Liquidity Risk Measures

Stefan Weber
Leibniz Universität Hannover
email: sweber@stochastik.uni-hannover.de
web: www.stochastik.uni-hannover.de/~sweber
Liquidity

- **Illiquidity poses significant risk for investors**
 - Short-term obligations can force asset holders to liquidate assets
 - In illiquid markets, prices of fire sales may be suboptimal

- **Liquidity-Adjustments**
 - The value of portfolios should be adjusted for these adverse scenarios
 - The liquidity-risk should be quantified

- **Important model ingredients**
 - Supply-demand curves
 - Short-term obligations
Outline

(i) Liquidity Constraints
 • Supply-Demand Curves
 • Liquidity and Portfolio Constraints

(ii) Liquidity Adjustments
 • Portfolio Value
 • Risk Measures

(iii) Numerical Case Studies
Liquidity Constraints
Supply-Demand Curves

• Marginal supply-demand curve (MSDC)
 \(m : \mathbb{R}_* \to \mathbb{R} \) decreasing function
 – \(y > 0 \):
 Sell \(y \) shares for \(\int_0^y m(x)dx \)
 – \(y < 0 \):
 Buy \(|y|\) shares for \(\int_y^0 m(x)dx \), i.e. “receive” \(\int_y^0 m(x)dx \)

The convex cone of all MSDC’s is denoted by \(\mathcal{M} \).

• The numbers \(m^+ := m(0+) \) and \(m^- := m(0-) \) are called the best bid and best ask, respectively.

• The difference \(\Delta m : m^- - m^+ \geq 0 \) is called the bid-ask spread.
Supply-Demand Curves (cont.)

- **Proceeds of transaction:** \(P(s) = \int_0^s m(x)dx \)
- **Supply-demand curves:**
 \[
 S(x) := \frac{P(x)}{x}, \quad x \in \mathbb{R}_*
 \]
 - \(x > 0 \): average unit prices for sale
 - \(x > 0 \): average unit prices for purchase
Examples

Linear Supply-Demand Curve

- Supply-demand curve: \(S(x) = a - b \cdot x \) for given \(a, b > 0 \)
- Proceeds: \(P(x) = x \cdot S(x) = x \cdot (a - b \cdot x) \)
- Marginal supply-demand curve: \(m(x) = a - 2b \cdot x \)

Remark

Marginal prices become negative, if seller sells more than \(a/2b \) units. This case will, however, not occur, since it is never optimal for the seller to sell at these prices.
Examples (cont.)

Exponential Supply-Demand Curve

- Marginal supply-demand curve: \(m(x) = a \cdot e^{-bx} \) for \(a, b > 0 \)
- Proceeds: \(S(x) = \frac{a}{bx} \cdot (1 - e^{-bx}) \)
- Supply-demand curve: \(P(x) = \frac{a}{b} \cdot (1 - e^{-bx}) \)

Polynomial Supply-Demand Curve

- Marginal supply-demand curve: \(m(x) = \begin{cases} a(b - x)^\gamma, & x < b, \\ 0, & x \geq b. \end{cases} \)
 for \(a, b > 0 \) and \(\gamma > 1 \)
- Proceeds: \(P(x) = \frac{a}{\gamma+1}(b^{\gamma+1} - (b - x)^{\gamma+1}) \)
- Supply-demand curve: \(S(x) = \frac{a}{(\gamma+1)x} \cdot (b^{\gamma+1} - (b - x)^{\gamma+1}) \)
Markets and Portfolios

- **Spot market** of assets:
 \[\vec{m} = (m_0, m_1, \ldots, m_N) \in \mathcal{M}^{N+1}. \]
 We will always assume that asset 0 corresponds to cash and set \(m_0 = 1. \)

- **Portfolio** in a spot market of \(N \) risk assets:
 \[\vec{\xi} = (\xi_0, \xi_1, \ldots, \xi_N) = (\xi_0, \xi) \in \mathbb{R}^{N+1} \]
 "Number of assets at time 0"
Liquidity Risk Measures

Liquidation versus Mark-to-Market Value

- Liquidation value

\[L(\bar{\xi}, \bar{m}) = \sum_{i=0}^{N} \int_{0}^{\xi_i} m_i(x)dx = \xi_0 + \sum_{i=1}^{N} \int_{0}^{\xi_i} m_i(x)dx. \]

