L^1 Bounds in Normal Approximation

Larry Goldstein

University of Southern California
Motivated by Stein’s Lemma

\[E[Zf(Z)] = \sigma^2 Ef'(Z) \quad \text{if and only if} \quad Z \sim \mathcal{N}(0, \sigma^2). \]

For every \(Y \) with mean zero and variance \(\sigma^2 \), there exists a unique law for \(Y^* \) such that

\[E[Yf(Y)] = \sigma^2 Ef'(Y^*) \]

for all smooth \(f \). (Goldstein and Reinert, 1997)

Stein’s Lemma becomes: The distributional transformation \(Y \rightarrow Y^* \) has \(\mathcal{N}(0, \sigma^2) \) as its unique fixed point.
L^1 Bound

Principle: If $\mathcal{L}(Y)$ and $\mathcal{L}(Y^*)$ are close, then $\mathcal{L}(Y)$ is close to being a fixed point of the transformation, so is close to the unique fixed point, the normal.

In L^1 (Wasserstein, Dudley, Fortet-Mourier or Kantarovich) distance, this principle is evidenced by

$$||Y - Z|| \leq 2||Y^* - Y||.$$

The right hand side can sometimes be conveniently computed by coupling.
Examples and their Couplings

- Independent Sums

- Combinatorial Central Limit Theorem

- Cone Measure on the Sphere
Examples and their Couplings

- Independent Sums
 - Replace One

- Combinatorial Central Limit Theorem

- Cone Measure on the Sphere
Examples and their Couplings

• Independent Sums
 – Replace One

• Combinatorial Central Limit Theorem
 – Exchangeable Pair

• Cone Measure on the Sphere
Examples and their Couplings

- Independent Sums
 - Replace One

- Combinatorial Central Limit Theorem
 - Exchangeable Pair

- Cone Measure on the Sphere
 - Square Biasing Under Symmetry
Let Y be nonnegative with finite mean μ. Recall Y^s has the Y-sized biased distribution if

$$E[Y f(Y)] = \mu E f(Y^s)$$

for all smooth f.

Parallel to the zero bias transform: mean is replaced by variance, f is replaced by f'.

Both are special cases of ‘distributional biasing’ of the form

$$E[P(Y) f(Y)] = \alpha E f^{(m)}(Y^{(P)})$$

(Goldstein and Reinert, 2005)
To zero (size) bias a sum

\[Y = \sum_{i=1}^{n} X_i \]

of mean zero (non-negative) independent variables, pick one proportional to its variance (mean) and replace with biased version.

Answers intuitively the basic question of when a sum \(Y \) is close to normal.
Zero Bias CLT Rationale

If Y is the sum of comparable, independent, mean zero variables then Y^* differs from Y by only one summand.

Hence Y^* is close to Y, so Y is nearly a fixed point of the zero bias transformation, and hence close to normal.
When $W = n^{-1/2} \sum X_i$ for X, X_1, \ldots, X_n i.i.d. with mean zero, variance 1, and distribution function G,

$$W^* - W = n^{-1/2}(X^*_I - X_I).$$

Hence by previous bound

$$\|F - \Phi\|_1 \leq \frac{2}{\sqrt{n}}\|G^* - G\|.$$

The distribution function G^* of X^* is given explicitly by

$$G^*(x) = E[X(X - x) \mathbf{1}(X \leq x)].$$
Bernoulli* is Uniform, and

$$||F - \Phi|| \leq \frac{E|X_1|^3}{\sqrt{n}}, \quad \text{so } c = 1.$$

For $\mathcal{U}[-\sqrt{3}, \sqrt{3}]$,

$$G^*(x) = -\frac{\sqrt{3}x^3}{36} + \frac{\sqrt{3}x}{4} + \frac{1}{2} \quad \text{for} \quad x \in [-\sqrt{3}, \sqrt{3}],$$

yields

$$||F - \Phi|| \leq \frac{\sqrt{3}}{4\sqrt{n}} = \frac{E|X_1|^3}{3\sqrt{n}}, \quad \text{so } c = 1/3$$
Combinatorial Central Limit Theorem

Given \(n \times n \) real matrix \(A \), obtain bounds to the normal approximation for

\[
Y = \sum_{i=1}^{n} a_{i,\pi(i)},
\]

where \(\pi \) is uniform on \(S_n \).

(Hoeffding, Chen and Ho, Bolthausen, von Bahr)
Uniform distribution $\mathcal{U}(S_n)$

1. Simple random sampling is a special case of the special case where $a_{ij} = c_i d_j$.

2. Measure of uniformity of π, letting $a_{ij} = |i - j|$ gives $a_{i,\pi(i)} = |i - \pi(i)|$. $Y = 0$ on id, how far from zero is Y when π is uniform?

