A GENERALIZED-LAGUERRE-HERMITE PSEUDOSPECTRAL METHOD FOR COMPUTING SYMMETRIC AND CENTRAL VORTEX STATES IN BOSE-EINSTEIN CONDENSATES

WEIZHU BAO¹ & JIE SHEN²

ABSTRACT. A generalized-Laguerre-Hermite pseudospectral method is proposed for computing symmetric and central vortex states in Bose-Einstein condensates (BECs) in three dimensions with cylindrical symmetry. The new method is based on the properly scaled generalized-Laguerre & Hermite functions and a normalized gradient flow. It enjoys three important advantages: (i) it reduces a three dimensional (3D) problem with cylindrical symmetry into an effective two-dimensional (2D) problem; (ii) it solves the problem in the whole space instead of in a truncated artificial computational domain; and (iii) it is spectrally accurate. Extensive numerical results for computing symmetric and central vortex states in BECs are presented for one-dimensional (1D) BEC, 2D BEC with radial symmetry and 3D BEC with cylindrical symmetry.

Key words and phrases. Generalized-Laguerre-Hermite functions, Bose-Einstein condensate, central vortex state, symmetric state, normalized gradient flow.

¹Department of Mathematics and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543. Email: bao@math.nus.edu.sg.

²Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA. Email: shen@math.purdue.edu.