A NO-GO THEOREM FOR NONABELIONIC STATISTICS IN
GAUGED LINEAR SIGMA-MODELS

INDRANIL BISWAS AND NUNO M. ROMÃO

ABSTRACT. Gauged linear sigma-models at critical coupling on Riemann surfaces yield self-dual field theories, their classical vacua being described by the vortex equations. For local models with structure group $U(r)$, we give a description of the vortex moduli spaces in terms of a fibration over symmetric products of the base surface Σ, which we assume to be compact. Then we show that all these fibrations induce isomorphisms of fundamental groups. A consequence is that all the moduli spaces of multivortices in this class of models have abelian fundamental groups. We give an interpretation of this fact as a no-go theorem for the realization of nonabelions through the ground states of a supersymmetric version (topological via an A-twist) of these gauged sigma-models. This analysis is based on a semi-classical approximation of the QFTs via supersymmetric quantum mechanics on their classical moduli spaces.

CONTENTS

1. Introduction 2
2. Gauged linear sigma-models and vortex moduli spaces 3
 2.1. GLSMs and the vortex equations 3
 2.2. Vortex moduli, n-pairs and Quot schemes 5
3. Internal structures of nonabelian local vortices 7
 3.1. The case of distinct points 7
 3.2. Case of multiplicity two 8
 3.3. Case of multiplicity $m > 2$ 9
 3.4. The general case 10
4. Fundamental groups of nonabelian vortex moduli spaces 11
5. No-go theorem for nonabelions in gauged linear sigma-models 12
 5.1. A semi-classical quantization scheme for supersymmetric GLSMs 12
 5.2. On the realization of nonabelionic statistics 14
Acknowledgements 14
References 15

2010 Mathematics Subject Classification. 14D21, 14H81, 58Z05.
Key words and phrases. Gauged linear sigma-model, vortex equation, nonabelions, Hecke transformation.