NUMERICAL METHODS FOR INTERACTIVE MULTIPLE CLASS IMAGE SEGMENTATION PROBLEMS

MICHAEL K. NG*, GUOPING QIU†, AND ANDY M. YIP‡

Abstract. In this paper, we consider a bilaterally constrained optimization model arising from the semi-supervised multiple class image segmentation problem. We prove that the solution of the corresponding unconstrained problem satisfies a discrete maximum principle. This implies that the bilateral constraints are satisfied automatically and that the solution is unique. The structures of coefficient matrices arising from the optimality conditions of the segmentation problem are different for different input images, we still show that they are M-matrices in general. Therefore we study several numerical methods for solving such linear systems and demonstrate that domain decomposition with block relaxation methods are quite effective and outperform other tested methods. We also carry out a numerical study of condition numbers on the effect of boundary conditions on the optimization problems which provides some insights into the specification of boundary conditions as an input knowledge in the learning context.

Key words. Image segmentation, discrete maximum principle, domain decomposition, M-matrix, condition numbers, boundary conditions

*Centre for Mathematical Imaging and Vision and Institute for Computational Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong (mng@math.hkbu.edu.hk). Research supported in part by Hong Kong Research Grants Council Grant Number 204508 and HKBU FRGs.

†School of Computer Science, University of Nottingham, United Kingdom (qiu@cs.nott.ac.uk).

‡Department of Mathematics, National University of Singapore, 2, Science Drive 2, S117543, Singapore (andyyip@nus.edu.sg).