Heisenberg Operators of a Dirac Particle Interacting with the Quantum Radiation Field

Asao Arai
Department of Mathematics, Hokkaido University
Sapporo 060-0810
Japan
E-mail: arai@math.sci.hokudai.ac.jp

Abstract

We consider a quantum system of a Dirac particle interacting with the quantum radiation field, where the Dirac particle is in a 4×4-Hermitian matrix-valued potential V. Under the assumption that the total Hamiltonian H_V is essentially self-adjoint (we denote its closure by \overline{H}_V), we investigate properties of the Heisenberg operator $x_j(t) := e^{it\overline{H}_V} x_j e^{-it\overline{H}_V}$ $(j = 1, 2, 3)$ of the j-th position operator of the Dirac particle at time $t \in \mathbb{R}$ and its strong derivative $dx_j(t)/dt$ (the j-th velocity operator), where x_j is the multiplication operator by the j-th coordinate variable x_j (the j-th position operator at time $t = 0$). We prove that $D(x_j)$, the domain of the position operator x_j, is invariant under the action of the unitary operator $e^{-it\overline{H}_V}$ for all $t \in \mathbb{R}$ and establish a mathematically rigorous formula for $x_j(t)$. Moreover, we derive asymptotic expansions of Heisenberg operators in the coupling constant $q \in \mathbb{R}$ (the electric charge of the Dirac particle).

Keywords: Dirac-Maxwell operator; Dirac operator; Dirac particle; Heisenberg operator; position operator; quantum radiation filed; velocity operator; Zitterbewegung