} \\
= \int_0^L \left(\gamma''(\theta) + \gamma(\theta) \right) \kappa \varphi \, ds \\
- \left[\gamma(\theta_d^I) \cos \theta_d^I - \gamma'(\theta_d^I) \sin \theta_d^I + (\gamma_{FS} - \gamma_{VS}) \right] u(0, t) \\
+ \left[\gamma(\theta_d^r) \cos \theta_d^r - \gamma'(\theta_d^r) \sin \theta_d^r + (\gamma_{FS} - \gamma_{VS}) \right] u(L, t).
\]
Thermodynamic Variation: The First Variation

\[
\left. \frac{dW^\epsilon}{d\epsilon} \right|_{\epsilon=0} = \lim_{\epsilon \to 0} \frac{W^\epsilon - W}{\epsilon} = \int_0^L \left(\gamma''(\theta) + \gamma'(\theta) \right) \kappa \varphi \, ds
\]

\[
- \left[\gamma(\theta_d^l) \cos \theta_d^l - \gamma'(\theta_d^l) \sin \theta_d^l + (\gamma_{FS} - \gamma_{VS}) \right] u(0, t)
+ \left[\gamma(\theta_r^r) \cos \theta_r^r - \gamma'(\theta_r^r) \sin \theta_r^r + (\gamma_{FS} - \gamma_{VS}) \right] u(L, t).
\]

- **Chemical potential:**

\[
\mu = \Omega_0 \frac{\delta W}{\delta \Gamma} = \Omega_0 \left(\gamma(\theta) + \gamma''(\theta) \right) \kappa,
\]

- **Normal velocity** of the interface:

\[
V_n = \frac{D_s \nu \Omega_0}{k_B T_e} \frac{\partial^2 \mu}{\partial s^2}.
\]
Thermodynamic Variation: The First Variation

\[
\frac{dW^\epsilon}{d\epsilon} \bigg|_{\epsilon=0} = \lim_{\epsilon \to 0} \frac{W^\epsilon - W}{\epsilon} = \int_0^L \left(\gamma''(\theta) + \gamma'(\theta) \right) \kappa \varphi \, ds \\
- \left[\gamma(\theta_d^l) \cos \theta_d^l - \gamma'(\theta_d^l) \sin \theta_d^l + (\gamma_{FS} - \gamma_{VS}) \right] u(0, t) \\
+ \left[\gamma(\theta_d^r) \cos \theta_d^r - \gamma'(\theta_d^r) \sin \theta_d^r + (\gamma_{FS} - \gamma_{VS}) \right] u(L, t).
\]

- **Boundary conditions** for moving contact points:

\[
\frac{dx_c^l(t)}{dt} = -\eta \frac{\delta W}{\delta x_c^l} = \eta \left[\gamma(\theta_d^l) \cos \theta_d^l - \gamma'(\theta_d^l) \sin \theta_d^l + (\gamma_{FS} - \gamma_{VS}) \right], \\
\frac{dx_c^r(t)}{dt} = -\eta \frac{\delta W}{\delta x_c^r} = -\eta \left[\gamma(\theta_d^r) \cos \theta_d^r - \gamma'(\theta_d^r) \sin \theta_d^r + (\gamma_{FS} - \gamma_{VS}) \right].
\]
Outline

1 Introduction

2 Theoretical Studies
 • Equilibrium Problems
 • Dynamical Problems

3 Dynamical Models with Anisotropic Surface Energies
 • Weakly Anisotropic Cases
 • Strongly Anisotropic Cases

4 Stable Equilibrium Shapes

5 Summary and Future Works
Sharp-Interface Model: Weakly Anisotropic

According to the thermodynamic variation, we can obtain the following dimensionless sharp-interface model for simulating dewetting evolution of thin solid films with weakly anisotropic surface energies\(^5\):

\[
\frac{\partial X}{\partial t} = V_n \mathcal{N} = \frac{\partial^2 \mu}{\partial s^2} \mathcal{N} = \frac{\partial^2}{\partial s^2} \left[(\gamma(\theta) + \gamma''(\theta)) \kappa \right] \mathcal{N},
\] (5)

Remark: \(\tilde{\gamma}(\theta) := \gamma(\theta) + \gamma''(\theta)\) represents the surface stiffness, and if

\[
\begin{cases}
\tilde{\gamma}(\theta) > 0, & \forall \theta \in [-\pi, \pi], \\
\text{Otherwise}, & \text{Strongly anisotropic cases.}
\end{cases}
\]

