A BOUND FOR THE MAXIMUM WEIGHT OF A LINEAR CODE

SIMEON BALL AND AART BLOKHUIS

Abstract. It is shown that the parameters of a linear code over \mathbb{F}_q of length n, dimension k, minimum weight d and maximum weight m satisfy a certain congruence relation.

In the case that $q = p$ is a prime, this leads to the bound $m \leq (n - d)p - e(p - 1)$, where $e \in \{0, 1, \ldots, k - 2\}$ is maximal with the property that

$$\binom{n - d}{e} \not\equiv 0 \pmod{p^{k-1-e}}.$$

Thus, if C contains a codeword a length n then $n \geq d/(p - 1) + d + e$.

Date: 1 June 2012.

This research was initiated while the authors were visiting the Institute for Mathematical Sciences, National University of Singapore in 2011. The first author acknowledges the support of the project MTM2008-06620-C03-01 of the Spanish Ministry of Science and Education and the project 2009-SGR-01387 of the Catalan Research Council.