- Maximal mark-to market value

\[U(\bar{\xi}, \bar{m}) = \xi_0 + \sum_{i=1}^{N} \tilde{m}_i(\xi_i) \cdot \xi_i = L(\bar{\xi}, \bar{m}) - \sum_{i=1}^{N} \int_{0}^{\xi_i} \hat{m}_i(x)dx, \]

where \(\tilde{m}_i(\xi_i) = \begin{cases}
 m_i^+, & \text{if } \xi_i \geq 0, \\
 m_i^-, & \text{if } \xi_i < 0.
\end{cases} \]
Attainable Portfolios

- **Portfolio at time 0**: $\bar{\xi} \in \mathbb{R}^{N+1}$

- Any portfolio which is **attainable from** $\bar{\xi}$ has the form:

$$
\left(\xi_0 + \sum_{i=1}^{N} \int_{0}^{\eta_i} m_i(x) \, dx, \xi - \eta \right) \quad (\eta \in \mathbb{R}^N)
$$

We denote the set of **attainable portfolios** by $\mathcal{A}(\bar{\xi}, \bar{m})$.

Remark

The maximal mark-to-market values of the attainable portfolios will typically be an interval that is bounded above by the mark-to-market of the original portfolio.
Liquidity Adjustments
Liquidity Constraints

• **Short-term cash flows**

 Continuous function \(\phi : \mathbb{R}^N \rightarrow \mathbb{R} \cup \{-\infty\} \) such that \(\phi(0^N_N) = 0 \).

 We will usually assume that \(\phi \) is concave and non positive.

 Notation: \(\phi \in \Phi \)

• **Set of liquid portfolios**

 Letting \(\phi \in \Phi \) and \(a \in \mathbb{R} \), the set of liquid portfolios that are attainable from \(\bar{\xi} \) are defined as

 \[
 \mathcal{L}(\bar{\xi}) = \mathcal{L}(\bar{\xi}, \bar{m}, \phi, c) = \{ \bar{\eta} \in A(\bar{\xi}, \bar{m}) : \eta_0 + \phi(\eta) \geq a \}.
 \]
Liquidity Constraints (cont.)

Examples

- **Proportional margin constraints:**
 the obligations are proportional to the number of assets on which the investor is short, i.e.
 \[
 \phi(\xi) = - \sum_{i=1}^{N} \alpha_i \cdot \xi_i, \quad \alpha_i \geq 0, \quad i = 1, \ldots, N
 \]

- **Quadratic margin constraints:** the obligations are quadratic in the number of assets on which the investor is short, i.e.
 \[
 \phi(\xi) = - \sum_{i=1}^{N} \alpha_i \cdot (\xi_i^{-})^2, \quad \alpha_i \geq 0, \quad i = 1, \ldots, N
 \]
Portfolio Constraints

Let \(\mathcal{K} \subseteq \mathbb{R}^N \) be non-empty, closed, convex set.

Requirement

- \(\eta \in \mathcal{K} \) for any admissible portfolio \(\bar{\eta} = (\eta_0, \eta) \) at the end of the time horizon, \(t = 1 \)

- We suppose that \(0_N \in \mathcal{K} \), i.e. holding cash only is acceptable, as long as the borrowing constraint \(\eta_0 \geq a \) is satisfied.

We will always assume that the portfolio constraint can be expressed in terms of \(r \) convex functions \(\psi_1, \ldots, \psi_r : \mathbb{R}^N \rightarrow \mathbb{R} \), i.e.

\[
\eta \in \mathcal{K} \iff \psi_1(\eta) \leq 0, \ldots, \psi_r(\eta) \leq 0.
\]
Portfolio Value

Attainable portfolios

\[\mathcal{L}(\bar{\xi}) = \mathcal{L}(\bar{\xi}, \bar{m}, \phi, c) = \{ \bar{\eta} \in \mathcal{A}(\bar{\xi}, \bar{m}) : \eta_0 + \phi(\eta) \geq a \} \]

Value of a portfolio

\[V(\bar{\xi}, \bar{m}, \phi, a, \mathcal{K}) = \sup \{ U(\bar{\eta}, \bar{m}) : \bar{\eta} \in \mathcal{L}(\bar{\xi}, \bar{m}, \phi, a) \cap \mathcal{K} \} . \]

(Acerbi & Scandolo, 2008; Anderson, Liese & W., 2009)
Liquidity Risk Measures

- Assume that the MSDC m and the ICF ϕ are random.
- Let A be the acceptance set of a risk measure ρ.