\(^5\text{Wang-Jiang-Srolovitz-Bao, PRB, 2015.}\)
Sharp-Interface Model: Weakly Anisotropic

1. **Contact Point Condition (BC1)**

\[y(x_l^c, t) = 0, \quad y(x_r^c, t) = 0. \] \hspace{1cm} (6)

2. **Relaxed Contact Angle Condition (BC2)**

\[\frac{dx_l^c}{dt} = \eta f(\theta_d^l), \quad \frac{dx_r^c}{dt} = -\eta f(\theta_d^r), \] \hspace{1cm} (7)

where

\[f(\theta) := \gamma(\theta) \cos \theta - \gamma'(\theta) \sin \theta - \sigma, \quad \text{with} \quad \sigma := \frac{\gamma_{VS} - \gamma_{FS}}{\gamma_0}. \]

\(f(\theta) = 0 \) is the anisotropic Young equation, which determines equilibrium contact angles.

3. **Zero-Mass Flux Condition (BC3)**

\[\frac{\partial \mu}{\partial s}(x_l^c, t) = 0, \quad \frac{\partial \mu}{\partial s}(x_r^c, t) = 0. \] \hspace{1cm} (8)
Under the above proposed governing equation (5) and boundary conditions (6-8), the total mass of the thin film conserves and the total interfacial energy always decreases during the evolution in the weakly anisotropic case.

Remark: The above properties ensure that the evolution process converges to one of the minimizers of the total interfacial energy functional.
In the strongly anisotropic case, $\tilde{\gamma}(\theta) := \gamma(\theta) + \gamma''(\theta)$ may become negative for some θ, which causes sharp corners in the equilibrium shape.

The proposed governing equation (5) becomes ill-posed in the strongly anisotropic case:

$$\frac{\partial \mathbf{X}}{\partial t} = \frac{\partial^2}{\partial s^2} \left[\left(\gamma(\theta) + \gamma''(\theta) \right) \kappa \right] \mathcal{N},$$

In order to regularize the equation, a high order regularization term can be added to the free energy:

$$W_r = \frac{\varepsilon^2}{2} \int_{\Gamma} \kappa^2 \, d\Gamma$$

The effect of the regularization is highly localized at near corners in the interface and tends to smooth the corners.

Following with the above similar derivation, we can obtain the following dimensionless sharp-interface continuum model for simulating dewetting evolution of thin solid films with strongly anisotropic surface energies\(^7\):

\[
\frac{\partial X}{\partial t} = V_n \mathcal{N} = \frac{\partial^2 \mu}{\partial s^2} \mathcal{N} = \frac{\partial^2}{\partial s^2} \left[\left(\gamma(\theta) + \gamma''(\theta) \right) \kappa - \varepsilon^2 \left(\frac{\partial^2 \kappa}{\partial s^2} + \frac{\kappa^3}{2} \right) \right] \mathcal{N}, \quad (9)
\]

\(^7\)Jiang et al., Scripta Mater., 2016.
1. **Contact Point Condition (BC1)**

\[y(x^l_c, t) = 0, \quad y(x^r_c, t) = 0. \]

2. **Relaxed Contact Angle Condition (BC2)**

\[
\frac{dx^l_c}{dt} = \eta f_\varepsilon(\theta^l_d), \quad \frac{dx^r_c}{dt} = -\eta f_\varepsilon(\theta^r_d),
\]

where \(f_\varepsilon(\theta) := \gamma(\theta) \cos \theta - \gamma'(\theta) \sin \theta - \sigma - \varepsilon^2 \frac{\partial \kappa}{\partial s}(\theta) \sin \theta.\)

3. **Zero-Mass Flux Condition (BC3)**

\[
\frac{\partial \mu}{\partial s}(x^l_c, t) = 0, \quad \frac{\partial \mu}{\partial s}(x^r_c, t) = 0.
\]

4. **Zero-curvature Condition (BC4)**

\[
\kappa(x^l_c, t) = 0, \quad \kappa(x^r_c, t) = 0.
\]
Theorem (Mass conservation and energy dissipation)

Under the proposed governing equation (9) and boundary conditions (10-13), the total mass of the thin film conserves and the total interfacial energy always decreases during evolution in the strongly anisotropic case.
Outline

1. Introduction

2. Theoretical Studies
 - Equilibrium Problems
 - Dynamical Problems

3. Dynamical Models with Anisotropic Surface Energies
 - Weakly Anisotropic Cases
 - Strongly Anisotropic Cases

4. Stable Equilibrium Shapes

5. Summary and Future Works
Recall that the Anisotropic Young equation is

\[f(\theta) = \gamma(\theta) \cos \theta - \gamma'(\theta) \sin \theta - \sigma = 0, \quad \theta \in [0, \pi]. \]