3. Distribution of permutation test statistics.
Given Y, construct Y' such that (Y, Y') is exchangeable, and

$$E(Y' | Y) = (1 - \lambda)Y, \quad \lambda \in (0, 1).$$
Computation of certain bounds when applying the exchangeable pair may require the (sometimes difficult) calculation of quantities such as

\[\sqrt{\text{Var}\{E[(Y' - Y)^2|Y]\}}. \]

But such is not required for the computation of \(E|Y^* - Y| \) for \(L^1 \) bounds.

Nevertheless, one method of obtaining a zero bias coupling involves the pair.
Let \((Y', Y'')\) be an exchangeable pair with joint distribution \(F\) satisfying \(E(Y''|Y') = (1 - \lambda)Y'\), \(\text{Var}(Y') = \sigma^2\). Let

\[
dF^\dagger(y^\dagger, y^\ddagger) = \frac{(y^\dagger - y^\ddagger)^2}{2\lambda\sigma^2}dF(y^\dagger, y^\ddagger),
\]

and \(U \sim \mathcal{U}[0, 1]\) independent. Then when \((Y^\dagger, Y^\ddagger) \sim F^\dagger\),

\[
Y^* = UY^\dagger + (1 - U)Y^\ddagger
\]

has the \(Y^*-\)zero bias distribution.
Combinatorial CLT, \(Y' = \sum_{i=1}^{n} a_{i,\pi'(i)} \)

Given \(\pi' \sim \mathcal{U}(S_n) \), let \(\tau_{IJ} \) be the transposition of \(I \) and \(J \), chosen distinct and uniformly, and let

\[
\pi'' = \pi' \tau_{I,J}.
\]

Then with \(Y'' \) formed using \(\pi'' \), the pair \(Y', Y'' \) is exchangeable,

\[
E(Y''|Y') = (1 - \frac{2}{n-1})Y',
\]

and

\[
Y'' - Y' = a_{I,\pi'(J)} + a_{J,\pi'(I)} - (a_{I,\pi'(I)} + a_{J,\pi'(J)}).
\]
Square Difference Bias and Coupling

To form $\pi^\dagger, \pi^\ddagger$, consider $I^\dagger, J^\dagger, K^\dagger, L^\dagger$ with distribution

$$p(i, j, k, l) = \frac{[(a_{ik} + a_{jl}) - (a_{il} + a_{jk})]^2}{4n^2(n - 1)\sigma^2}.$$

Now (letting $\pi = \pi'$) set

$$\pi^\dagger = \begin{cases}
\pi \tau_{\pi^{-1}(K^\dagger), J^\dagger} & \text{if } L^\dagger = \pi(I^\dagger), K^\dagger \neq \pi(J^\dagger) \\
\pi \tau_{\pi^{-1}(L^\dagger), I^\dagger} & \text{if } L^\dagger \neq \pi(I^\dagger), K^\dagger = \pi(J^\dagger) \\
\pi \tau_{\pi^{-1}(K^\dagger), I^\dagger \tau_{\pi^{-1}(L^\dagger)}, J^\dagger} & \text{otherwise},
\end{cases}$$

and $\pi^\ddagger = \pi^\dagger \tau_{I^\dagger, J^\dagger}$.
Aside: Non Uniform π Distribution

May consider distribution constant on conjugacy classes, for example, π uniform over all involutions $\pi^2 = \text{id}$.

In general, we may construct an exchangeable pair for such a π by letting

$$\pi'' = \tau_{IJ} \pi \tau_{IJ},$$

when A is symmetric and the probability of fixed points is zero.
Bound by computing $E|Y^* - Y'|$

Letting

$$a_{.j} = \frac{1}{n} \sum_{i=1}^{n} a_{ij} \quad a_{i.} = \frac{1}{n} \sum_{j=1}^{n} a_{ij} \quad a_{..} = \frac{1}{n^2} \sum_{i,j=1}^{n} a_{ij}$$

$$a_3 = \sum_{i,j=1}^{n} |a_{ij} - a_{i.} - a_{.j} + a_{..}|^3,$$

with $\sigma^2 = \text{Var}(Y')$,

$$||F - \Phi||_1 \leq \frac{a_3}{(n-1)\sigma^3} \left(16 + \frac{56}{n-1} + \frac{8}{(n-1)^2}\right).$$
Cone Measure C^n_p in \mathbb{R}^n

\[
S(\ell^n_p) = \{x : \sum_{i=1}^{n} |x_i|^p = 1\}, \quad B(\ell^n_p) = \{x : \sum_{i=1}^{n} |x_i|^p \leq 1\}
\]

With μ^n Lebesgue measure in \mathbb{R}^n, for $A \subset S(\ell^n_p)$ and

\[
[0, 1]A = \{ta : a \in A, 0 \leq t \leq 1\}
\]

let

\[
C^n_p(A) = \frac{\mu^n([0, 1]A)}{\mu^n(B(\ell^n_p))}.
\]
Cone Measure C_p^n in \mathbb{R}^n

Special cases

1. $p = 1$: Uniform distribution over the simplex

$$\sum_{i=1}^{n} |x_i| = 1.$$

2. $p = 2$: Uniform distribution over the sphere

$$\sum_{i=1}^{n} x_i^2 = 1.$$
Projection

For $\mathbf{X} \sim \mathcal{C}_p^n$ for some $p > 0$ and $\theta \in \mathbb{R}^n$ a unit vector, consider the projection

$$Y = \theta \cdot \mathbf{X}.$$

When $\theta = n^{-1/2}(1, 1, \ldots, 1)$, then $Y = n^{-1/2} \sum_{i=1}^{n} X_i$.