Liquidity-based risk measure (Anderson, Liese & W., 2009)

- The risk of a portfolio $\bar{\xi}$ is defined as
 \[\rho^V(\bar{\xi}) = \inf \{ k : V(k + \bar{\xi}) \in A \} \]

- The mapping $\rho^V : \mathbb{R}^{N+1} \rightarrow \mathbb{R}$ is a convex risk measure.
- $\rho^V(\bar{\xi})$ is equal to the unique solution $k \in \mathbb{R}$ of the equation
 \[0 = \rho(V(\bar{\xi} + k)) \]
- In the case of UBSR this amounts to solving the equation
 \[0 = E [\ell(-V(\bar{\xi} + k)) - z] \]
Liquidity Risk Measures (cont.)

Robust Representation

Let \(\Delta^N \) be the \(N \)-dimensional simplex in \(\mathbb{R}^{N+1} \).

Then \(\rho^V \) admits a robust representation

\[
\rho^V(\bar{\xi}) = - \min_{\bar{v} \in \Delta^N} (\bar{v} \cdot \bar{\xi} - \beta(\bar{v})) , \quad \bar{\xi} \in \mathbb{R}^{N+1},
\]

with penalty function

\[
\beta(\bar{v}) = - \inf_{V(\bar{\xi}) \in \mathcal{A}} \bar{v} \cdot \bar{\xi}, \quad \bar{v} \in \Delta^N.
\]
Numerical Case Studies
Market and Portfolio

- Portfolio vector
 \[\bar{\xi} = (\xi_0, \xi_1, \xi_2) = (0, -3, 4) \]

- Exponential marginal demand-supply curves
 \[m(x) = a \cdot e^{-bx} \]
 with \(a - 20 \sim \mathcal{LN}(1/2, 1/2) \)

- Liquidity constraints
 \[\phi(\xi) = \alpha \cdot (\xi_1^- + \xi_2^-) \]

- Portfolio constraints
 \[\mathcal{K} = [-4, \infty)^2 \]
Liquidity-Adjusted Value

<table>
<thead>
<tr>
<th>α</th>
<th>$b=0.005$</th>
<th>μ</th>
<th>σ^2</th>
<th>γ</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>27.8587</td>
<td>15.4756</td>
<td>0.0802</td>
<td></td>
<td>29.5952</td>
</tr>
<tr>
<td>10</td>
<td>27.8102</td>
<td>16.6191</td>
<td>0.1181</td>
<td></td>
<td>29.6297</td>
</tr>
<tr>
<td>15</td>
<td>27.8545</td>
<td>16.3723</td>
<td>0.0946</td>
<td></td>
<td>29.3827</td>
</tr>
<tr>
<td>20</td>
<td>27.7346</td>
<td>16.5052</td>
<td>0.0939</td>
<td></td>
<td>29.3998</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>$b=0.5$</th>
<th>μ</th>
<th>σ^2</th>
<th>γ</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>26.5572</td>
<td>16.3905</td>
<td>0.0823</td>
<td></td>
<td>29.7312</td>
</tr>
<tr>
<td>10</td>
<td>20.0344</td>
<td>17.5126</td>
<td>0.1516</td>
<td></td>
<td>28.7874</td>
</tr>
<tr>
<td>15</td>
<td>-5.0026</td>
<td>28.285</td>
<td>0.2567</td>
<td></td>
<td>27.3533</td>
</tr>
<tr>
<td>20</td>
<td>-35.0029</td>
<td>85.1734</td>
<td>0.1806</td>
<td></td>
<td>26.8235</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>α</th>
<th>$b=1$</th>
<th>μ</th>
<th>σ^2</th>
<th>γ</th>
<th>κ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>24.969</td>
<td>16.0884</td>
<td>0.0796</td>
<td></td>
<td>29.1924</td>
</tr>
<tr>
<td>10</td>
<td>-4.2628</td>
<td>34.8094</td>
<td>0.2768</td>
<td></td>
<td>27.1233</td>
</tr>
<tr>
<td>15</td>
<td>-18.0512</td>
<td>78.4985</td>
<td>0.1125</td>
<td></td>
<td>27.3698</td>
</tr>
<tr>
<td>20</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Liquidity-Apdated Value (cont.)