It may have multiple roots in the strongly anisotropic case since \(f'(\theta) \) changes sign when there exist some \(\theta \in [0, \pi] \) for which \(\tilde{\gamma}(\theta) < 0 \):

\[f'(\theta) = -\tilde{\gamma}(\theta) \sin \theta = -\left(\gamma(\theta) + \gamma''(\theta) \right) \sin \theta. \]

This implies that there may exist multiple roots (or multiple equilibrium shapes) in the strongly anisotropic case.
Necessary Conditions

Theorem

*If a piecewise C^2 curve $\Gamma_e := (x(s), y(s)), \ s \in [0, L]$ be a stable equilibrium shape (without scaling) of the solid-state dewetting problem with surface energy density $\gamma(\theta) \in C^2[-\pi, \pi]$, then the following three conditions are simultaneously satisfied:

\[
\mu(s) = \tilde{\gamma}(\theta(s)) \kappa(s) \equiv C, \quad a.e. \ s \in [0, L], \quad (C1)
\]
\[
\tilde{\gamma}(\theta(s)) \geq 0, \quad a.e. \ s \in [0, L], \quad (C2)
\]
\[
f(\theta) = 0, \quad \theta = \theta^l, \theta^r, \quad (C3)
\]

where C is a constant, and θ^l, θ^r are respectively the left and right equilibrium contact angles of the equilibrium shape Γ_e.\(^a\)

\(^a\)Jiang et al., submitted, 2016

Remark: The conditions (C1) and (C3) come from the first variation, while the condition (C2) comes from the second variation.
Example: $\gamma(\theta) = 1 + 0.3 \cos(4\theta)$, and material constant $\sigma = -0.5$.
By condition (C1), $\mu(s) = \tilde{\gamma}(\theta(s))\kappa(s) \equiv C$, a.e. $s \in [0, L]$.
By condition (C2), $\tilde{\gamma}(\theta(s)) \geq 0$, a.e. $s \in [0, L]$.
Generalized Winterbottom Construction

By condition (C3), \(f(\theta) = \gamma(\theta) \cos \theta - \gamma'(\theta) \sin \theta - \sigma = 0 \), \(\theta = \theta_a^l, \theta_a^r \).
Generalized Winterbottom Construction

We obtain four possible **stable equilibrium shapes**.
Generalized Winterbottom Construction

We obtain four possible stable equilibrium shapes.
Generalized Winterbottom Construction

We obtain four possible **stable equilibrium shapes**.
Generalized Winterbottom Construction

We obtain four possible stable equilibrium shapes.
Figure: The equilibrium shapes of thin film with different initial states under the same parameters: $\gamma(\theta) = 1 + 0.3 \cos(4\theta)$, $\sigma = -0.5$, where the solid black lines show the different numerical equilibrium shapes, and the dashed blue lines represent the Wulff shape truncated by the flat substrate.
Outline

1. Introduction

2. Theoretical Studies
 - Equilibrium Problems
 - Dynamical Problems

3. Dynamical Models with Anisotropic Surface Energies
 - Weakly Anisotropic Cases
 - Strongly Anisotropic Cases

4. Stable Equilibrium Shapes

5. Summary and Future Works
Summary:

▶ Introduce a mathematical analysis to understand the thermodynamic variation of solid-state dewetting problems.
▶ Propose the sharp-interface model including surface energy anisotropy effects.
▶ Give necessary conditions for stable equilibrium shapes.
▶ Propose a generalized Winterbottom construction to predict multiple stable equilibrium shapes.

Future Works:

⋄ Investigate the important roles of surface energy anisotropy.
⋄ Mathematical analysis of the models.
⋄ Develop accurate and efficient numerical methods for solving 3D solid-state dewetting problems.
⋄ Compare with experiments & guide new experiments.
Summary:

▶ Introduce a mathematical analysis to understand the thermodynamic variation of solid-state dewetting problems.
▶ Propose the sharp-interface model including surface energy anisotropy effects.
▶ Give necessary conditions for stable equilibrium shapes.
▶ Propose a generalized Winterbottom construction to predict multiple stable equilibrium shapes.

Future Works:

◊ Investigate the important roles of surface energy anisotropy.
◊ Mathematical analysis of the models.
◊ Develop accurate and efficient numerical methods for solving 3D solid-state dewetting problems.
◊ Compare with experiments & guide new experiments.
Thank You for Your Attention!