Diaconis and Freedman: for $p = 2$ considered total variation bounds

Meckes and Meckes: for random vectors with symmetries in general, considered supremum and total variation bounds
Zero Bias Construction for Coordinate Symmetric Vectors

\[(Y_1, \ldots, Y_n) = d (e_1 Y_1, \ldots, e_n Y_n), \quad \forall e_i \in \{-1, 1\}.\]

Since \(Y_i = d - Y_i\) and \((Y_i, Y_j) = d (Y_i, -Y_j)\) when \(i \neq j\), when second moments exist we have

\[EY_i = 0 \quad \text{and} \quad \text{Cov}(Y_i, Y_j) = 0.\]

With \(\sigma^2_i = \text{Var}(Y_i)\), the construction depends on the square bias distributions in direction \(i\),

\[EY_i f(Y) = \sigma^2_i Ef(Y^i) \quad \text{or} \quad dF^i(y) = \frac{y^2_i}{\sigma^2_i} dF(y).\]
Square Bias Construction

Let $Y = \sum_{i=1}^{n} Y_i$, I an independent random index with distribution $P(I = i) = \frac{\sigma_i^2}{\sum_{j=1}^{n} \sigma_j^2}$ and $U \sim \mathcal{U}[-1, 1]$ independent of all other variables. Then

$$Y^* = UY_I + \sum_{j \neq I} Y_J^I.$$

Generalizes the ‘replace one’ construction for independent variables given earlier.

For coupling under dependence, pick i according to I, generate y_i^i, then ‘adjust’ $Y_j, j \neq i$ according to the conditional distribution given $Y_i = y_i^i$.
If \(\{G_j, \epsilon_j, j = 1, \ldots, n\} \) are independent variables with \(G_j \sim \Gamma(1/p, 1) \), \(G_{1,n} = \sum_{i=1}^{n} G_i \) and \(\epsilon_j \in \{-1, 1\} \) equally likely, then

\[
X = \left(\epsilon_1 \left(\frac{G_1}{G_{1,n}} \right)^{1/p}, \ldots, \epsilon_n \left(\frac{G_n}{G_{1,n}} \right)^{1/p} \right) \sim \mathcal{C}_p^n.
\]
Square Bias in given Direction

With $G'_j \sim \Gamma(2/p, 1)$ independent,

\[X^i_i = \varepsilon_i \left(\frac{G_i + G'_i}{G_{1,n} + G'_i} \right)^{1/p} \]

has the X_i square bias distribution, and the vector with components

\[
\begin{cases}
 \left(\frac{1-|X^i_i|^p}{1-|X^i_i|^p} \right)^{1/p} X_j & j \neq i \\
 X^i_i & j = i
\end{cases}
\]

has the X distribution square biased in direction i.
Let X have cone measure C^n_p on the sphere $S(\ell^n_p)$ for some $p > 0$, and let

$$Y = \sum_{i=1}^{n} \theta_i X_i$$

be the one dimensional projection of X along the direction $\theta \in \mathbb{R}^n$ with $\|\theta\| = 1$. Then with $\sigma^2_{n,p} = \text{Var}(X_1)$ and $m_{n,p} = E|X_1^1|$,

$$\|F - \Phi\| \leq 3 \left(\frac{m_{n,p}}{\sigma_{n,p}} \right) \sum_{i=1}^{n} |\theta_i|^3 + \left(\frac{1}{p} \lor 1 \right) \frac{4}{n + 2}.$$
Special Cases

\(p = 1 \)

\[\|F - \Phi\| \leq \frac{9}{\sqrt{2}} \sum_{i=1}^{n} |\theta_i|^3 + \frac{4}{n + 2} \]

\(p = 2 \)

\[\|F - \Phi\| \leq \frac{9}{\sqrt{3}} \sum_{i=1}^{n} |\theta_i|^3 + \frac{4}{n + 2} \]
Summary

- Independent Sums
 - Replace One

- Combinatorial Central Limit Theorem
 - Exchangeable Pair

- Cone Measure on the Sphere
 - Square Biasing Under Symmetry
Extensions

- Independent Sums
 - Replace One
- Combinatorial Central Limit Theorem
 - Exchangeable Pair
- Cone Measure on the Sphere
 - Square Biasing Under Symmetry
- More...
 - ?