Liquidity Adjusted Portfolio Values with $b = 0.5, \alpha = 5, 10, 15, 20$
Liquidity-Adjusted Entropic Risk Measures

<table>
<thead>
<tr>
<th></th>
<th>(b = 0.0005)</th>
<th>(b = 0.5)</th>
<th>(b = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\alpha = 5)</td>
<td>(\alpha = 10)</td>
<td>(\alpha = 15)</td>
</tr>
<tr>
<td>(\beta = 0.02)</td>
<td>(\frac{k_{RM}}{k_{PR}})</td>
<td>(\frac{k_{RM}}{k_{PR}})</td>
<td>(\frac{k_{RM}}{k_{PR}})</td>
</tr>
<tr>
<td></td>
<td>-2.5275/-2.3939</td>
<td>-2.2368/-2.3088</td>
<td>-2.4667/-2.3942</td>
</tr>
<tr>
<td>(\beta = 0.08)</td>
<td>-15.8750/-16.5501</td>
<td>-15.5920/-15.5051</td>
<td>-15.0820/-15.6940</td>
</tr>
<tr>
<td>VaR(0.05)</td>
<td>-21.8780</td>
<td>-21.7000</td>
<td>-21.6150</td>
</tr>
<tr>
<td></td>
<td>(\alpha = 5)</td>
<td>(\alpha = 10)</td>
<td>(\alpha = 15)</td>
</tr>
<tr>
<td>(\beta = 0.02)</td>
<td>(\frac{k_{RM}}{k_{PR}})</td>
<td>(\frac{k_{RM}}{k_{PR}})</td>
<td>(\frac{k_{RM}}{k_{PR}})</td>
</tr>
<tr>
<td></td>
<td>-0.8572/-2.3939</td>
<td>3.6768/3.8298</td>
<td>11.7150/11.7200</td>
</tr>
<tr>
<td>(\beta = 0.08)</td>
<td>-12.6150/-12.9923</td>
<td>-5.5968/-5.3172</td>
<td>5.0683/5.1998</td>
</tr>
<tr>
<td>(\beta = 0.15)</td>
<td>-14.7170/-14.9323</td>
<td>-7.1308/-6.9363</td>
<td>4.0099/4.3038</td>
</tr>
<tr>
<td>VaR(0.05)</td>
<td>-20.4360</td>
<td>-13.9420</td>
<td>12.0350</td>
</tr>
<tr>
<td></td>
<td>(\alpha = 5)</td>
<td>(\alpha = 10)</td>
<td>(\alpha = 15)</td>
</tr>
<tr>
<td>(\beta = 0.02)</td>
<td>(\frac{k_{RM}}{k_{PR}})</td>
<td>(\frac{k_{RM}}{k_{PR}})</td>
<td>(\frac{k_{RM}}{k_{PR}})</td>
</tr>
<tr>
<td></td>
<td>0.7344/0.6064</td>
<td>8.6733/8.6553</td>
<td>20.8170/20.9401</td>
</tr>
<tr>
<td>(\beta = 0.08)</td>
<td>-8.5896/-8.4589</td>
<td>3.3786/3.5234</td>
<td>18.7970/18.4807</td>
</tr>
<tr>
<td>(\beta = 0.15)</td>
<td>-9.7309/-9.7902</td>
<td>2.0792/2.8749</td>
<td>18.3900/18.3592</td>
</tr>
<tr>
<td>VaR(0.05)</td>
<td>-18.7540</td>
<td>11.8280</td>
<td>31.4780</td>
</tr>
</tbody>
</table>
Conclusion
Conclusion

(i) Portfolio values and static risk measures can be adjusted for liquidity risk

(ii) Liquidity-adjusted risk measures are risk measures!

(iii) Numerical case studies clearly demonstrate liquidity effects

(iv) Further research: dynamic liquidity-adjusted risk measures